
sensors

Article

Spoofing Attack Results Determination in Code
Domain Using a Spoofing Process Equation

Beomju Shin 1, Minhuck Park 1, Sanghoon Jeon 2, Hyoungmin So 3, Gapjin Kim 3 and
Changdon Kee 1,*

1 Institute of Advanced Aerospace Technology, School of Mechanical and Aerospace Engineering,
Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; bjshin1984@snu.ac.kr (B.S.);
kaito1125@snu.ac.kr (M.P.)

2 Datalab, Kakao Mobillity Corp., 13F, Alphadom Tower, 152, Pangyoyeok-ro, Bundang-gu, Seongnam-si,
Gyeonggi-do 13529, Korea; hoon.jeon@kakaomobility.com

3 Agency for Defense Development, Daejeon 34186, Korea; hmso@add.re.kr (H.S.); ilovebach@add.re.kr (G.K.)
* Correspondence: kee@snu.ac.kr; Tel.: +82-2-880-8502; Fax: +82-2-878-8918

Received: 30 October 2018; Accepted: 8 January 2019; Published: 12 January 2019
����������
�������

Abstract: When a user receiver is tracking an authentic signal, a spoofing signal can be transmitted
to the user antenna. The question is under what conditions does the tracking point of the receiver
move from the authentic signal to the spoofing signal? In this study, we develop a spoofing process
equation (SPE) that can be used to calculate the tracking point of the delay lock loop (DLL) at regular
chip intervals for the entire spoofing process. The condition for a successful spoofing signal is
analyzed using the SPE. To derive the SPE, parameters, such as the signal strength, sweep velocity,
loop filter order, and DLL bandwidth are considered. The success or failure of a spoofing attack
is determined for a specific spoofing signal using the SPE. In addition, a correlation between each
parameter for a successful spoofing attack could be obtained through the SPE. The simulation results
show that the SPE performance is largely consistent with that of general DLL methods, even though
the computational load of SPE is very low.

Keywords: GNSS spoofing; GNSS receiver; delay lock loop

1. Introduction

The security and safety aspects of global navigation satellite systems (GNSSs) have been receiving
significant attention from researchers and the general public, because the use of GNSSs has been
increasing in modern society [1]. Because the power of a GNSS signal coming from the ground is very
low, the signal is exposed to different types of radio interferences [2]. Moreover, in contrast to military
signals, safety and security issues are not considered for civilian GNSS signals. A civilian signal is
not encrypted, and the details of such a signal are open [3]. In other words, anyone can intentionally
transmit a fake signal to deceive the user.

Some of the types of intentional interferences include jamming, meaconing, and spoofing [4–6].
The aim of jamming is to prevent a user from receiving the authentic signal by transmitting another
signal with a significantly greater power than that of the authentic signal. A meaconing attack involves
transmitting another signal collected at a different location or time. If a meaconing attack is successful,
the receiver would end up providing navigation information, such as the location and time, at which
the meaconing signal was collected. The most dangerous type of interference is a spoofing attack.
If the receiver captures a spoofing signal, the navigation solution can be controlled by the spoofer [7].

There are two main technological approaches in spoofing studies: spoofing attacks and
anti-spoofing techniques. Many spoofing attack tests have been conducted over the past few years.

Sensors 2019, 19, 293; doi:10.3390/s19020293 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/2/293?type=check_update&version=1
http://dx.doi.org/10.3390/s19020293
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 293 2 of 22

A portable GPS spoofer was developed, and a spoofing attack test was demonstrated for a target
receiver [8]. Although this experiment was conducted with a very short distance between the spoofer
and the target receiver, it was possible to develop a practical spoofer with low cost. Moreover,
successful spoofing tests were carried out against an unmanned aerial vehicle [9], a ship [10], and
a mobile device [11]. These studies have shown that spoofing attacks could be executed in real
situations. Moreover, many anti-spoofing techniques have been studied for receiver security and
safety. A maximum likelihood estimation-based positioning technique was applied to the detection
of spoofing signals and correction of navigation solution [12]. In another study, a cross-correlation
approach between two GNSS receivers was used to detect the spoofing signal [13]. In Ref [14],
an extended coupled amplitude delay lock loop (DLL) architecture was applied to spoofing detection.
A pseudorange difference-based anti-spoofing algorithm was introduced [15]. In Ref [16], spoofing
detection was performed using a machine learning algorithm such as a neural network. In other
studies, antenna-aided techniques [17] and inertial measurements unit-aided techniques [18] have
been developed.

Although the aforementioned studies report on spoofing attacks and anti-spoofing techniques,
few have analyzed the conditions and circumstances required for a successful spoofing attack. In [19],
the spoofing attack results were presented considering the time, position, and power offset. However,
only the effects of the spoofing parameters on the spoofing attack results were studied. In [9], a spoofing
signal with a 10 dB greater power than that of the authentic signal was transmitted to successfully
deceive a drone. However, to avoid as much as possible the detection of a spoofing signal at the
victim receiver, it is better to transmit the signal with the minimum power possible for a successful
spoofing attack.

In this paper, we analyzed the conditions for a successful spoofing attack in the code domain.
The spoofing parameters considered in this study are the spoofing signal strength, spoofing sweep
velocity (Doppler offset), DLL order, and bandwidth. With the increase in the spoofing signal strength
or DLL bandwidth, the probability of a successful spoofing attack increases. If the sweep velocity
increases, the probability of a successful spoofing attack is reduced because of the increase in the
Doppler offset between the authentic signal and the spoofing signal. However, for a specific spoofing
signal, it is difficult to determine whether a spoofing attack would be successful when the bandwidth is
more than a certain level. It is also difficult to determine the correlation between each parameter for a
successful spoofing attack. In this research, we develop a spoofing process equation (SPE) for the entire
spoofing process. Generally, to determine whether a specific spoofing signal would be successful, it is
necessary to perform an iterative DLL calculation during the entire spoofing process. The concept of
the SPE is to reduce the number of iterative DLL tracking calculations during the spoofing process by
increasing the integration time. Moreover, we express the entire DLL calculation process in the form
of an nth order polynomial. The spoofing attack results could be obtained in one single calculation
through the SPE. The following are the contributions of this study:

• We develop an SPE that can be used to express the entire spoofing process in the form of an nth
order polynomial.

• We obtain the spoofing results in one single calculation using the SPE and determine the
correlation between each parameter based on the boundary line which distinguishes between
successful and unsuccessful spoofing attacks.

• For a particular receiver, the minimum power of a spoofing signal for a successful spoofing attack
could be estimated via the SPE.

The remainder of this paper is organized as follows: Section 2 introduces the auto correlation
function (ACF) models of the authentic and spoofing signals. Section 3 presents simulations of a
spoofing scenario using the ACF models. Section 4 presents the derivation process of the SPE. Section 5
shows the simulation results obtained using the SPE. Finally, the discussions and conclusions are
provided in Sections 6 and 7, respectively.

Sensors 2019, 19, 293 3 of 22

2. Authentic and Spoofing Signal ACF Model

In this section, the authentic and spoofing signal models are presented. To generate a spoofing
signal aligned with the authentic signal, the spoofer should estimate the position and velocity of the
target receiver. Figure 1 shows a brief illustration of a spoofing scenario. First, the spoofer estimates the
position and velocity of the victim receiver using radar [6]. The spoofer can then calculate the aligned
spoofing signal by compensating for the spoofer processing delay and transmission delay. Moreover,
the power of the spoofing signal should be greater than that of the authentic signal. Therefore, it is
necessary to compensate for the propagation loss depending on the distance between the spoofer
and the victim receiver. The signal received at the victim receiver antenna can be represented using a
complex baseband model as follows:

s(t) = C[t− τa(t)] exp(jφa(t)) +
√

PsC[t− τs(t)] exp(jφs(t)) + n(t). (1)

where,

• s(t) denotes the total received signal;
• C denotes the pseudorandom code;
• τa(t) is the code phase of the authentic signal;
• τs(t) is the code phase of the spoofing signal;
• Ps is the spoofing power advantage;
• φa(t) is the carrier phase of the authentic signal;
• φs(t) is the carrier phase of the spoofing signal;
• n(t) is the complex zero-mean white Gaussian noise (AWGN).

Sensors 2018, 18, x FOR PEER REVIEW 3 of 23

Figure 1. Illustration of a spoofing scenario.

2. Authentic and Spoofing Signal ACF Model

In this section, the authentic and spoofing signal models are presented. To generate a spoofing
signal aligned with the authentic signal, the spoofer should estimate the position and velocity of the
target receiver. Figure 1 shows a brief illustration of a spoofing scenario. First, the spoofer estimates
the position and velocity of the victim receiver using radar [6]. The spoofer can then calculate the
aligned spoofing signal by compensating for the spoofer processing delay and transmission delay.
Moreover, the power of the spoofing signal should be greater than that of the authentic signal.
Therefore, it is necessary to compensate for the propagation loss depending on the distance between
the spoofer and the victim receiver. The signal received at the victim receiver antenna can be
represented using a complex baseband model as follows:

() [()]exp(()) [()]exp(()) ()a a s s ss t C t t j t P C t t j t n tτ φ τ φ= − + − + . (1)

where,

• ()s t denotes the total received signal;
• C denotes the pseudorandom code;
• ()a tτ is the code phase of the authentic signal;
• ()s tτ is the code phase of the spoofing signal;
• sP is the spoofing power advantage;
• ()a tφ is the carrier phase of the authentic signal;
• ()s tφ is the carrier phase of the spoofing signal;
• ()n t is the complex zero-mean white Gaussian noise (AWGN).

Figure 2. ACFs of the authentic and spoofing signal models.

Figure 1. Illustration of a spoofing scenario.

In the receiver, a correlation process is implemented to track the input signal s(t). Figure 2 shows
the ACF model of s(t). The blue triangle indicates the ACF of the authentic signal, whereas the red
triangle indicates the ACF of the spoofing signal. The horizontal axis represents the chip offset, and

Sensors 2019, 19, 293 4 of 22

the vertical axis represents the normalized correlator output (the amplitude of the authentic signal is
1). The parameters, shown in Figure 2, can be expressed as follows:

y1 =

{
x + 1, − 1 < τ ≤ 0

0, else

y2 =

{
−x + 1, 0 < τ < 1

0, else
Ra(τ) = y1 + y2

D = τs − τa

ys1 =

{
as(x + 1− D), − 1 + D < τ ≤ D

0, else

ys2 =

{
as(−x + 1 + D), D < τ < 1 + D

0, else
Rs(τ) = ys1 + ys2

R(τ) = Ra(τ) + Rs(τ)

(2)

where:

• y1 indicates the left line of the ACF of the authentic signal;
• y2 indicates the right line of the ACF of the authentic signal;
• Ra(τ) is the ACF of the authentic signal;
• D is the difference in the code phases between spoofing and authentic signals;
• ys1 indicates the left line of the ACF of the spoofing signal;
• ys2 indicates the right line of the ACF of the spoofing signal;
• as is the slope of the ACF of the spoofing signal;
• Rs(τ) is the ACF of the authentic signal;
• R(τ) is the ACF of the total signal;
• XE is the accumulation result with the replica code separated 0.5 chip early;
• XP is the accumulation result with the replica code;
• XL is the accumulation result with the replica code separated 0.5 chip late.

Sensors 2018, 18, x FOR PEER REVIEW 3 of 23

Figure 1. Illustration of a spoofing scenario.

2. Authentic and Spoofing Signal ACF Model

In this section, the authentic and spoofing signal models are presented. To generate a spoofing
signal aligned with the authentic signal, the spoofer should estimate the position and velocity of the
target receiver. Figure 1 shows a brief illustration of a spoofing scenario. First, the spoofer estimates
the position and velocity of the victim receiver using radar [6]. The spoofer can then calculate the
aligned spoofing signal by compensating for the spoofer processing delay and transmission delay.
Moreover, the power of the spoofing signal should be greater than that of the authentic signal.
Therefore, it is necessary to compensate for the propagation loss depending on the distance between
the spoofer and the victim receiver. The signal received at the victim receiver antenna can be
represented using a complex baseband model as follows:

() [()]exp(()) [()]exp(()) ()a a s s ss t C t t j t P C t t j t n tτ φ τ φ= − + − + . (1)

where,

• ()s t denotes the total received signal;
• C denotes the pseudorandom code;
• ()a tτ is the code phase of the authentic signal;
• ()s tτ is the code phase of the spoofing signal;
• sP is the spoofing power advantage;
• ()a tφ is the carrier phase of the authentic signal;
• ()s tφ is the carrier phase of the spoofing signal;
• ()n t is the complex zero-mean white Gaussian noise (AWGN).

Figure 2. ACFs of the authentic and spoofing signal models. Figure 2. ACFs of the authentic and spoofing signal models.

The XP could be written as [20]:

XP[n] = R(∆τa[n]) · sin(π∆ fa [n]·T)
π∆ fa [n]·T exp(j∆φa[n])

+ R[∆τs[n]] · sin(π∆ fs [n]·T)
π∆ fs [n]·T exp(j∆φs[n])

(3)

where:

Sensors 2019, 19, 293 5 of 22

• ∆τa[n] is the code phase difference between the local replica and the authentic signal;
• ∆τs[n] is the code phase difference between the local replica and the spoofing signal;
• ∆ fa[n] is the Doppler frequency difference between the local replica and the authentic signal;
• ∆ fs[n] is the Doppler frequency difference between the local replica and the spoofing signal;
• ∆φa[n] is the carrier phase difference between the local replica and the authentic signal;
• ∆φs[n] is the carrier phase difference between the local replica and the spoofing signal.

In the next section, we explain the change in the replica code phase, τ, depending on the success or
failure of a spoofing attack. In our simulation, we assume that the code phase and Doppler frequency
of the replica are perfectly aligned with the authentic signal before the spoofing signal approaches.
This implies that ∆τa[1] and ∆ fa[1] are zero.

3. Spoofing Scenario Simulation Using ACF Model

Using the ACF models explained in Section 2, we conduct the spoofing simulation. We assume
that the authentic signal is stationary and that the spoofing signal is moving from right to left with
a static velocity. This simulation is done without noise. In general, the DLL discriminator is used to
calculate the feedback output using XE and XL and thereby track the incoming signal. The replica
code phase gradually aligns with the code start point of the incoming signal during DLL code tracking.
In our spoofing simulation, the DLL initially tracks the authentic signal. When the spoofing signal
approaches and overlays with the authentic signal, the ACF changes. Figure 3 shows the sequential
ACF variation during the spoofing simulation. The green circle indicates the XP, which is the prompt
of the DLL. The position of XP in each figure is different. The position of XP is determined by the
shape of the ACF and the positions of previous XP and DLL settings.

Figure 4a,b show the τ histories of the two spoofing simulations. The only difference between the
two simulations is the DLL bandwidth. In Figure 4, the black lines indicate the code phase distance
between the authentic and spoofing signals. Because the authentic signal is fixed at zero, this can be
considered the position of the spoofing signal relative to the authentic signal in the code domain. We
now focus on Figure 4a. The green arrow indicates the start point of τ. At the start of the simulation,
τ is zero. The spoofing signal approaches the authentic signal from a distance of two chips. When the
spoofing signal reaches a distance of 1.5 chips, τ starts to gradually increase, as the spoofing signal
starts to affect XL. A blue arrow indicates the point where τ is increasing. The peak point of the total
ACF R(τ) is always the same as that of the spoofing ACF Ra(τ). Therefore, τ moves to the peak point
of R(τ) until the discriminator output becomes zero. After the spoofing signal passes the authentic
signal, the peak point of R(τ) is located on the negative side, as shown in Figure 3c. Finally, τ follows
the spoofing signal. The orange arrow represents the final value of the τ. In the case of Figure 4a,
τ follows the spoofing signal, and therefore, the spoofing attack is successful. Figure 4b shows the
other spoofing simulation case. In Figure 4b, the final value of τ returns to zero. τ seems to chase the
spoofing signal, as indicated using the dotted black line, but eventually returns to its location. This
implies that the spoofing attack is a failure. The difference between the two simulations is that the
DLL bandwidth. The DLL bandwidth is 5 Hz in the first simulation, whereas it is 3 Hz in the second
simulation. As shown in the simulation results, the greater the bandwidth of the receiver, the more
vulnerable it is to a spoofing attack. Moreover, the higher the strength of the spoofing signal, the higher
is the probability of a successful spoofing attack. The faster the spoofing signal sweeps, the more likely
it is that the spoofing attack will fail. Table 1 lists the changes in the spoofing attack results with respect
to increases in the bandwidth, signal strength and sweep velocity. However, it is difficult to determine
how strong a signal should be for a successful spoofing attack. It is also difficult to obtain a correlation
between the different parameters for a successful spoofing attack.

Sensors 2019, 19, 293 6 of 22

Sensors 2018, 18, x FOR PEER REVIEW 5 of 23

• []s nφΔ is the carrier phase difference between the local replica and the spoofing signal.

In the next section, we explain the change in the replica code phase, τ , depending on the
success or failure of a spoofing attack. In our simulation, we assume that the code phase and Doppler
frequency of the replica are perfectly aligned with the authentic signal before the spoofing signal
approaches. This implies that [1]aτΔ and [1]afΔ are zero.

Figure 3. ACF variation with respect to the difference in the code phases between the authentic and
spoofing signals. (a) D = 1.5; (b) D = 0.5; (c) D = -0.5; (d) D = -1.

Figure 4. Calculated histories of the local replica code phase in case of (a) successful spoofing attack;
(b) spoofing attack failure.

Figure 3. ACF variation with respect to the difference in the code phases between the authentic and
spoofing signals. (a) D = 1.5; (b) D = 0.5; (c) D = −0.5; (d) D = −1.

Sensors 2018, 18, x FOR PEER REVIEW 5 of 23

• []s nφΔ is the carrier phase difference between the local replica and the spoofing signal.

In the next section, we explain the change in the replica code phase, τ , depending on the
success or failure of a spoofing attack. In our simulation, we assume that the code phase and Doppler
frequency of the replica are perfectly aligned with the authentic signal before the spoofing signal
approaches. This implies that [1]aτΔ and [1]afΔ are zero.

Figure 3. ACF variation with respect to the difference in the code phases between the authentic and
spoofing signals. (a) D = 1.5; (b) D = 0.5; (c) D = -0.5; (d) D = -1.

Figure 4. Calculated histories of the local replica code phase in case of (a) successful spoofing attack;
(b) spoofing attack failure.
Figure 4. Calculated histories of the local replica code phase in case of (a) successful spoofing attack;
(b) spoofing attack failure.

Sensors 2019, 19, 293 7 of 22

Table 1. Relationship between spoofing parameters and spoofing results.

Parameters Spoofing Attack Success Probability

Increase in the spoofing signal strength Increase
Increase in spoofing signal sweep velocity Decrease

Increase in the DLL bandwidth Increase

4. Development of Spoofing Process Equation

4.1. Conventional Approach for τ Calculation

XP is calculated through DLL using the ACF and previous XP. The first-order DLL can be
expressed as follows:

∆τ[n] = XE[n]−XL[n]
2

τ[n + 1] = τ[n]−ω0 · T · ∆τ[n]
ω0 = B

4

(4)

where ∆τ, T, and B indicate the discriminator output, integration time, and DLL bandwidth,
respectively. In general, the spoofing attack results can be obtained by determining which signal
the DLL is tracking after the spoofing signal completely sweeps the authentic signal. In other words,
if the integration time of the receiver is 1 ms, it is necessary to repeatedly calculate the equation
thousands of times to obtain the spoofing attack results. This calculation can be expressed as follows:

k = ω0·T
2

τ[2] = τ[1]−ω0 · T · ∆τ[1] = τ[1]− k · {R1(τ[1]− 1
2)− R1(τ[1] + 1

2)}
τ[3] = τ[2]−ω0 · T · ∆τ[2] = τ[2]− k · {R2(τ[2]− 1

2)− R2(τ[2] + 1
2)}

.

.

.
τ[n] = τ[n− 1] + ω0 · T · ∆τ[n− 1] = τ[n− 1]− k · {Rn−1(τ[n− 1]− 1

2)− Rn−1(τ[n− 1] + 1
2)}

τ[n] = τ[1]− (n− 1) · k ·
n−1
∑

m=1
{Rm(τ[m]− 1

2)− Rm(τ[m] + 1
2)}

(5)

For a specific spoofing attack scenario, a lot of computations are required to calculate the final
replica code phase τ[n]. Moreover, it is necessary to know τ and ACF at all previous epochs. Thus,
the final τ value can be written as follows:

τ[n] = fτ(τ[1], τ[2], τ[3] , , , τ[n− 1],R1, R2, R3, , , Rn−1). (6)

4.2. Proposed Approach for τ Calculation

In this subsection, we propose a method to compute the spoofing attack results by calculating
each epoch at a certain chip interval (CI). The entire spoofing process is summarized in a mathematical
equation, i.e., the SPE, and the spoofing results are obtained by one calculation using the SPE. Figure 5
shows the results of the τ estimation with respect to the CI. The blue lines indicate the calculation
results of τ per 1 ms. Red circles indicate the calculation results of τ per specific CI. The equation for
calculating the time interval (TI) in terms of the chip interval can be expressed as follows:

TI =
293
Vs
· CI, (7)

where Vs denotes the spoofing sweep velocity (m/s), and the number 293 indicates the wavelength
of the C/A code in meter-scale. Table 2 lists the calculated TI with respect to each CI in case of the
spoofing sweep velocity is 80 m/s. τ error decreases with the decrease in the CI. However, additional
calculations are required to estimate the final τ when CI is low. The concept of CI is similar with

Sensors 2019, 19, 293 8 of 22

sampling interval. CI determines how often the SPE calculates the replica code phase. In our research,
we set the CI to 0.125 considering the complexity of the equation and τ error.Sensors 2018, 18, x FOR PEER REVIEW 8 of 23

Figure 5. Replica code phase histories for various CI settings. The blue lines indicate the calculated
replica code phase values of the original calculation. The red lines indicate the calculated replica code
phase with respect to the CI.

Table 2. Time interval calculation according to CI.

Chip Interval
(chip)

Time Interval
(second)

0.005 0.0183
0.053 0.1941
0.125 0.4578
0.160 0.5860
0.213 0.7801
0.266 0.9742
0.320 1.1720
0.426 1.5602
0.533 1.9521

4.3. Spoofing Attack Success or Failure Criteria

Figure 6a shows the τ results of DLL when the spoofing signal sweeps the authentic signal
with constant velocity. The blue line indicates the case of a successful spoofing attack, whereas the
red line indicates the case of a failed spoofing attack. Generally, the success or failure of a spoofing
attack can be determined from the type of signal the DLL tracks when the spoofing signal completely
sweeps the authentic signal. In both the simulations, the only difference is the bandwidth of the DLL.

The success or failure of a spoofing attack can be determined by looking at the absolute value of
τ at the point where D is −1. Figure 6b shows the region enclosed in the black box shown in Figure
6a. If the spoofing attack is successful, the absolute value of τ exceeds 0.5 at the point where D is
−1, and if it fails, the absolute value of the prompt is lower than 0.5.

Figure 5. Replica code phase histories for various CI settings. The blue lines indicate the calculated
replica code phase values of the original calculation. The red lines indicate the calculated replica code
phase with respect to the CI.

Table 2. Time interval calculation according to CI.

Chip Interval (Chip) Time Interval (Second)

0.005 0.0183
0.053 0.1941
0.125 0.4578
0.160 0.5860
0.213 0.7801
0.266 0.9742
0.320 1.1720
0.426 1.5602
0.533 1.9521

4.3. Spoofing Attack Success or Failure Criteria

Figure 6a shows the τ results of DLL when the spoofing signal sweeps the authentic signal with
constant velocity. The blue line indicates the case of a successful spoofing attack, whereas the red line
indicates the case of a failed spoofing attack. Generally, the success or failure of a spoofing attack can
be determined from the type of signal the DLL tracks when the spoofing signal completely sweeps the
authentic signal. In both the simulations, the only difference is the bandwidth of the DLL.

Sensors 2019, 19, 293 9 of 22

Sensors 2018, 18, x FOR PEER REVIEW 9 of 23

Figure 6. Different τ values at D is -1 according to the spoofing attack success or failure. (a) Overall τ
histories; (b) τ values at D is -1.

Figure 7. Different τ values at D is -1 according to the various spoofing attack scenarios. (a) Overall
τ histories; (b) τ values at D is -1.

Figure 7a shows the τ estimates for various spoofing parameters listed in Table 3. It is
noteworthy that the absolute value of τ at D is −1. As shown in Figure 7b, if the absolute value of
τ exceeds 0.5 chip when D is −1, the DLL tracks the spoofing signal.

Table 3. Integration time calculation according to CI.

Case
Spoofing Signal

Strength Offset (dB) Sweep Velocity (m/s) Bandwidth Spoofing Results
|τ |

at D = -1
1 1.5 50 3 Success 0.5013
2 1.5 50 5 Success 0.5287
3 1.5 70 3 Failure 0.4362
4 1.5 70 5 Failure 0.4774
5 2 50 3 Success 0.5357
6 2 50 5 Success 0.5741
7 2 70 3 Failure 0.4761
8 2 70 5 Success 0.5104

Figure 6. Different τ values at D is −1 according to the spoofing attack success or failure. (a) Overall τ

histories; (b) τ values at D is −1.

The success or failure of a spoofing attack can be determined by looking at the absolute value of τ

at the point where D is −1. Figure 6b shows the region enclosed in the black box shown in Figure 6a.
If the spoofing attack is successful, the absolute value of τ exceeds 0.5 at the point where D is −1, and
if it fails, the absolute value of the prompt is lower than 0.5.

Figure 7a shows the τ estimates for various spoofing parameters listed in Table 3. It is noteworthy
that the absolute value of τ at D is −1. As shown in Figure 7b, if the absolute value of τ exceeds
0.5 chip when D is −1, the DLL tracks the spoofing signal.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 23

Figure 6. Different τ values at D is -1 according to the spoofing attack success or failure. (a) Overall τ
histories; (b) τ values at D is -1.

Figure 7. Different τ values at D is -1 according to the various spoofing attack scenarios. (a) Overall
τ histories; (b) τ values at D is -1.

Figure 7a shows the τ estimates for various spoofing parameters listed in Table 3. It is
noteworthy that the absolute value of τ at D is −1. As shown in Figure 7b, if the absolute value of
τ exceeds 0.5 chip when D is −1, the DLL tracks the spoofing signal.

Table 3. Integration time calculation according to CI.

Case
Spoofing Signal

Strength Offset (dB) Sweep Velocity (m/s) Bandwidth Spoofing Results
|τ |

at D = -1
1 1.5 50 3 Success 0.5013
2 1.5 50 5 Success 0.5287
3 1.5 70 3 Failure 0.4362
4 1.5 70 5 Failure 0.4774
5 2 50 3 Success 0.5357
6 2 50 5 Success 0.5741
7 2 70 3 Failure 0.4761
8 2 70 5 Success 0.5104

Figure 7. Different τ values at D is −1 according to the various spoofing attack scenarios. (a) Overall τ

histories; (b) τ values at D is −1.

Sensors 2019, 19, 293 10 of 22

Table 3. Integration time calculation according to CI.

Case Spoofing Signal
Strength Offset (dB)

Sweep
Velocity (m/s) Bandwidth Spoofing

Results
|τ|

at D = −1

1 1.5 50 3 Success 0.5013
2 1.5 50 5 Success 0.5287
3 1.5 70 3 Failure 0.4362
4 1.5 70 5 Failure 0.4774
5 2 50 3 Success 0.5357
6 2 50 5 Success 0.5741
7 2 70 3 Failure 0.4761
8 2 70 5 Success 0.5104

The following analysis shows that the criterion used for determining the spoofing result is
reasonable. If the spoofing sweep velocity is very low or if the bandwidth is very high in the spoofing
simulation, there will be sufficient time or control input for the DLL to track the peak point of the ACF.
In this case, the discriminator output would become zero and XP would be located at the point where
XE equals XL. Figure 8 shows a series of snapshots where the discriminator output is zero with respect
to the ACF. The τ value for the case, shown in Figure 8a, can be derived as follows:

XE = y1 + ys1

= x + 1 + as(x + 1− D)

= (as + 1)x + as − asD + 1

= (as + 1)(τ − 1
2) + as − asD + 1

XL = y2 + ys2

= −x + 1 + as(−x + 1 + D)

= −(as + 1)x + as + asD + 1

= −(as + 1)(τ + 1
2) + as + asD + 1

XE = XL

(as + 1)(τ − 1
2) + as − asD + 1 = −(as + 1)(τ + 1

2) + as + asD + 1

(as + 1)τ − 1
2 (as + 1) + as − asD + 1 = −(as + 1)τ − 1

2 (as + 1) + as + asD + 1

2(as + 1)τ = 2asD

τ = asD
as+1

(8)

Sensors 2018, 18, x FOR PEER REVIEW 10 of 23

Figure 8. ACF change according to the spoofing signal in case that spoofing signal strength is larger
than authentic signal strength. (a) 1 0D− < < ; (b) 1D = ; (c) 1D < − .

The following analysis shows that the criterion used for determining the spoofing result is
reasonable. If the spoofing sweep velocity is very low or if the bandwidth is very high in the spoofing
simulation, there will be sufficient time or control input for the DLL to track the peak point of the
ACF. In this case, the discriminator output would become zero and XP would be located at the point
where XE equals XL. Figure 8 shows a series of snapshots where the discriminator output is zero
with respect to the ACF. The τ value for the case, shown in Figure 8a, can be derived as follows:

1 1

2 2

1 (1)
(1) 1

1(1)() 1
2

1 (1)
(1) 1

1(1)() 1
2

1 1(1)() 1 (1)() 1
2 2

1(1) (1)
2

s

s

s s s

s s s

s

s

s s s

s s s

s s s s s s

s s s s

XE y y
x a x D
a x a a D

a a a D

XL y y
x a x D
a x a a D

a a a D

XE XL

a a a D a a a D

a a a a D

τ

τ

τ τ

τ

= +
= + + + −
= + + − +

= + − + − +

= +
= − + + − + +
= − + + + +

= − + + + + +

=

+ − + − + = − + + + + +

+ − + + − 11 (1) (1) 1
2

2(1) 2

1

s s s s

s s

s

s

a a a a D

a a D
a D
a

τ

τ

τ

+ = − + − + + + +

+ =

=
+

.

(8)

Moreover, the τ values for the cases, shown in Figures 8b and 8c, can be derived in a similar
manner as follows:

1 1 2

1 1() (1)() 1
2 2

32
2

2 1

s s

s s s s s s

s

s

y y y

a a a d a a a d

a d

a

τ τ

τ

= +

− + − = − + + + + +

+
=

−

.

(9)

Figure 8. ACF change according to the spoofing signal in case that spoofing signal strength is larger
than authentic signal strength. (a) −1 < D < 0; (b) D = 1; (c) D < −1.

Sensors 2019, 19, 293 11 of 22

Moreover, the τ values for the cases, shown in Figure 8b,c, can be derived in a similar manner as
follows:

ys1 = y1 + ys2

as(τ − 1
2) + as − asd = (−as + 1)(τ + 1

2) + as + asd + 1

τ =
2asd+ 3

2
2as−1

(9)

ys1 = ys2

as(τ − 1
2) + as − asD = −as(τ + 1

2) + as + asD

τ = D

(10)

Figure 9 shows the summary of Equations (8) to (10). For any ACF, shown in Figure 8, τ can
be estimated using as and D when the spoofing sweep velocity is very low or when the bandwidth
is considerable. Moreover, it is possible to calculate D corresponding to the different equations of τ

Figure 10 shows the ACF change with respect to the spoofing signal when the spoofing signal strength
is lower than the authentic signal strength. We can derive an equation to calculate τ in the same
manner as above. The τ value for the cases, shown in Figure 10a,b,c can be derived as follows:

y1 + ys1 = y2 + ys2

(as + 1)(τ − 1
2) + as − asD + 1 = −(as + 1)(τ + 1

2) + as + asD + 1

τ = asD
as+1

(11)

y1 + ys2 = y2

(−as + 1)(τ − 1
2) + as + asD + 1 = −(τ + 1

2) + 1

τ =
3
2 as+asD

as−2

(12)

y1 = y2

(τ − 1
2) + 1 = −(τ + 1

2) + 1
τ = 0

(13)

Sensors 2018, 18, x FOR PEER REVIEW 11 of 23

1 2

1 1() ()
2 2

s s

s s s s s s

y y

a a a D a a a D

D

τ τ

τ

=

− + − = − + + +

=

. (10)

Figure 9. Equation of τ and D in case that the spoofing signal strength is larger than authentic signal
and XE is same with XL.

Figure 10. ACF change according to the spoofing signal in case that spoofing signal strength is lower
than authentic signal strength. (a) 1 0D− < < ; (b) 1D = ; (c) 1D < − .

Figure 9 shows the summary of Equations (8) to (10). For any ACF, shown in Figure 8, τ can
be estimated using sa and D when the spoofing sweep velocity is very low or when the bandwidth
is considerable. Moreover, it is possible to calculate D corresponding to the different equations of τ
Figure 10 shows the ACF change with respect to the spoofing signal when the spoofing signal
strength is lower than the authentic signal strength. We can derive an equation to calculate τ in the
same manner as above. The τ value for the cases, shown in Figures 10a, 10b and 10c can be derived
as follows:

1 1 2 2

1 1(1)() 1 (1)() 1
2 2

1

s s

s s s s s s

s

s

y y y y

a a a D a a a D

a D
a

τ τ

τ

+ = +

+ − + − + = − + + + + +

=
+

.
(11)

Figure 9. Equation of τ and D in case that the spoofing signal strength is larger than authentic signal
and XE is same with XL.

Sensors 2019, 19, 293 12 of 22

Sensors 2018, 18, x FOR PEER REVIEW 11 of 23

1 2

1 1() ()
2 2

s s

s s s s s s

y y

a a a D a a a D

D

τ τ

τ

=

− + − = − + + +

=

. (10)

Figure 9. Equation of τ and D in case that the spoofing signal strength is larger than authentic signal
and XE is same with XL.

Figure 10. ACF change according to the spoofing signal in case that spoofing signal strength is lower
than authentic signal strength. (a) 1 0D− < < ; (b) 1D = ; (c) 1D < − .

Figure 9 shows the summary of Equations (8) to (10). For any ACF, shown in Figure 8, τ can
be estimated using sa and D when the spoofing sweep velocity is very low or when the bandwidth
is considerable. Moreover, it is possible to calculate D corresponding to the different equations of τ
Figure 10 shows the ACF change with respect to the spoofing signal when the spoofing signal
strength is lower than the authentic signal strength. We can derive an equation to calculate τ in the
same manner as above. The τ value for the cases, shown in Figures 10a, 10b and 10c can be derived
as follows:

1 1 2 2

1 1(1)() 1 (1)() 1
2 2

1

s s

s s s s s s

s

s

y y y y

a a a D a a a D

a D
a

τ τ

τ

+ = +

+ − + − + = − + + + + +

=
+

.
(11)

Figure 10. ACF change according to the spoofing signal in case that spoofing signal strength is lower
than authentic signal strength. (a) −1 < D < 0; (b) D = 1; (c) D < −1.

Figure 11 shows the summary of Equations (11) to (13). Figure 12 shows a graphical representation
of Equations (8) to (13). The blue lines indicate spoofing attack success, whereas the red lines indicate
spoofing attack failure. If as is greater than 1, τ follows the blue line, and if as is lower than 1, it follows
the red line. When as is 1, D at the time of transition, from (b) to (c) in Figure 8, is −1, and the absolute
value of τ becomes 0.5. In case that the spoofing sweep velocity is infinitely slow or the DLL bandwidth
is infinitely large, the condition for a successful spoofing attack is that the power of the spoofing signal
sets in greater than that of the authentic signal. If the spoofing signal power is a little greater than the
authentic signal power, the replica code phase is lower than −0.5 at D is −1. If the spoofing signal
power is a little smaller than the authentic signal power, the replica code phase is higher than −0.5
at D is −1. Thus, we could regard that the τ value is a boundary value when D is −1. This implies
that the absolute value of τ should exceed 0.5 chip before D approaches −1 for a successful spoofing
attack. Figure 13a shows the τ histories with respect the spoofing signal power. ε indicates a very
small positive value. Slope of each line is differently changed after D exceeds −1. Figure 13b shows
the τ value change with respect the spoofing parameters in the real scenario.

Sensors 2018, 18, x FOR PEER REVIEW 12 of 23

1 2 2

1 1(1)() 1 () 1
2 2

3
2

2

s

s s s

s s

s

y y y

a a a D

a a D

a

τ τ

τ

+ =

− + − + + + = − + +

+
=

−

.

(12)

1 2

1 1() 1 () 1
2 2

0

y y

τ τ

τ

=

− + = − + +

=

. (13)

Figure 11. Equation of τ and D in case that the spoofing signal strength is lower than authentic
signal and XE is same with XL.

Figure 11 shows the summary of Equations (11) to (13). Figure 12 shows a graphical
representation of Equations (8) to (13). The blue lines indicate spoofing attack success, whereas the
red lines indicate spoofing attack failure. If sa is greater than 1, τ follows the blue line, and if sa
is lower than 1, it follows the red line. When sa is 1, D at the time of transition, from (b) to (c) in
Figure 8, is −1, and the absolute value of τ becomes 0.5. In case that the spoofing sweep velocity is
infinitely slow or the DLL bandwidth is infinitely large, the condition for a successful spoofing attack
is that the power of the spoofing signal sets in greater than that of the authentic signal. If the spoofing
signal power is a little greater than the authentic signal power, the replica code phase is lower than
−0.5 at D is −1. If the spoofing signal power is a little smaller than the authentic signal power, the
replica code phase is higher than −0.5 at D is −1. Thus, we could regard that the τ value is a
boundary value when D is −1. This implies that the absolute value of τ should exceed 0.5 chip
before D approaches −1 for a successful spoofing attack. Figure 13a shows the τ histories with
respect the spoofing signal power. ε indicates a very small positive value. Slope of each line is
differently changed after D exceeds −1. Figure 13b shows the τ value change with respect the
spoofing parameters in the real scenario.

Figure 11. Equation of τ and D in case that the spoofing signal strength is lower than authentic signal
and XE is same with XL.

Sensors 2019, 19, 293 13 of 22

Sensors 2018, 18, x FOR PEER REVIEW 13 of 23

Figure 12. Summary of Equations (8) to (13).

Figure 13. (a) τ histories with respect to spoofing signal power in case that the spoofing sweep
velocity is infinitely slow; (b) τ value change with respect to spoofing parameter change.

4.4. Derivation of SPE

Assuming that the spoofing signal shifts from right to left, the spoofing signal affects the DLL
discriminator when D approaches within 1.5 chip. Moreover, to determine the spoofing results, we
only need to calculate τ until D reaches −1. Therefore, if CI is 0.125 chip, it is possible to determine
the spoofing attack results by a total of 19 calculations. In Equation (4), all the previous τ values and
ACF are required to calculate []nτ . The SPE can be used to calculate τ at the point where D is −1 to
determine whether the spoofing attack is a successful one or not by only one calculation. When setting
the CI to 0.125, the ACF variation could be known. However, it is not possible to specify the previous
τ values. This is because τ value at a certain D changes according to the spoofing parameters.
However, the range of τ can be defined for each D value for τ to be close to −0.5 chip when D is −1.
The spoofing attack results can be determined by checking whether the absolute value of τ at D = −1
exceeds 0.5 chip or not. In our case, τ[19] is the final τ value. For τ[19] to be close to −0.5, τ[18] must
be in a specific range. Moreover, τ[17] must be in a specific range for τ[18] to be in the defined range.
Thus, we can define each range according to the D value of the entire process. Table 4 lists the range
of τ[i] for each D[i] where i denotes each CI index. There are ACF models of XE and XL for each D. If

Figure 12. Summary of Equations (8) to (13).

Sensors 2018, 18, x FOR PEER REVIEW 13 of 23

Figure 12. Summary of Equations (8) to (13).

Figure 13. (a) τ histories with respect to spoofing signal power in case that the spoofing sweep
velocity is infinitely slow; (b) τ value change with respect to spoofing parameter change.

4.4. Derivation of SPE

Assuming that the spoofing signal shifts from right to left, the spoofing signal affects the DLL
discriminator when D approaches within 1.5 chip. Moreover, to determine the spoofing results, we
only need to calculate τ until D reaches −1. Therefore, if CI is 0.125 chip, it is possible to determine
the spoofing attack results by a total of 19 calculations. In Equation (4), all the previous τ values and
ACF are required to calculate []nτ . The SPE can be used to calculate τ at the point where D is −1 to
determine whether the spoofing attack is a successful one or not by only one calculation. When setting
the CI to 0.125, the ACF variation could be known. However, it is not possible to specify the previous
τ values. This is because τ value at a certain D changes according to the spoofing parameters.
However, the range of τ can be defined for each D value for τ to be close to −0.5 chip when D is −1.
The spoofing attack results can be determined by checking whether the absolute value of τ at D = −1
exceeds 0.5 chip or not. In our case, τ[19] is the final τ value. For τ[19] to be close to −0.5, τ[18] must
be in a specific range. Moreover, τ[17] must be in a specific range for τ[18] to be in the defined range.
Thus, we can define each range according to the D value of the entire process. Table 4 lists the range
of τ[i] for each D[i] where i denotes each CI index. There are ACF models of XE and XL for each D. If

Figure 13. (a) τ histories with respect to spoofing signal power in case that the spoofing sweep velocity
is infinitely slow; (b) τ value change with respect to spoofing parameter change.

4.4. Derivation of SPE

Assuming that the spoofing signal shifts from right to left, the spoofing signal affects the DLL
discriminator when D approaches within 1.5 chip. Moreover, to determine the spoofing results, we
only need to calculate τ until D reaches −1. Therefore, if CI is 0.125 chip, it is possible to determine
the spoofing attack results by a total of 19 calculations. In Equation (4), all the previous τ values and
ACF are required to calculate τ[n]. The SPE can be used to calculate τ at the point where D is −1
to determine whether the spoofing attack is a successful one or not by only one calculation. When
setting the CI to 0.125, the ACF variation could be known. However, it is not possible to specify the
previous τ values. This is because τ value at a certain D changes according to the spoofing parameters.
However, the range of τ can be defined for each D value for τ to be close to −0.5 chip when D is −1.
The spoofing attack results can be determined by checking whether the absolute value of τ at D = −1
exceeds 0.5 chip or not. In our case, τ[19] is the final τ value. For τ[19] to be close to −0.5, τ[18] must
be in a specific range. Moreover, τ[17] must be in a specific range for τ[18] to be in the defined range.
Thus, we can define each range according to the D value of the entire process. Table 4 lists the range
of τ[i] for each D[i] where i denotes each CI index. There are ACF models of XE and XL for each D.
If each τ[i] is within the defined range for each D[i], τ[19] will be calculated close to −0.5. The details
of the SPE derivation are given in appendix A. Finally, SPE has the following form like:

Sensors 2019, 19, 293 14 of 22

τ[19] = f (as, Vs, B). (14)

Table 4. Range of τ[i] and ACF model of XE and XL according to the D[i].

i D[i] Range of
τ[i]−0.5

Range of
τ[i]+0.5

ACF Model
of XE

ACF Model
of XL

1 1.375 −1~0 0.375~1 y1 y2 + ys1
2 1.25 −1~0 0.25~1 y1 y2 + ys1
3 1.125 −1~0 0.125~1 y1 y2 + ys1
4 1 −1~0 0~1 y1 y2 + ys1
5 0.875 −1~−0.25 −0.125~0.875 y1 y2 + ys1
6 0.75 −0.25~0 0.75~1 y1 + ys1 y2 + ys2
7 0.675 −0.375~0 0.625~1 y1 + ys1 y2 + ys2
8 0.5 −0.5~0 0.5~1 y1 + ys1 y2 + ys2
9 0.375 −0.625~0 0.375~1 y1 + ys1 y2 + ys2

10 0.25 −0.75~0 0.25~1 y1 + ys1 y2 + ys2
11 0.125 −0.875~0 0.125~1 y1 + ys1 y2 + ys2
12 0 −1~0 0~1 y1 + ys1 y2 + ys2
13 −0.125 −1~−0.125 0~0.875 y1 + ys1 y2 + ys2
14 −0.25 −1~−0.25 0~0.75 y1 + ys1 y2 + ys2
15 −0.375 −1~0.375 0~0.625 y1 + ys1 y2 + ys2
16 −0.5 −1~−0.5 0~0.5 y1 + ys1 y2 + ys2
17 −0.625 −1~0.625 0~0.375 y1 + ys1 y2 + ys2
18 −0.75 −1~−0.75 0~0.25 y1 + ys1 y2 + ys2
19 −0.875 −1~0.875 0~0.125 y1 + ys1 y2 + ys2

The inputs to the SPE are the spoofing signal strength, spoofing sweep velocity and DLL
bandwidth. When the calculation of SPE is performed, τ[19] is calculated for D = −1 by just one
calculation. The success or failure of the spoofing attack is determined by the absolute value of τ.

5. Analysis of SPE Simulation Results

5.1. SPE Performance Analysis

To verify the performance of the SPE, we compared the estimated SPE results with the original
DLL results. Table 5 presents the various spoofing signal parameters and τ results in the cases of using
the original DLL and SPE at D = −1.

Table 5. Various spoofing parameters and τ results in case of using original DLL and SPE.

Case
Spoofing Signal
Strength Offset

(dB)

Sweep
Velocity

(m/s)

Bandwidth
Reference Proposed Error

τ1ms τSPE

√
(τ1ms−τSEP)

2

1 1.5 55 3 −0.4895 −0.4903 0.0008
2 1.5 60 3 −0.4742 −0.4777 0.0035
3 1.5 60 5 −0.5043 −0.503 0.0013
4 1.5 65 5 −0.4927 −0.4931 0.0004
5 2 60 3 −0.5072 −0.507 0.0002
6 2 65 3 −0.4934 −0.4937 0.0003
7 2 65 5 −0.5257 −0.5217 0.004
8 2 70 3 −0.477 −0.4797 0.0027
9 2 70 5 −0.5112 −0.5104 0.0008
10 2.5 65 3 −0.5253 −0.5231 0.0022
11 2.5 80 3 −0.4759 −0.4787 0.0028
12 2.5 80 5 −0.5147 −0.5136 0.0011

Sensors 2019, 19, 293 15 of 22

τ1ms indicates the estimated replica code phase obtained using the original DLL, the integration
time of which is 1ms. τSPE is the estimated replica code phase obtained using the SPE. The calculation
time required by the SPE is significantly lower than that required by the original DLL, because τSPE
can be calculated in just one calculation using the SPE. We can see that the replica code phase values
estimated using the two methods are very similar. Figure 14 shows the τSPE errors with respect to CI.
The τSPE errors decrease with the decrease in CI. Thus, the SPE error is due to the reduction in the
number of DLL calculations during the spoofing attack process.

Sensors 2018, 18, x FOR PEER REVIEW 15 of 23

1msτ indicates the estimated replica code phase obtained using the original DLL, the integration
time of which is 1ms. SPEτ is the estimated replica code phase obtained using the SPE. The
calculation time required by the SPE is significantly lower than that required by the original DLL,
because SPEτ can be calculated in just one calculation using the SPE. We can see that the replica code
phase values estimated using the two methods are very similar. Figure 14 shows the SPEτ errors
with respect to CI. The SPEτ errors decrease with the decrease in CI. Thus, the SPE error is due to the
reduction in the number of DLL calculations during the spoofing attack process.

Figure 14. SPE error with respect to CI when D is −1.

Figure 15 shows the error distribution of the SPE with respect to the spoofing signal strength
and sweep velocity on a fixed bandwidth. At the yellow point, the values of the spoofing parameters,
namely the signal strength offset, sweep velocity, and bandwidth, are 2 dB, 50 m/s, and 2 Hz,
respectively. When SPEτ is calculated for the above set of spoofing parameter values using the SPE,
the error in SPEτ is the Z axis value corresponding to the yellow point. The SPE performance is the
best around the boundary line. The success and failure of the spoofing attack can be divided based
on the boundary line.

Figure 15. SPE error with respect to the spoofing signal strength and velocity in three dimensions.

Figure 14. SPE error with respect to CI when D is −1.

Figure 15 shows the error distribution of the SPE with respect to the spoofing signal strength
and sweep velocity on a fixed bandwidth. At the yellow point, the values of the spoofing parameters,
namely the signal strength offset, sweep velocity, and bandwidth, are 2 dB, 50 m/s, and 2 Hz,
respectively. When τSPE is calculated for the above set of spoofing parameter values using the SPE,
the error in τSPE is the Z axis value corresponding to the yellow point. The SPE performance is the
best around the boundary line. The success and failure of the spoofing attack can be divided based on
the boundary line.

Sensors 2018, 18, x FOR PEER REVIEW 15 of 23

1msτ indicates the estimated replica code phase obtained using the original DLL, the integration
time of which is 1ms. SPEτ is the estimated replica code phase obtained using the SPE. The
calculation time required by the SPE is significantly lower than that required by the original DLL,
because SPEτ can be calculated in just one calculation using the SPE. We can see that the replica code
phase values estimated using the two methods are very similar. Figure 14 shows the SPEτ errors
with respect to CI. The SPEτ errors decrease with the decrease in CI. Thus, the SPE error is due to the
reduction in the number of DLL calculations during the spoofing attack process.

Figure 14. SPE error with respect to CI when D is −1.

Figure 15 shows the error distribution of the SPE with respect to the spoofing signal strength
and sweep velocity on a fixed bandwidth. At the yellow point, the values of the spoofing parameters,
namely the signal strength offset, sweep velocity, and bandwidth, are 2 dB, 50 m/s, and 2 Hz,
respectively. When SPEτ is calculated for the above set of spoofing parameter values using the SPE,
the error in SPEτ is the Z axis value corresponding to the yellow point. The SPE performance is the
best around the boundary line. The success and failure of the spoofing attack can be divided based
on the boundary line.

Figure 15. SPE error with respect to the spoofing signal strength and velocity in three dimensions. Figure 15. SPE error with respect to the spoofing signal strength and velocity in three dimensions.

Sensors 2019, 19, 293 16 of 22

In other words, τSPE of the spoofing parameters on the boundary line is −0.5. τSPE error increases
as the distance from the boundary value and spoofing parameter increases. A large error indicates
that the previous τ values are outside the defined range in the τSPE calculation process. We define
the range of previous replica code phase range at every D[i] like Table 4 in order that the final code
phase is calculated around the boundary line at D is −1. If the previous code phases, τ[1] ∼ τ[18], are
deviated from the defined range, SPE would provide inaccurate result.

Also, it could be explained that the ACF functions used to calculate XE and XL vary with respect
to the already defined XE and XL. Figure 16 shows the SPE error distribution in two dimensions.
The SPE error is lowest around the boundary line. The spoofing parameters are divided using different
colors with respect to the SPE error size.

Sensors 2018, 18, x FOR PEER REVIEW 16 of 23

In other words, SPEτ of the spoofing parameters on the boundary line is −0.5. SPEτ error
increases as the distance from the boundary value and spoofing parameter increases. A large error
indicates that the previous τ values are outside the defined range in the SPEτ calculation process.
We define the range of previous replica code phase range at every D[i] like Table 4 in order that the
final code phase is calculated around the boundary line at D is −1. If the previous code phases,

[1] ~ [18]τ τ , are deviated from the defined range, SPE would provide inaccurate result.

Figure 16. SPE error according to spoofing signal strength and velocity.

Also, it could be explained that the ACF functions used to calculate XE and XL vary with respect
to the already defined XE and XL. Figure 16 shows the SPE error distribution in two dimensions. The
SPE error is lowest around the boundary line. The spoofing parameters are divided using different
colors with respect to the SPE error size.

5.2. Determination of Boundary Line and Surface Using SPE

The boundary line and surface that divide the spoofing attack success and failure can be
estimated using the SPE. The input parameters of the SPE are the spoofing signal strength, spoofing
signal sweep velocity, and DLL bandwidth. In Equation (15), if we set each variable as follows:

0.5 (,40,2)sf a− = , (15)

Table 6. Estimated sa values according to the spoofing parameters.

Number Sweep Velocity (m/s) Bandwidth
(Hz)

 sa
(dB)

1 40 2 1.46
2 45 2 1.69
3 50 2 1.92
4 55 2 2.17
5 60 2 2.42
6 65 2 2.69
7 70 2 2.97
8 75 2 3.26
9 80 2 3.56

10 85 2 3.87
11 90 2 4.20
12 95 2 4.54
13 100 2 4.09

Figure 16. SPE error according to spoofing signal strength and velocity.

5.2. Determination of Boundary Line and Surface Using SPE

The boundary line and surface that divide the spoofing attack success and failure can be estimated
using the SPE. The input parameters of the SPE are the spoofing signal strength, spoofing signal sweep
velocity, and DLL bandwidth. In Equation (15), if we set each variable as follows:

− 0.5 = f (as, 40, 2), (15)

Only one variable, i.e., as, remains, and the SPE becomes an equation to calculate as. We use
MATLAB solver to obtain ãs which is an estimated value of as obtained using Equation (15). This
means that the SPE result of the spoofing parameters, (ãs, 40, 2), becomes −0.5. Therefore, the spoofing
parameter, (ãs + ε, 40, 2), will result in a successful spoofing attack. The other spoofing parameter,
(ãs − ε, 40, 2), will result in a failed spoofing attack. ε is a small positive value. Figure 17a shows
the boundary line dividing the spoofing attack success and failure zones. We obtain the spoofing
signal strength values by fixing the other spoofing parameters and τ. Table 6 presents the estimated ãs

values with respect to the spoofing parameters. The red line in Figure 17a indicates the boundary line.
The boundary can be estimated using the spoofing parameters listed in Table 6 as follows:

Vs = fbl(as)

= p1 · a3
s + p2 · a2

s + p3 · as + p4
(16)

where fbl is the function of the boundary line for the DLL bandwidth of 2 Hz. p1, p2, p3, and p4 are the
coefficients at the boundary line. Moreover, this line expresses the correlation between two parameters

Sensors 2019, 19, 293 17 of 22

for a successful spoofing attack. From Equation (16), we find that as the spoofing signal strength
increases, the spoofing attack becomes successful even with a higher sweep velocity.Sensors 2018, 18, x FOR PEER REVIEW 17 of 23

Figure 17. (a) sa estimation using SPE; (b) Determination of spoofing attack success and failure by

boundary line.

Only one variable, i.e., as, remains, and the SPE becomes an equation to calculate as. We use
MATLAB solver to obtain sa which is an estimated value of sa obtained using Equation (15). This
means that the SPE result of the spoofing parameters, (sa , 40, 2), becomes −0.5. Therefore, the
spoofing parameter, (sa ε+ , 40, 2), will result in a successful spoofing attack. The other spoofing
parameter, (sa ε− , 40, 2), will result in a failed spoofing attack. ε is a small positive value. Figure
17a shows the boundary line dividing the spoofing attack success and failure zones. We obtain the
spoofing signal strength values by fixing the other spoofing parameters and τ . Table 6 presents the
estimated sa values with respect to the spoofing parameters. The red line in Figure 17a indicates the
boundary line. The boundary can be estimated using the spoofing parameters listed in Table 6 as
follows:

3 2
1 2 3 4

()s bl s

s s s

V f a
p a p a p a p

=

= ⋅ + ⋅ + ⋅ +
 (16)

where blf is the function of the boundary line for the DLL bandwidth of 2 Hz. 1p , 2p , 3p , and

4p are the coefficients at the boundary line. Moreover, this line expresses the correlation between
two parameters for a successful spoofing attack. From Equation (16), we find that as the spoofing
signal strength increases, the spoofing attack becomes successful even with a higher sweep velocity.

The spoofing attack success and failure zone is divided based on the boundary line, as shown in
Figure 17b. The zone above the boundary line indicates spoofing attack failure, whereas the zone
below indicates spoofing attack success. Figure 18a shows the boundary lines for various DLL
bandwidths. We find that the receiver becomes more vulnerable to spoofing attacks as its DLL
bandwidth increases. With the increase in the DLL bandwidth, the spoofing attack becomes
successful even for a low spoofing signal strength when using a fixed spoofing sweep velocity. Figure
18b shows the boundary lines in three dimensions.

Figure 17. (a) as estimation using SPE; (b) Determination of spoofing attack success and failure by
boundary line.

Table 6. Estimated ãs values according to the spoofing parameters.

Number Sweep Velocity
(m/s)

Bandwidth
(Hz)

ãs
(Hz)

1 40 2 1.46
2 45 2 1.69
3 50 2 1.92
4 55 2 2.17
5 60 2 2.42
6 65 2 2.69
7 70 2 2.97
8 75 2 3.26
9 80 2 3.56

10 85 2 3.87
11 90 2 4.20
12 95 2 4.54
13 100 2 4.09

The spoofing attack success and failure zone is divided based on the boundary line, as shown in
Figure 17b. The zone above the boundary line indicates spoofing attack failure, whereas the zone below
indicates spoofing attack success. Figure 18a shows the boundary lines for various DLL bandwidths.
We find that the receiver becomes more vulnerable to spoofing attacks as its DLL bandwidth increases.
With the increase in the DLL bandwidth, the spoofing attack becomes successful even for a low
spoofing signal strength when using a fixed spoofing sweep velocity. Figure 18b shows the boundary
lines in three dimensions.

Sensors 2019, 19, 293 18 of 22
Sensors 2018, 18, x FOR PEER REVIEW 18 of 23

Figure 18. Boundary lines according to the DLL bandwidth (a) boundary lines in two dimension; (b)
boundary lines in three dimension.

Figure 19. Boundary surface.

The boundary surface can be estimated using the boundary lines, as shown in Figure 19. The
boundary surface can be expressed as follows:

2 2 2 3 3 2 2 3 4
1 2 3 4 5 6 7 8 9 10 11

(,)sf s s

s s s s s s s s s s s s s s s

B f a V

c c a c V c a c a V c a V c V c a V c a V c a V c V

=

= + + + + + + + + + +
, (17)

where sff indicates the function of the boundary surface. 1 11~c c are coefficients of sff . For
specific spoofing parameters, the spoofing attack results can be determined using sff . Equation (18)
is the case for spoofing attack failure, whereas Equation (19) is the case for spoofing attack success:

(,)sf s sB f a V> , (18)

(,)sf s sB f a V< . (19)

Table 7 presents the computational complexities of the conventional DLL and SPE in terms of
the number of iteration and computational time with respect to the spoofing signal velocity. We can
see that the proposed method has much lower computational complexity than that of the
conventional DLL. The simulation were performed on a personal computer with Intel Core i7-4790k.

Spoofing signal
strength offset (dB)

Spoofing signal
sweep velocity (m/s)

2
150

3

4

6100

5

5

6

4

7

50 3
2

0 1

Figure 18. Boundary lines according to the DLL bandwidth (a) boundary lines in two dimension;
(b) boundary lines in three dimension.

The boundary surface can be estimated using the boundary lines, as shown in Figure 19.
The boundary surface can be expressed as follows:

B = fs f (as, Vs)

= c1 + c2as + c3Vs + c4a2
s + c5a2

s Vs + c6asV2
s + c7V3

s + c8a3
s Vs + c9a2

s V2
s + c10asV3

s + c11V4
s

(17)

where fs f indicates the function of the boundary surface. c1 ∼ c11 are coefficients of fs f . For specific
spoofing parameters, the spoofing attack results can be determined using fs f . Equation (18) is the case
for spoofing attack failure, whereas Equation (19) is the case for spoofing attack success:

B > fs f (as, Vs), (18)

B < fs f (as, Vs). (19)

Sensors 2018, 18, x FOR PEER REVIEW 18 of 23

Figure 18. Boundary lines according to the DLL bandwidth (a) boundary lines in two dimension; (b)
boundary lines in three dimension.

Figure 19. Boundary surface.

The boundary surface can be estimated using the boundary lines, as shown in Figure 19. The
boundary surface can be expressed as follows:

2 2 2 3 3 2 2 3 4
1 2 3 4 5 6 7 8 9 10 11

(,)sf s s

s s s s s s s s s s s s s s s

B f a V

c c a c V c a c a V c a V c V c a V c a V c a V c V

=

= + + + + + + + + + +
, (17)

where sff indicates the function of the boundary surface. 1 11~c c are coefficients of sff . For
specific spoofing parameters, the spoofing attack results can be determined using sff . Equation (18)
is the case for spoofing attack failure, whereas Equation (19) is the case for spoofing attack success:

(,)sf s sB f a V> , (18)

(,)sf s sB f a V< . (19)

Table 7 presents the computational complexities of the conventional DLL and SPE in terms of
the number of iteration and computational time with respect to the spoofing signal velocity. We can
see that the proposed method has much lower computational complexity than that of the
conventional DLL. The simulation were performed on a personal computer with Intel Core i7-4790k.

Spoofing signal
strength offset (dB)

Spoofing signal
sweep velocity (m/s)

2
150

3

4

6100

5

5

6

4

7

50 3
2

0 1

Figure 19. Boundary surface.

Table 7 presents the computational complexities of the conventional DLL and SPE in terms of the
number of iteration and computational time with respect to the spoofing signal velocity. We can see
that the proposed method has much lower computational complexity than that of the conventional

Sensors 2019, 19, 293 19 of 22

DLL. The simulation were performed on a personal computer with Intel Core i7-4790k. In case of
the conventional DLL, as the spoofing signal velocity decreases, the computational load increases.
In contrast, a consistent computational load is required in case of SPE.

Table 7. Computational complexities of conventional DLL and SPE.

Sweep Velocity
(m/s)

Conventional DLL SPE

The Number of
Iteration

Computational Time
(s)

The Number of
Iteration

Computational Time
(s)

40 18312 10.34 19 0.24
50 14650 8.26 19 0.24
60 12208 6.86 19 0.24
70 10464 5.89 19 0.24
80 9156 5.17 19 0.24

6. Discussion

• The SPE can be derived in the same manner regardless of the DLL order. The details of the same
are given in Appendix B.

• In this paper, we analyzed the effect of the spoofing signal on the local replica code phase using
the SPE. However, for a completely successful spoofing attack, the point of FLL tracking should
be moved from the authentic signal to the spoofing signal. In the future, we will focus on spoofing
process analysis in the frequency domain.

• Our simulation is conducted without any noise. If noise is added to our simulation, the probability
distribution around the boundary line can be obtained using the SPE. The probability of spoofing
attack success or failure on the boundary line would be 50%.

7. Conclusions

Analyzing the replica code phase variation due to the reception of the spoofing signal is important
for developing spoofing attack or anti-spoofing techniques. In this paper, we propose an SPE that
can be used to calculate the replica code phase following a spoofing attack and determine whether
the spoofing attack is successful using the SPE output. The advantage of the SPE is that it could
theoretically create a minimal spoofing signal condition for a successful spoofing attack. The boundary
surface dividing the spoofing attack success or failure is obtained using the SPE. The boundary surface
shows the correlation of how each spoofing parameter affects the code tracking results. This study is
meaningful in that it presents a detailed study about the variation in the replica code phase during a
spoofing attack process. We expect that the research results would aid the development of spoofing
attack or anti-spoofing techniques.

Author Contributions: This research was carried out in collaborations with all authors. B.S., M.P., S.J. and C.K.
designed the proposed method. B.S. and M.P. performed the simulation. S.J., H.S, and G.K. verified the proposed
method and analyzed the simulation results. B.S. and M.P. drafted the manuscript. C.K. corrected the whole
manuscript. All authors contributed and improved the manuscript.

Acknowledgments: This work has been supported by the program ‘Satellite Navigation Augmentation to
Improve Navigation Technology’ of Agency for Defense Development, contracted through the SNU-IAMD. This
research was supported (in part) by the Institute of Advanced Aerospace Technology at Seoul National University.
The Institute of Engineering Research at Seoul National University provided research facilities for this work.

Conflicts of Interest: The authors declare no conflicts of interest.

Sensors 2019, 19, 293 20 of 22

Appendix A

The details of SPE derivation are as follows. Figure A1 shows the ACF snapshots for i ranging
from 1 to 4. If τ[i]− 0.5 and τ[i] + 0.5 are in the defined range, XE and XL can be calculated using
y1(τ[i]− 0.5) and y2(τ[i] + 0.5) + ys2(τ[i] + 0.5), respectively. Thus, first-order DLL could be expressed
until i ≤ 5 like:

τ[i] = τ[i− 1] + k{(a− 2)τ[i− 1] +
3
2

as − ad[i− 1]}. (A1)

Also, τ[1], τ[2], τ[3], and τ[4] can be expressed as follows:

τ[1] = −k · {R1(τ[1]− 1
2)− R1(τ[1] + 1

2)}
= −k · {y1(− 1

2)− y2(
1
2)− ys1(

1
2)}

= k(3
2 as − D[1])

, (A2)

τ[2] = τ[1]− k{y1(τ[1]− 1
2)− y2(τ[1] + 1

2)− ys1(τ[1] + 1
2)}

= k{(as − 2)(3
2 as − asD[1])k + (2 3

2 as − as(D[1] + D[2])}
, (A3)

τ̂[3] = k{(as − 2)2(3
2 as − asD[1])k + (as − 2)(3

2 as − asD[1])k

+(as − 2)(3
2 as +

3
2 as − asD[2]− aD[2])k + (3 · 3

2 as − as(D[1] + D[2] + D[3])}
, (A4)

τ̂[4] = k{(as − 2)3(3
2 as − asD[1])k3 + 2(as − 2)2(3

2 as − asD[1])k2

+(as − 2)2(3
2 as +

3
2 as − asD[1]− asD[2])k2 + (as − 2)(3

2 as − asD[1])k

+(as − 2)(3
2 as +

3
2 as − asD[1]− asD[2])k + (as − 2)(3

2 as +
3
2 as +

3
2 as − asD[1]− asD[2]− asD[3])k

+4 · 3
2 as − as(D[1] + D[2] + D[3] + D[4])}

. (A5)

After i > 5, the first-order DLL could be expressed as follows:

τ[i] = τ[i− 1] + k{−(2as + 2)τ[i− 1] + 2asd[i− 1]}. (A6)

If τ is developed until i = n, SPE is complete. SPE has the following generalized form like:

τ[n] =
n

∑
i=1

gi,n(as)ki, (A7)

gn,n(as) = (−1)m
mCm(2as + 2)m(as − 2)l−1(

3
2

as − ad[1]), (A8)

gn−1,n(as) = (−1)m−1
mCm−1(2as + 2)m−1(as − 2)l−1(3

2 as − asd[1])

+(−1)m3mCm(2as + 2)m(as − 2)l−2(3
2 as − asd[1])

+(−1)m3mCm(2as + 2)m(as − 2)l−2{2 3
2 a− a(d[1] + d[2])}

, (A9)

gn−2,n(as) = (−1)m−2
mCm−2(2as + 2)m−2(a− 2)l−1(3

2 as − asd[1])

+(−1)m−13mCm−1(2as + 2)m−1(as − 2)m−2(3
2 as − asd[1])

+(−1)m−12mCm−1(2as + 2)m−1(as − 2)l−2{2 3
2 as − as(d[1] + d[2])}

+(−1)m3mCm(2as + 2)m(as − 2)l−3(3
2 as − asd[1]) + (−1)m2mCm(2as + 2)m(as − 2)l−3{2 3

2 as − as(d[1] + d[2])}

+(−1)m
mCm(2as + 2)m(as − 2)l−3{3 3

2 a− a(d[1] + d[2] + d[3])}

. (A10)

Sensors 2019, 19, 293 21 of 22

Sensors 2018, 18, x FOR PEER REVIEW 20 of 23

Appendix A

Figure A1. ACF snapshots with i from 1 to 4. (a) D = 1.375; (b) D = 1.25; (c) D = 1.125; (d) D = 1.

The details of SPE derivation are as follows. Figure A1 shows the ACF snapshots for i ranging
from 1 to 4. If [] 0.5iτ − and [] 0.5iτ + are in the defined range, XE and XL can be calculated using

1([] 0.5)y iτ − and 2 2([] 0.5) ([] 0.5)sy i y iτ τ+ + + , respectively. Thus, first-order DLL could be
expressed until 5i ≤ like:

3[] [1] {(2) [1] [1]}
2 si i k a i a ad iτ τ τ= − + − − + − − . (A1)

Also, [1]τ , [2]τ , [3]τ , and [4]τ can be expressed as follows:

1 1

1 2 1

1 1[1] { ([1]) ([1])}
2 2

1 1 1{ () () ()}
2 2 2

3([1])
2

s

s

k R R

k y y y

k a D

τ τ τ= − ⋅ − − +

= − ⋅ − − −

= −

, (A2)

1 2 1
1 1 1[2] [1] { ([1]) ([1]) ([1])}
2 2 2

3 3{(2)([1]) (2 ([1] [2])}
2 2

s

s s s s s

k y y y

k a a a D k a a D D

τ τ τ τ τ= − − − + − +

= − − + − +

, (20)

Figure A1. ACF snapshots with i from 1 to 4. (a) D = 1.375; (b) D = 1.25; (c) D = 1.125; (d) D = 1.

Appendix B

To derive the SPE, each DLL order could be expressed as follows:

τ[n + 1] = τ[n]−ω0 · T · ∆τ[n]
= τ[n]− K1 · ∆τ[n] (A11)

τ[n + 1] = τ[n]− {(ω1 · T)2 · ∆τ[n] + a2 ·ω1 · T · ∆τ[n]}+ τ1[n] · T
= τ[n]− (k2 · ∆τ[n] + k3 · ∆τ[n]) + τ1[n] · T
= τ[n]− (k2 + k3)∆τ[n] + τ1[n] · T
= τ[n]− K2 · ∆τ[n] + τ1[n] · T

(A12)

τ[n + 1] = τ[n]− {(ω2 · T)3 · ∆τ[n] + (a3 ·ω2 · T)2∆τ[n]

+ (b3 ·ω2 · T) · ∆τ[n]}+ τ2[n] · T2 + τ3[n] · T
= τ[n]− (k4∆τ[n] + k5∆τ[n] + k6∆τ[n]) + τ2[n] · T2 + τ3[n] · T
= τ[n]− (k4 + k5 + k6)∆τ[n] + τ2[n] · T2 + τ3[n] · T
= τ[n]− K3 · ∆τ[n] + τ2[n] · T2 + τ3[n] · T

(A13)

Equations (A11) to (A13) are the DLL in case of 1st, 2nd, and 3rd order, respectively. ω0 is the 1st
order filter value. ω1 and a2 are the 2nd order filter values. ω2, a3 and b3 are the 3rd order filter values.
K1, K2 and K3 are the SPE coefficients with respect to the DLL order, respectively. SPE coefficients are
determined through the filter setting. Also, τ1[n] in Equation (A12) can be derived using Equation
(A11). And τ2[n] and τ3[n] in Equation (A13) can be derived using Equation (A11) and Equation (A12),
respectively. This derivation shows that the SPE could be derived from any DLL order.

Sensors 2019, 19, 293 22 of 22

References

1. Psiaki, M.L.; Humphreys, T.E. GNSS Spoofing and Detection. Proc. IEEE 2016, 104, 1258–1270. [CrossRef]
2. Cavaleri, A.; Motella, B.; Pini, M.; Fantino, M. Detection of spoofed GPS signals at code and carrier

tracking level. In Proceedings of the 2010 5th ESA Workshop on Satellite Navigation Technologies and
European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, The Netherlands,
8–10 December 2010; pp. 1–6.

3. Tippenhauer, N.O.; Pöpper, C.; Rasmussen, K.B.; Capkun, S. On the requirements for successful GPS spoofing
attacks. In Proceedings of the 18th ACM Conference on Computer and Communications Security, Chicago,
IL, USA, 17–21 October 2011. [CrossRef]

4. Hui, H.; Na, W. A study of GPS jamming and anti-jamming. In Proceedings of the 2009 2nd International
Conference on Power Electronics and Intelligent Transportation System (PEITS), Shenzhen, China,
19–20 December 2009. [CrossRef]

5. Ng, Y.; Gao, G.X. Mitigating jamming and meaconing attacks using direct GPS positioning. In Proceedings
of the 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS), Savannah, GA, USA,
11–14 April 2016; pp. 1021–1026. [CrossRef]

6. Kerns, A.J.; Shepard, D.P.; Bhatti, J.A.; Humphreys, T.E. Unmanned aircraft capture and control via GPS
spoofing. J. Field Robot. 2014, 31, 617–636. [CrossRef]

7. Jafarnia-Jahromi, A.; Broumandan, A.; Nielsen, J.; Lachapelle, G. GPS vulnerability to spoofing threats and a
review of antispoofing techniques. Int. J. Navig. Obs. 2012, 2012. [CrossRef]

8. Humphreys, T.E.; Ledvina, B.M.; Tech, V.; Psiaki, M.L.; Hanlon, B.W.O.; Kintner, P.M. Assessing the Spoofing
Threat: Development of a Portable GPS Civilian Spoofer. In Proceedings of the 21st International Technical
Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008), Savannah, GA, USA,
16–19 September 2008; pp. 2314–2325. [CrossRef]

9. Shepard, D.P.; Bhatti, J.A.; Humphreys, T.E. Drone Hack: Spoofing Attack Demonstration on a Civilian
Unmanned Aerial Vehicle. GPS World 2012, 23, 30–33.

10. Bhatti, J.; Humphreys, T.E. Hostile Control of Ships via False GPS Signals: Demonstration and Detection.
Navig. J. Inst. Navig. 2017, 64, 51–66. [CrossRef]

11. Wang, K.; Chen, S.; Pan, A. Time and Position Spoofing with Open Source Projects; Black Hat: London, UK,
2015; p. 148.

12. Wang, F.; Li, H.; Lu, M. GNSS spoofing detection and mitigation based on maximum likelihood estimation.
Sensors 2017, 17, 1532. [CrossRef] [PubMed]

13. Psiaki, M.L.; O’Hanlon, B.W.; Bhatti, J.A.; Shepard, D.P.; Humphreys, T.E. GPS spoofing detection via
dual-receiver correlation of military signals. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 2250–2267. [CrossRef]

14. Manfredini, E.G.; Dovis, F. On the use of a feedback tracking architecture for satellite navigation spoofing
detection. Sensors 2016, 16, 2051. [CrossRef] [PubMed]

15. Liu, K.; Wu, W.; Wu, Z.; He, L.; Tang, K. Spoofing detection algorithm based on pseudorange differences.
Sensors 2018, 18, 3197. [CrossRef] [PubMed]

16. Shafiee, E.; Mosavi, M.R.; Moazedi, M. Detection of Spoofing Attack using Machine Learning based on
Multi-Layer Neural Network in Single-Frequency GPS Receivers. J. Navig. 2018, 71, 169–188. [CrossRef]

17. Daneshmand, S.; Jafarnia-jahromi, A.; Broumandan, A.; Lachapelle, G. A Low-Complexity GPS
Anti-Spoofing Method Using a Multi-Antenna Array. In Proceedings of the 25th International Technical
Meeting of The Satellite Division of the Institute of Navigation, Nashville, TN, USA, 17–21 September 2012.

18. Broumandan, A.; Lachapelle, G. Spoofing Detection Using GNSS/INS/Odometer Coupling for Vehicular
Navigation. Sensors 2018, 18, 1305. [CrossRef] [PubMed]

19. Perdue, L.; Sasaki, H.; Fischer, J. Testing GNSS Receivers to Harden Against Spoofing Attacks. In Proceedings
of the International Symposium on GNSS 2015, Kyoto, Japan, 16–19 November 2015.

20. Ma, C.; Lachapelle, G.; Cannon, M.E. Implementation of a Software GPS Receiver. Architecture 2003,
2004, 956–970.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JPROC.2016.2526658
http://dx.doi.org/10.1145/2046707.2046719
http://dx.doi.org/10.1109/PEITS.2009.5406988
http://dx.doi.org/10.1109/PLANS.2016.7479804
http://dx.doi.org/10.1002/rob.21513
http://dx.doi.org/10.1155/2012/127072
http://dx.doi.org/10.1111/grow.12084
http://dx.doi.org/10.1002/navi.183
http://dx.doi.org/10.3390/s17071532
http://www.ncbi.nlm.nih.gov/pubmed/28665318
http://dx.doi.org/10.1109/TAES.2013.6621814
http://dx.doi.org/10.3390/s16122051
http://www.ncbi.nlm.nih.gov/pubmed/27918415
http://dx.doi.org/10.3390/s18103197
http://www.ncbi.nlm.nih.gov/pubmed/30248948
http://dx.doi.org/10.1017/S0373463317000558
http://dx.doi.org/10.3390/s18051305
http://www.ncbi.nlm.nih.gov/pubmed/29695064
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Authentic and Spoofing Signal ACF Model
	Spoofing Scenario Simulation Using ACF Model
	Development of Spoofing Process Equation
	Conventional Approach for Calculation
	Proposed Approach for Calculation
	Spoofing Attack Success or Failure Criteria
	Derivation of SPE

	Analysis of SPE Simulation Results
	SPE Performance Analysis
	Determination of Boundary Line and Surface Using SPE

	Discussion
	Conclusions
	
	
	References

