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Abstract: Intelligent Transportation Systems (ITSs) utilize Vehicular Ad-hoc Networks (VANETSs)
to collect, disseminate, and share data with the Traffic Management Center (TMC) and different
actuators. Consequently, packet drop and delay in VANETSs can significantly impact ITS performance.
Feedback-based eco-routing (FB-ECO) is a promising ITS technology, which is expected to
reduce vehicle fuel/energy consumption and pollutant emissions by routing drivers through the
most environmentally friendly routes. To compute these routes, the FB-ECO utilizes VANET
communication to update link costs in real-time, based on the experiences of other vehicles in
the system. In this paper, we study the impact of vehicular communication on FB-ECO navigation
performance in a large-scale real network with realistic calibrated traffic demand data. We conduct
this study at different market penetration rates and different congestion levels. We start by conducting
a sensitivity analysis of the market penetration rate on the FB-ECO system performance, and its
network-wide impacts considering ideal communication. Subsequently, we study the impact of the
communication network on system performance for different market penetration levels, considering
the communication system. The results demonstrate that, for market penetration levels less than 30%,
the eco-routing system performs adequately in both the ideal and realistic communication scenarios.
It also shows that, for realistic communication, increasing the market penetration rate results in a
network-wide degradation of the system performance.

Keywords: ITS; VANET; eco-routing; large-scale network; smart cities; penetration ratio; connected
vehicles, vehicular networks

1. Introduction

Intelligent Transportation Systems (ITSs) use networked sensors, microchips, and communication
technologies to collect, process, and disseminate information about the state of the transportation
system. Using this data, the traffic management center (TMC) can improve the performance of the
overall transportation system by making better informed decisions which can reduce travel time
and fuel consumption, and mitigate traffic congestion. These decisions are affected by the accuracy,
completeness, and spatial distribution of the collected data, which is influenced by the communication
system. Vehicular Ad-hoc Networks (VANETs), which are standardized in [1], are expected to constitute
the ITS communication infrastructure. Consequently, the performance of an ITS is significantly
influenced by the VANET communication performance in terms of packet drop rate and packet
delay. Thus, it is imperative to study the impact of VANET communication on the performance of
transportation applications. This impact is dependent on the ITS application itself and its sensitivity
to the completeness, correctness, and the spatial distribution of the data. One of these applications is
feedback-based eco-routing (FB-ECO) navigation [2—4].
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The FB-ECO navigation is an ITS application that aims to minimize the average vehicle’s fuel
consumption and emission levels, by routing vehicles through the most environmentally friendly
routes. It utilizes connected vehicle technology to collect real-time fuel consumption information
from probe vehicles to compute the best routes. FB-ECO navigation system assumes the capability of
some vehicles (known as sensor vehicles or probe vehicles) to compute the fuel consumption on each
traversed road link, which implicitly means these probe vehicles are equipped with Global Positioning
Systems (GPSs). It also assumes that these probe vehicles are connected to TMC, to which they report
the computed fuel consumption and the associated road links. Subsequently, all vehicles can get
dynamic route guidance, when needed.

In a vehicular environment, there is a bidirectional impact between communication and mobility.
It is well-known that communication network performance can be affected by mobility in the
transportation network (i.e., congestion levels and speeds). On the other hand, in the FB-ECO
navigation systems, communication performance (i.e., packet drop rate and packet delay) can also
affect vehicle routing decisions and, consequently, vehicle mobility. For example, a higher packet
drop rate leads to a lack of link cost updates at the TMC, causing the TMC to route vehicles through
sub-optimal routes, resulting in higher fuel consumption. Another example, which is an important
bidirectional interaction between communication and transportation, is that the packet drop rate
becomes higher and the delay becomes longer in congested road networks, which leads to losing more
updating packets and a resultant larger deviation from the best routes.

This bidirectional interdependency creates a loop of mutual influence between communication
and transportation systems [5] that increases the complexity (and, consequently, the analysis) of
these systems. In fact, studying and modeling such systems is challenging, not only because of this
interdependency of the communication and the mobility components, but also because of the scale at
which these systems are applied—covering a city-level road network.

In addition to the impact of communication, the market penetration ratio (MPR) of the eco-routing
probe vehicles can also significantly affect the system-wide eco-routing performance. A lower
market penetration ratio can lead to a lack of real-time link cost information, similar to that of the
communication impact. However, there are important differences between the information deficiency
in the two cases. The lack of information due to low MPR of the probe vehicles is supposed to be
spatially uniformly distributed (based on the assumption that probe vehicles are spatially uniformly
distributed), while in the case of communication, the TMC suffers information deficiency in congested
areas (and the surrounding areas, because of the long communication range reaching up to 1000 m),
where the packets experience higher drop rates and longer delay. Another difference between the two
sources of impacts is that the communication impact is not limited to dropping packets only, it also
increases the packet delay.

Understanding these impacts of communication and penetration ratio on eco-routing performance
is a key enabler to deploying these system. Thus, in this paper, we build upon our previous work
in [4,6-8] to study the impacts of penetration ratios of the probe vehicles on the performance of the
FB-ECO in a large-scale city level road network with real calibrated traffic. Then, we study the impact
of communication on the FB-ECO performance in the same network. We conduct this study and
compare the eco-routing performance in two main cases:

e  Theideal communication case, that assumes a perfect communication performance (i.e., no packet
drops or delay); and

o the realistic communication modeling case, in which we model VANET communication and study
its impact on the system performance.

We conduct these studies at different vehicle traffic congestion levels.

The remaining of this paper is organized as follows. Section 2 gives an overview of the eco-routing
navigation system and its literature. Section 3 describe the implementation and operation of FB-ECO,
assuming ideal communication. In Section 4, the communication model is presented and the operation
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of the FB-ECO with the communication modeling is described. The simulation network and results
are presented in Section 5, before the final conclusion.

2. Eco-Routing

In the last two decades, the environmental and economical impacts of the transportation sector
have attracted the attention of scholarly communities, who devoted much research effort towards
sustainable mobility, to save fuel consumption and emissions. Thus, eco-routing navigation techniques
were introduced to achieve this objective by utilizing the route fuel cost as a metric, based on which
the most environmentally friendly routes are be selected.

Developing and deploying eco-routing navigation techniques is challenging. One major challenge
is the estimation of the route fuel cost. This challenge comes from the fact that the route fuel cost is
a function of many parameters, including route characteristics (i.e., length, maximum speed, grade),
vehicle characteristics (e.g., weight, shape, engine, and power), and driving behavior. So, it is too
difficult to combine all these parameters in a single model, especially because many of these parameters
are stochastic and there is a complex dependency among all of them. Therefore, the best way to
calculate the route cost is to use real-time feedback from vehicles moving on these routes—we call this
technique FB-ECO. These data can be collected in real-time and fused with historical data to estimate
the route fuel cost and, consequently, calculate the best route for vehicles dynamically and in real-time.
More details about eco-routing and FB-ECO can be found in [2,3].

This feedback-based eco-routing system is simple and can accurately and dynamically compute
the route cost. But, on the other hand, deploying such a system requires a vehicle’s capability to
quantify the fuel consumption for each road link it traverses, which implicitly means that the probe
vehicle should be equipped with GPSs. It also requires the communication network, to enable vehicles
to communicate the computed costs to the TMC.

2.1. Literature of Eco-Routing

Eco-routing was initially introduced in [9], and was applied to the street network in the city of
Lund, Sweden, to select the route with the lowest total fuel consumption, and thus the lowest total
CO; emissions . The streets were divided into 22 classes, based on the fuel consumption factor for
peak and non-peak hours, and three vehicle classes were used. This routing technique resulted in a 4%
average savings in fuel consumption.

Authors in [10] demonstrated the importance of route selection on fuel and the environment.
They showed that emission and energy optimized traffic assignments, based on speed profiles,
can reduce CO, emissions by 14% to 18%, and fuel consumption by 17% to 25%. In [11] is another
attempt to minimize vehicle fuel consumption and emission levels, by proposing a new set of cost
functions which includes fuel consumption and emission levels for the road links. In [3], the authors
developed an eco-routing navigation system that uses both historical and real-time traffic information
to calculate the link fuel consumption levels, and then selects the fuel-optimum route. In [8] is an
attempt to enhance the eco-routing algorithm developed in [10], by introducing a new ant-colony
based updating technique for eco-routing. In 2017, we have developed the first system optimum
eco-routing model [12], that uses linear programming and stochastic route assignment to minimize
system wide fuel consumption. The system optimum eco-routing reduced the fuel consumption by
about 36%, compared to the user equilibrium model. In [13], the authors used the model developed
in [14] to reduce the transportation-related energy in the city of Los Angeles, influencing individual
behavior and multi-modal route selection based on driver preferences by utilizing artificial intelligence
and machine learning techniques to compute personalized multi-modal routes.

All of these previous efforts did not consider the communication network and its influence on
FB-ECO system performance. The only work that considered this impact is our previous work in [4],
which used discrete event simulation to model communication in VANET. However, this system
showed limited scalability. So, in [6], we developed a novel communication model and incorporated
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it within a microscopic traffic simulator, the INTEGRATION software [15], to enable modeling of
communication and transportation in large-scale vehicular systems. In this paper, we utilize this
communication model to conduct our sensitivity analysis of both communication and penetration
ratio and their impacts on eco-routing.

2.2. Eco-Routing as a Feedback User-Equilibrium Model

Eco-routing was developed as a user-equilibrium model by using the shortest path techniques.
So, it basically tries to minimize individual vehicle fuel consumption. The user-equilibrium model
for eco-routing can be defined as follows: Given a road network directed connected graph G(N, L, C),
where N = {1,2,...,n} is a set of n road network nodes, L = {l,-]- :1,j € N}is aset of | directed road
links, and the road link costs C = {C;; : L;; € L} is a positive real-valued cost function C : L — R*.
Let a vehicle trip from a source node s € N to a destination node d € N. Then, the user-equilibrium
eco-routing computes the path P, which is a sequence of road links (i.e., P C L) for this individual
vehicle, that minimizes the vehicle fuel consumption (i.e., minimize Zli]-e p Cij). This shortest path
problem can be easily solved using Dijkstra’s algorithm [16].

The eco-routing problem can be also solved using integer linear programming, as shown in
Equation (1). The variable x;; is either 0 or 1, which identifies whether a link /;; will be included in the
shortest path.

minimize Z x;iCij
ijeN
1 if i=s M)
subject to : injfoﬁ: -1 ifi=d VieN,keF
j i 0 otherwise.

Both of these solutions are user-equilibrium models. A general disadvantage of user-equilibrium
models for eco-routing is that it can result in overloading the best routes, which increases the
system-wide fuel consumption. These user-equilibrium models try to overcome this problem by
periodically updating the link costs and recomputing the best routes, consequently reducing the load
on the previous best routes. But, on the other hand, these periodic updates and recomputation of
routes produces route oscillation among the best routes.

A main question that arises here is how to compute the link costs C;;. This is a major difference
between different research efforts in this area. Some techniques use simplified mathematical
macroscopic models to compute the link fuel cost, based on the average speed on the link (such
as the model developed in [3]). Other techniques utilize data-driven macroscopic models, such as the
model developed in [17]. Both of these techniques lack accuracy, because they can not capture the
impact of the second-by-second speed and acceleration which are the dominant factors in computing
fuel consumption. Consequently, in this paper, to achieve high fuel consumption computation accuracy
we utilize a microscopic model, the VI-Micro [18], whose overview is presented in the next section.

3. FB-ECO Operation Assuming Ideal Communication Network

This section describes the eco-routing operation and implementation. Since we use the
INTEGRATION software [15] as a simulation and modeling tool to conduct our study, this section
starts by giving a brief overview of the INTEGRATION software and its eco-routing implementation
as a user-equilibrium model using the shortest path technique.

3.1. INTEGRATION Software

The INTEGRATION software is an agent-based microscopic traffic assignment and simulation
software [15]. It is capable of simulating large-scale networks, up to 10,000 road links and more than
500,000 vehicle departures at a time granularity of 0.1 s. This high time-resolution allows detailed
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analyses of many traffic theory phenomena, such as acceleration, deceleration, lane-changing, and car
following behavior. It computes a number of measures of performance including delay, stops, fuel
consumption, hydrocarbon, carbon monoxide, carbon dioxide, and nitrous oxide emissions, and the
crash risk for 14 crash types. The details of the INTEGRATION software can be found in [15].

The INTEGRATION model has been developed over three decades, and has been extensively
tested and validated against empirical data and traffic flow theory. Furthermore, the INTEGRATION
software is the only software that models vehicle dynamics and estimates mobility, energy,
environmental, and safety measures of effectiveness.

3.2. FB-ECO in INTEGRATION, Assuming Ideal Communication

Like most other traffic simulators, by default INTEGRATION assumes an ideal communication
network (i.e., all packets are delivered correctly and with no delay). This subsection describes how
eco-routng as a feedback system works assuming ideal communication, and the next section describes
the communication model and how it was incorporated within the INTEGRATION eco-routing system.

In the INTEGRATION framework, eco-routing is developed as a feedback system that assumes
the vehicles are connected and equipped with GPSs. Moreover, a vehicle is assumed to be capable of
calculating the fuel consumption for each road link it traverses and communicating this information to
the TMC. In INTEGRATION, the fuel consumption and emission rates of each vehicle are calculated
every second, based on instantaneous speed and acceleration. As shown in Figure 1, every deci-second,
the speed and the acceleration of each vehicle are calculated, as well as the vehicle’s fuel consumption
rate.

Each vehicle accumulates this fuel consumption rate on each road link. Then, whenever the
vehicle exits that link, it updates the link cost. Based on the ideal communication assumption, these
updates are promptly added to the routing information in the TMC module.

eh, Enters New
Link

[ Initialize link parameters ]

[
;

[ Calc. instantaneous Spd, Acc ]

I

[ Calc. Fuel Cons. J
|

[ Calc. Accumulated Fuel Cons. ]

31242 puo23s T°0

End of No
Link
| Yes
[ Update Link Cost ]

I

Figure 1. Eco-routing without communication modeling.

3.3. Estimating Vehicle Fuel Consumption

The granularity of deci-second computations permits the steady-state fuel consumption rate
for each vehicle to be computed each second, on the basis of its current instantaneous speed and
acceleration level. INTEGRATION computes the fuel consumption and emission levels using the
VT-Micro model, which is detailed in [18]. The VT-Micro model was developed as a statistical model
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from experimentation with numerous polynomial combinations of speed and acceleration levels to
construct a dual-regime model, as demonstrated in Equation (2):

3 3 .
exp([j ZL,-,]»v‘af> if a>0

i=1j=1
F(t) = )
3 3 S\
exp| ¥ ¥ M;jv'a if a<o,
i=1j=1
where L; ; are model regression coefficients at speed exponent i and acceleration exponent j, M; ; are

model regression coefficients at speed exponent i and acceleration exponent j, v is the instantaneous
vehicle speed in (km/h), and a is the instantaneous vehicle acceleration (km/h/s).

3.4. Updating the Cost Information

The vehicle route is a sequence of connected links. Thus, if a route R, consists of k links, the total
route fuel consumption cost Fr, is the summation of the fuel consumption of the constituting links as
expressed in Equation (3):

k
Fr,(t) = ) F,(t), ®)
m=1

where F; _(f) is the fuel cost for the link /,; at the current time.

Initially, F; is computed based on the free flow speed. Then, this value is updated based on the
updates from probe vehicles. Based on the ideal communication assumption, whenever a vehicle exits a
link /,;,, INTEGRATION uses the reported vehicle’s fuel consumption C,, on this link to update the link
cost Fj, . It uses a smoothing factor & as shown in Equation (4); a typical value of a in INTEGRATION
is 0.2.

Flm(t + 1) = (1 — Dé) Flm(t) —+ Cm. (4)

The link costs are updated upon the arrival of new updates. Then, the routing engine uses the
latest link costs to periodically recompute the best routes.

4. FB-ECO with Realistic Communication Modeling

This section describes the operation of the FB-ECO with realistic communication model. If first
gives a brief description of the communication model, then describes how this model is incorporated
within the INTEGRATION software.

4.1. Modeling the VANET Communication

To study the impact of communication on FB-ECO, we utilize the communication model that
we developed in [6]. The model has two main components: The Medium Access Control technique
(MAC) component and the queuing component. A two-dimensional Markov chain is used to model
the MAC, based on the IEEE 802.11p standard [1]. The M/M/1/K queuing model [19] is used
to represent the queuing process in the MAC layer of each individual vehicle. The model uses
the communication configuration inputs (such as average packet size, average background packet
generation rate, communication speed, communication range, and the queue capacity) and the current
network condition (such as vehicle density in the sender communication range and the vehicle’s
connectivity to the RSUs) to compute a set of network performance parameters such as packet drop
probability and packet delay.

One important advantage of this communication model over the previous ones is that it considers
the MAC layer queue size and its impact on communication performance. For instance, the smaller
the queue size, the lower the number of packets that can be queued, and consequently, in the case of
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high packet traffic rates, many of the packets will be rejected by the queue, which will increase the
packet drop ratio. On the other hand, a larger queue size will result in increasing the queuing delay
to very long delays. In contrast with the previous models, the model we developed assumes a finite
queue size in the MAC layer, which enables the model to consider the queuing process. To build a
realistic model, the M/M/1/K queuing model [19] is incorporated into the MAC protocol, so that the
back-off technique and the queue interact with each other. Consequently, with the help of this queuing
model, we were able to compute both the queuing and processing delay. In addition, the queuing
model parameters were used to estimate the throughput and packet drop rate.

The model also supports both saturated and unsaturated data traffic conditions. So, it can be used
at different packet generation rates.

The limitation of this model is that it assumes only one Access Category (AC) in the MAC layer,
compared to four ACs in the IEEE 802.11p specifications. So, it does not support Quality of Services
(QoS), which is supported in the IEEE 802.11p by enabling four ACs. The main purpose of this
assumption is to simplify the model, in order to enable modeling of large-scale vehicular systems.
This assumption is based on a comparative simulation study we made between a single AC and
multiple ACs in VANET. This comparison showed that the performance of a single AC is similar to
that of the Best Effort (BE) access category in the full fledged model.

The detailed description of the model, its assumptions, and derivation are described in details
in [6]. However, for the sake of completeness, we will summarize it in the following two subsections.

4.2. MAC Representation and Solving the Model

In the IEEE 802.11p, when an AC has a packet to send, it initializes its back-off counter to a
random value within a given range, called the contention window (CW). Then, it senses the medium
until it becomes idle. If the medium continues to be idle for a specific time period called Arbitration
Inter-Frame Space (AIFS), it counts down its back-off counter. When this counter becomes zero,
the AC can send its frame. Within the same station, two ACs can start transmitting at the same time:
This situation is known as internal collision. In this case, the higher priority AC will be granted the
transmission while the lower priority AC will double its CW range, re-initialize the back-off counter,
and back-off again.

If two stations start sending at the same time, the collision of the two signals will destroy both of
the frames. So, when a station sends a frame, it has to wait for an acknowledgment (ACK). If an ACK
was not received within a specific time period, a collision is assumed, and the station must double its
CW range and try to re-transmit the frame.

Figure 2 shows the model that represents this system. A queue of size K packets is used to
en-queue packets arriving from the upper layer. A two-dimensional Markov chain is utilized to
represent the MAC process described above. State 0 in the Markov chain represents the system-empty
state (both the system and the queue are empty). Each of the other states is defined by (i, j), where i
and j are the back-off stages and back-off counter value, respectively. Table 1 shows the symbols used
for this model.

To solve this model, we start from the Markov chain and derive all the state probabilities as a
function of P(0,0). The summation of all state probabilities should be equal to 1. We incorporate the
queuing parameters into the model.
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Table 1. The model parameters.

Symbol Description

i The back-off stage number

j The back-off counter

M The maximum number of increases of the CW

f The maximum number of retransmissions without increasing the CW
w; The CW range for stage i

wo The initial value for the maximum CW i

o The CW increasing factor, where w; = woa!. The typical value is 2.
Pidleg,s The probability that a medium is idle in any time slot

Pidle The probability that the medium is idle

J0 The probability that the system is empty (no packet in the system)
Psuc The probability that a medium is occupied with a successful transmission
P fail The probability that a medium is occupied with a failed transmission
Ptran The probability that a station starts transmission in any time slot

Pcol The probability that the packet collides

P(i,j) The probability that the system is in state (i, )

A The packet arrival rate

U The packet service rate

Tserv The packet service time

N The number of vehicles in communication range

Tsto The length of the time slot (sec)

Ts The transmission time of a successful frame transmission

Ts The transmission time of a failed frame transmission

0 The traffic intensity for the queuing model

From the Markov chain in Figure 2, we can compute the probability that the system is in state
P(0,7). P(0,]) can be expressed as:

P(0,j) = ¥

ZU()—j 1—6]0

M+f-2
<P(0) +P(M+ f=1,0)+ (1= pet) Y, P(i,O)) i=12.,w—1. (5

Pidle i=0

And P(0,0) can be expressed as:

M+f—2
P(0,0) = (1—4qo) <P(0) +P(M+f—=1,0)+ (1= peat) ), P(i/0)>- (6)
i=0
From Equations (5) and (6), we can derive P(0, j) as:
P0,j) = 2T L po,0) j=1,2. w1 @)
wo  Pidle

P(i,0) and P(i, j) can be calculated, as in Equations (8) and (9)

P(i,0) = p'; P(0,0) i=0,1,. M+ f—1, (8)
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.. _wi—j@
PeD ==, Pidlep(o'o) ©)
i=12,... M+f—-1 and j=1,2,...,w;—1

Finally, we can compute P(0) as :

P(0) =

90
- P(0,0). (10)

Since the summation of all the probabilities equals 1, we have:

M+f-1 wo—1 M+f—1w;_4
PO)+ Y PG00+ Y PO+ Y Y PGk=1 (11)
=0 k=1 i=1 k=1

Notice that the window exponential factor is a for i < M; thatis, w; = wy al Vi< M, and
w; = wy &M Vi > M. By plugging w; into Equation (11) and using some math, we can calculate
P(0,0), as shown in Equation (12).

_ oy Mtf _ M-1_ , M+f
P(O, 0) — ( qo + 1 pCOl wO 1 + 1 [(“M_l wo _ 1) pCOl pcol

1—4q0 1= pear 2 pidle 2 Pidie 1= peor 12

-1
+ wo"‘ Peol — (lX Pcol)M_1 + Peol — (pCOZ)M_l})

1_“pcol 1_pcol

To solve the model, we need to calculate the values of p.,;, pigie and go. To do that, we derive the
relationship between these three parameters and the state probabilities.

Figure 2. Markov chain model for the medium access.
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A collision will happen when two or more stations start transmission in the same time slot. Let the
probability that a station starts transmitting at a time slot be ptrans, then pyrans = Zf.\igf -1 P(i,0).
When a station sends a packet, the probability that this packet collides is p,; = 1 — (1 — pmm)N -1
Therefore, for the entire system, the medium will be idle at any time slot only if no station is sending;:
Pidiey, = (1- ptran)N . The station decides that the medium is idle (p;4.) after AIFS idle time slots in a
TOW: Pidle = Pidle, tAIF S. For the entire system, the probability that a packet is successfully transmitted

without collision is psyc = N Piran (1 — ptr,m)N -1

4.3. Using the M/M/1/K Model

The only missing part to completely solve the model is finding a relation between gy and the state
probabilities. To solve for gg, we use the M/M/1/K model, where we assume the packet interarrival
time, between packets, is exponentially distributed with an average rate A. Assuming that the service
rate is yu = %m, where Tg.,y is the average packet processing time. Tsp is the summation of the
average time the packet stays in each stage. The packet can stay a time T;, in every state, plus the
average frame transmission time Tj,,, which can be calculated as:

1
Tw = pfait Tf + Psuc Ts + ——Tsiot, (13)
Pidle
Tirey = Peor T + (1= pear) Ts, (14)
where prii = 1 — Psuc — Pidie,,,; Ts and Ty are the successful transmission time and the failed

transmission time, respectively; and Ts and Ty depend on whether MAC uses the basic or advanced
(RTS/CTS) access modes.

The term in Ty, is the time required by the station while sensing the medium to ensure it is idle.
Consequently, the service time T, can be calculated as:

Mtf=1 ;o0 4 ‘
TSEV‘U = TSIOt 2 <u)(21) + Ttrav) pCOll' (15)
i=0
Now, we can calculate the traffic intensity p = %, and subsequently gy, as:
1—
H,ixpﬂ AFE
q0 = (16)
1
Using these equations, we can solve this model and estimate the total communication drop
profitability and delay.

4.4. The Communication Model Validation

The model shown an accurate estimation of both packet drop probability and packet delay at
different communication settings, including different packet sizes and different packet generation rates.
An example of the model validation results is shown in Figures 3 and 4. These two figures compare the
model output to the simulation output, resulting from the OPNET software [20] (which is a powerful
communication networks simulation tool).
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4.5. FB-ECO Operation with V2I Communication

In this paper, to model the communication we assume V2I communication setup. The
communication model, described in the previous subsection, is implemented within the
INTEGRATION software, and the behavior of the eco-routing is modified to adapt the communication
parameters (packet drop probability and packet delay), as illustrated in Figure 5, which shows three
modules working in parallel; mobility module that moves the vehicles, a communication module that
computes the packet drop probability and delay, and an updating module which updates the link cost
information. The two later modules (communication and updating modules) are two new modules we
added, to the capture the impact of communication on eco-routing. The three modules work together
as follows:

When a vehicle finishes a road link, instead of directly updating the link cost to the TMC (as shown
in Figure 1), the FB-ECO module in this vehicle sends this information to the communication module
by adding a new packet to the transmission queue. Then, while the vehicle moves, the communication
module checks for the connectivity. If the vehicle is not connected to an RSU (i.e., there is no RSU in
its communication range), the queue will not be processed and the packets in the queue will be held.
Whenever the vehicle is connected to an RSU, the communication module will process the packets in
the queue.

For each packet in the transmission queue, the communication module first calculates its drop
probability Py, as described earlier. Then, it generates a uniformly distributed random number
to find whether this packet should be correctly delivered. If the packet should be delivered, the
communication module calculates its average total delay, and inserts it into a time-based ordered
queue. Consequently, it will be processed by the updating module in its time of arrival, where the
updating module uses Equation (4) to update the link cost.
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In this way, the modified behaviour of the FB-ECO accounts for both the packet drop probability
and packet end-to-end delay.
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Figure 5. Eco-routing with communication modeling.

5. Simulation and Results

To achieve realistic results in our study, it is important to use a real network with real calibrated
traffic. This section starts by describing these points. Then, the results, in the case of ideal
communication, are presented in Section 5.2. In Section 5.3, the results for the realistic communication
case are presented and compared to the ideal communication case.

5.1. Simulation Network and Traffic Calibration

The downtown area in the city of Los Angeles (LA), shown in Figure 6, is used for the simulation
and analysis. The red points and surrounding circles are the RSU locations and their communication
ranges, which are used in communication modeling (the allocation for the RUSs will be described
later). This road network is about 133 Km2. It has 1625 road network nodes, 3561 road links,
and 459 traffic signals. With regards to the vehicle traffic demand, we use a calibrated traffic demand,
based on the vehicle count data from loop detectors in the same area. This data is collected from
multiple sources, as described in detail in [21]. This traffic demand represents the morning peak hours
in the downtown area of the city of LA, which continues for 3 h from 7:00 a.m. to 10:00 a.m. We added
one hour for traffic pre-loading. So, the demand runs for four hours. However, we run the simulation
for eight hours to give the vehicles enough time to finish their trips. To study the impact of different
traffic origin-destination demand (OD) levels, the calibrated traffic rates are multiplied by OD Scaling
Factors (ODSFs) ranging from 0.2 through 1.0 at a 0.2 increment, which produces 5 traffic demand
levels. The total number of vehicles that are simulated in the full traffic scenario (ODSFs = 1.0) is more
than 530, 000 vehicles.

For each of these 5 traffic levels, we use 10 different penetration ratios of the probe connected
vehicles, ranging from 0.1 through 1.0, at a 0.1 increment. Thus, we have to run 50 scenarios using
the ideal communication configuration, and then rerun the same 50 scenarios with communication
modeling enabled. The next two subsections present and analyze the results, in these two cases.
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Figure 6. The Los Angeles (LA) downtown area and coverage map.

5.2. Ideal Communication Case

We start our analysis by running ideal communication scenarios, and then compute the average
vehicle fuel consumption in each.

5.2.1. The Importance of Feedback

Figure 7 shows the average vehicle fuel consumption for the 5 traffic demand levels at penetration
ratios 0 through 1, at increments of 0.1. The figure shows the importance of the fuel consumption
feedback for the system-wide performance, even at low traffic demand levels, where it shows that
at ODFS = 0.4, increasing the penetration rate from 0.0 (no feedback) to 0.1 results in decreasing the
average vehicle fuel consumption by about 12.4%. The results shows that at 0.0% penetration rate,
the network gridlock happened at an ODSF = 0.6 and higher demand level, consequently some vehicles
became stuck in the network. So, the fuel consumption shown in this figure for ODSF = 0.6 and higher
are estimated, based on the vehicles that finished their trips.

5.2.2. Impact of Penetration Rate on Fuel Consumption

Figure 7 also demonstrates that, with feedback enabled (penetration rate > 0) and at low traffic
demand levels (ODSF = 0.2 and ODSF = 0.4), the penetration rate does not have a significant impact on
fuel consumption. The reason for this is that, at low traffic demand levels, vehicles run almost at the
free flow speed, and there are no significant changes in the network status (such as network congestion
and associated increase in the link costs) that need to be updated at the TMC. In these two demand
levels, the network is not congested where the average vehicle density is about 5 veh/km/lane and
9 veh/km/lane (in the cases of ODSF = 0.2 and ODSF = 0.4, respectively), as shown in in the network
fundamental diagram in Figures 8 and 9.

It is also clear in Figure 7 that, as the demand level increases, the lack for updates at 0.1 penetration
rate results in increasing the fuel consumption, compared to higher penetration rates. This means that,
as the demand level increases, the importance of having enough updates becomes higher to reflect the
changes in the network status.

We notice also, in Figure 7, that at high traffic levels (ODSF = 0.8 and ODSF = 1.0), the system
performance sometimes becomes worse when increasing the penetration rate. This is reasoned
by the route oscillation effect of the shortest path dynamic routing techniques (bang-bang effect).
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What happens is that, if we have full and exact information about the network, then all the vehicles
will take the best routes which results in the overloading of these routes (especially at high traffic
demand levels), resulting in higher congestion on these routes and higher fuel consumption until the
re-routing takes place. To avoid temporal oscillations in route choices, a white noise error function can
be introduced into the link cost function. This allows vehicles to select slightly sub-optimum routes,
if the costs along alternative routes are very similar and thus distribute the traffic. In our simulation,
we introduce random white noise with a coefficient of variation equal to 0.05. Additionally, the low
penetration rates implicitly introduce some other white noise to the link cost. Consequently, higher
penetration rates sometimes produce worse performance.

Figure 10 shows the average fuel saving by increasing the penetration rate just from 0.1 to 0.2.
It demonstrates that this saving is exponentially increasing with demand level, as shown by the
trend line.

From Figures 7 and 10, we can conclude that a penetration rate of 0.2 results in sub-optimal fuel
consumption, which is near to the optimal fuel consumption in all cases. So, we can conclude that a
0.2 penetration rate for the probe vehicles is sufficient.
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Figure 7. Impact of penetration rate on the average fuel consumption at different OD levels.
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Figure 10. The average fuel saving by increasing the penetration rate from 0.1 to 0.2.

5.2.3. Penetration Rate and Congestion Levels

To understand the results in more depth, we computed the network fundamental diagrams [22] for
some of these scenarios. Figures 8-12 compare these fundamental diagrams for different penetration
rates, at different values of the ODFS.

Figures 8 and 9 show that, at low traffic demand levels, the impact of the penetration rate is
not significant. Meanwhile, Figure 11 shows the network fundamental diagram for ODSF = 0.8,
where a penetration rate of 0.1 shows relatively high vehicles density combined with low traffic flow,
which reflects temporary network gridlocks, that can be explained by the lack of routing information
at a 0.1 penetration rate, which produces inaccurate routing decisions. The figure also shows that,
for the higher penetration rates, starting at 0.2, the gridlocks do not exist. These gridlocks at the low
penetration rate is reflected in the higher fuel consumption rates in Figure 7. This also supports our
conclusion that 20% penetration rate is enough to deploy the FB-ECO systems and achieve acceptable
performance .
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Figure 11. Network fundamental diagram at OD scaling factor 0.8.
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Figure 12 shows that, at high traffic demand level (full demand rates), the impact of the penetration
rate on network congestion becomes more significant. It shows that at a 0.1 penetration ratio,
the network congestion becomes higher and the overall network enters the congested regime. It
also shows that increasing the penetration ratio results in better system performance. It also shows
that the overall network behaves the best at a penetration ratio of 0.6 or 0.8.

5.3. Impact of Realistic Communication on FB-ECO Performance

In this section, to study the impact on the communication performance on the FB-ECO, we use
V2I communication by assuming that a set of RSUs are deployed in the network, and that vehicles
communicate to the TMC through these RSUs. In V2I communication systems, it is necessary to
allocate the RSUs in the network. The most economical method is to install the RSUs at traffic signals,
to take the advantage of the existing connections and power sources. Figure 6 shows the allocation of
the RSUs in the area of study. We selected 42 traffic signals from the network of 459 signals, using the
greedy algorithm shown in Algorithm 1, that maximizes the network coverage with the minimum
number of RSUs. The algorithm works as follows:

Algorithm 1 Select traffic signals to install RSUs.

1: procedure SELECT TRAFFIC SIGNALS 1> Select the minimum number of traffic signals to install

RSUs in such a way that maximizes the coverage

2: S« {S;:i=12..}

3: G+¢ > The initial solution
4: while S # ¢ do > There are uncovered signals
5; C = {S]- €5:D;; < Rcom} > Recalculate the coverage
6: Select S; € S that maximizes||C;||

7 G+ GUS;

8: S+ S5\C

9: return G > The selected signals

Here, it is assumed that the distance between the traffic signals S; and Sjis Djj, and C; is the
set of traffic signals covered by S;. In other words, C; = {Sj : Dy < Rcom}, where Re,,, is the
communication range. The algorithm starts with S including all the traffic signals and an empty
set G of selected signals. It calculates the coverage for each signal in S. Then, it selects the traffic
signal that covers the maximum number of uncovered signals, adds it to the selected signals G, and
removes it along with all the signals it covers from S. Steps 5 to 8 are repeated until S becomes empty.
This algorithm does not guarantee coverage of the whole network. However, it covers the maximum
number of signalized intersections with minimum cost (minimum number of RSUs).

After selecting these RSUs, we run the network using different traffic demands levels by using
V2I communication modeling, in which the packets can be dropped and/or delayed. For each of the
5 ODSF scenarios, we run the 10 penetration ratios. In each case, the average fuel consumption per
vehicle is calculated and compared to that in the ideal communication case. Figures 13-17 show these
results for ODSF values of 0.2, 0.4, 0.6, 0.8, and 1.0, respectively.

With regards to the VANET communication configuration, the V2I communication paradigm is
used with a 1000 m communication range and a 50 Packets/second background packet generation rate.
The average packet size is set to 1000 Bytes and the queue size in the MAC layer is set to 64 Packets.

The figures demonstrate that, at lower traffic demand rates (ODSF = 0.2 and 0.4), the average
vehicle’s fuel consumption rates in the ideal communication and realistic communication are similar
(i.e., the impact of communication during these low traffic demands is not significant). However, as the
traffic demand level increases, the average vehicle’s fuel consumption in the realistic communication
case becomes significantly higher than that of ideal communication. We also notice that, at moderate
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traffic levels (0.6 and 0.8), the impact of communication is very small at low penetration ratios (0.1
through 0.3), and increases with the penetration ratio.
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Figure 13. Average fuel consumption per vehicle at ODSF = 0.2.
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Figure 14. Average fuel consumption per vehicle at ODSF = 0.4.
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Figure 15. Average fuel consumption per vehicle at ODSF = 0.6.
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Figure 16. Average fuel consumption per vehicle at ODSF = 0.8.
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Figure 17. Average fuel consumption per vehicle at ODSF = 1.0.

To understand these behaviors, we have to notice that, in general, the number of connected
vehicles increases with the penetration ratio. Consequently, the packet drop rate increases with the
number of connected vehicles, because of the increasing contention over the wireless medium.

At low ODSF values, the number of connected vehicles is very small, so the contention over the
wireless medium is very limited. Consequently, the packet drop rate is very low. Thus, most of the
link cost information is correctly delivered to the TMC, and the optimal routes are correctly computed.
At moderate demand levels and low penetration ratios, the packet drop rates and delays are still
acceptable. However, at these moderate demand levels, the drop rate increases with the penetration
ratio to an unacceptable value, resulting in dropping most of the link cost updating packets. Thus, the
information in the routing database at the TMC is insufficient to correctly represent the network state.
Consequently, sub-optimal routes are used, which produces higher fuel consumption.

The results also demonstrate that, at high traffic demand levels, the average vehicle’s fuel
consumption is significantly higher in the realistic communication cases, compared to the ideal
communication cases at all the penetration ratios, as shown in Figure 18.

Figure 19 shows the packet average drop rates for different ODSF at different penetration ratios.
It shows that, in highly congested cases, even low penetration ratios lead to high packet drop rates.
These drop rates are reflected as sub-optimal routing decisions and higher fuel consumption, compared
to the ideal communication, shown by the large difference between the two cases at all penetration
ratios shown in Figure 17.
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Figure 18. Impact of communication on the average vehicle’s fuel consumption.

We notice in Figures 16 and 17 that the curve trends are not fully consistent with this analysis:
In some cases, increasing the penetration ratio produces significantly less fuel consumption. The reason
for this is that, at these two demand levels (0.8 and 1.0), the sub-optimal routes result in network
grid-locks ( these grid-lock happen at ODSF = 1.0 for all penetration ratios, and at ODSF = 0.8 for
penetration ratios 0.3 and above) that cause some vehicles to become stuck in the network, and so do
not finish their trips. The average vehicle fuel consumption, in these cases, is estimated based on the
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vehicles that finished their trips. These estimates are not accurate, because most of the vehicles that
finished their trip did not experience the congestion or the gridlocks.
Figure 18 shows the percentage of increase in average fuel consumption per vehicle due

to realistic communication modeling in all of the 50 scenarios. This percentage is computed as
100 % PReaI_cum_PIdeal_com

— , where Freq1 com and Fgeqr com are the average fuel consumption in the realistic
communication case and the ideal communication case, respectively. It can be easily concluded that
the impact of communication is exponentially increasing with the vehicle traffic demand level at all
the penetration ratios. It also shows that the percentage of fuel increases at ODSF equal to 0.8 and 1.0,
and decreases in some cases (i.e., for penetration ratios 0.5 and above) because of the vehicles that
become stuck in the network due to the grid-lock problem, which makes the fuel computation not
accurate in these cases, as above.

Figure 19 shows the average packet drop rate in different scenarios. It is clear that the packet drop
rate increases with both the ODSF and the penetration ratio, which is intuitive.
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Figure 19. Average packet drop rates for different demand levels and penetration ratios.
6. Conclusions and Future Work

In this paper, we conducted a sensitivity analysis to study the impact of the VANET
communication system on the performance of an eco-routing technology. To do that, we developed
a communication model for VANETs and modified the eco-routing navigation technique to account
for the communication network performance, and to capture the impact of packet drop and delay on
the feedback based eco-routing system. We ran this system on a real large-scale network, namely the
downtown area of the city of Los Angeles. We also used a realistic calibrated traffic demand, using
loop detector vehicle counts. This traffic calibration generated more than 530,000 vehicle trips in the
network, during the morning peak period.

The simulation results showed a set of interesting conclusions:

1. Under the ideal communication assumption, increasing the market penetration level resulted in
improvements in the network-wide fuel consumption levels. However, market penetration levels
between 20% and 30% gave acceptable performance.

2. Using realistic communication modeling showed a trade-off when increasing the market
penetration level. It showed that, at low penetration rates, the performance is acceptable
because of the low packet drop rates. However, increasing the market penetration level results in
increasing the fuel consumption because of the routing errors that occur, due to increased packet
drop rates.

3.  The results showed that in both the ideal and realistic communication cases, FB-ECO can work
properly at technology market penetration rates between 20% and 30%.

4. The VANET communication network performance (packet drop and delay) can have significant
effects on the dynamic eco-routing system performance, especially in highly congested networks.
In some cases, it resulted in network-gridlock. This means that it is imperative to consider these
impacts when deploying dynamic routing systems.
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In this paper, we studied the impact of communication and market penetration rates on
the user-equilibrium eco-routing model, based on the shortest path algorithm. Considering
system-optimum routing is an interesting future research effort. An extension for this paper is to
study the impact of different communication settings (e.g., different communication ranges, different
background packet generation rates, and different packet sizes) on the system performance. Finally,
it is imperative to study the temporal and spatial relation between the vehicular congestion and packet
drop and delay. Such a study will give us a more in-depth understanding of these interactions and
enable a prediction of the impacts of these parameters on the performance of eco-routing systems.
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