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Abstract: The reliability and performance of high-voltage circuit breakers (HVCBs) will directly 

affect the safety and stability of the power system itself, and mechanical failures of HVCBs are one 

of the important factors affecting the reliability of circuit breakers. Moreover, the existing fault 

diagnosis methods for circuit breakers are complex and inefficient in feature extraction. To improve 

the efficiency of feature extraction, a novel mechanical fault feature selection and diagnosis 

approach for high-voltage circuit breakers, using features extracted without signal processing is 

proposed. Firstly, the vibration signal of the HVCBs’ operating system, which collects the 

amplitudes of signals from normal vibration signals, is segmented by a time scale, and obviously 

changed. Adopting the ensemble learning method, features were extracted from each part of the 

divided signal, and used for constructing a vector. The Gini importance of features is obtained by 

random forest (RF), and the feature is ranked by the features’ importance index. After that, 

sequential forward selection (SFS) is applied to determine the optimal subset, while the regularized 

Fisher’s criterion (RFC) is used to analyze the classification ability. Then, the optimal subset is input 

to the hierarchical hybrid classifier, and based on a one-class support vector machine (OCSVM) and 

RF for fault diagnosis, the state is accurately recognized by OCSVM. The known fault types are 

identified using RF, and the identification results are calibrated with OCSVM of a particular fault 

type. The experimental proves that the new method has high feature extraction efficiency and 

recognition accuracy by the measured HVCBs vibration signal, while the unknown fault type data 

of the untrained samples is effectively identified. 

Keywords: high voltage circuit breaker; one-class support vector machine; random forest  

 

1. Introduction 

High-voltage circuit breakers (HVCBs) are the most important control and primary protection 

equipment in electric power systems [1,2]. The operation states of HVCBs are directly related to the 

stability and reliability of the power system. The analysis object of HVCBs mainly operates via the 

moving contact travel-time characteristic method, the tripping (closing) coil current method, and the 

vibration signal method at present [3–6]. The operating mechanism is the main factor affecting the 

reliability of circuit breakers. There are many mechanical failures, such as a lack of spring energy 
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storage, and screw loosening by vibration signals [7]. Therefore, HVCBs fault diagnoses based on 

vibration signals is of great significance [8]. The analysis process mainly includes signal processing, 

feature extraction, and fault diagnosis. 

Due to the non-stationary and the nonlinear characteristics of the vibration signals of HVCBs, 

traditional signal processing methods analyze the vibration signal in the time domain and frequency 

domain, and extract time–frequency domain features. The commonly used signal processing 

methods are empirical mode decomposition (EMD) [9,10], ensemble empirical mode decomposition 

(EEMD) [11], and local mean decomposition (LMD) [12], etc. The above methods have achieved good 

fault diagnosis results, but there are still some shortcomings. Feature extractions with EMD and LMD 

have some problems in the process of decomposition, such as mode mixing and end effects [11]. 

Although EEMD has suppressed mode mixing by adding white noise, the method also increases the 

amount of computation and decomposes many components beyond the real composition of the 

signal [12]. At the same time, the process of the signal processing method is complex, with high time 

complexity, which improves the computational cost and the industrialization difficulty of the  

related technologies. 

The features of the traditional vibration signals include time domain features, frequency domain 

features, and time-frequency features. The existing features set can accurately describe the different 

state of the fault signals. However, the features of HVCBs vibration signals are widely distributed in 

the frequency and time domains, and it is difficult to extract effective features from the specific 

frequency domain or the time domain, which are affected by the specific installation environment in 

the actual work [13]. Because of the differences in the degree of attenuation and starting time of the 

different types of fault vibration signals, HVCBs failure states can be analyzed by the time domain 

features when directly extracted from the original vibration signal. The features are extracted by 

calculating the mean, variance, and standard deviation by different time domain segmentation scales 

from the original signal [13–16]. By extracting the abundant original signal features, the fault 

information can be described in detail. However, the dimensions of the feature set will be increased, 

and redundant features may be included in the feature set. The feature set with high dimensional 

features will affect the fault diagnosis accuracy and efficiency of the classifier. Therefore, selecting 

the optimal feature subset from higher-dimensional features extracted from original signals is the key 

to improve the efficiency and accuracy of HVCBs fault diagnosis. 

Fault diagnosis methods for circuit breakers include support vector machine (SVM) [17], neural 

networks (NNs) [7], etc. However, there are many kinds of mechanical faults in HVCBs, and the 

operation of HVCBs is rare. Furthermore, the cost of obtaining the fault sample experiment is high. 

It is difficult to acquire enough fault samples with all fault types. Traditional multi-classifiers are 

easily identify the fault type data without training samples as the known or normal states. The effect 

of condition monitoring is seriously affected. 

To improve the efficiency of feature extraction of vibration signals, and to avoid untrained 

samples of unknown type faults from being identified as normal or error known types, a new method 

of mechanical fault diagnosis for HVCBs based on feature extraction and selection without signal 

processing is proposed. Firstly, the vibration signals of the HVCBs are segmented by a time scale that 

starts collecting standard normal vibration signals. Secondly, time–domain features are extracted 

from each part of the divided signal and used to construct the feature vector. The sequential forward 

selection method with the regulated Fisher’s criterion (RFC) index is used to determine the optimal 

feature subset, based on Gini importance. Finally, the optimal subset construction of the hierarchical 

hybrid classifier is based on the one-class support vector machine (OCSVM) and random forest (RF) 

for state recognition. The effectiveness of the new method is verified by the measured signal. 

2. Feature Importance and Fault Classifiers 

2.1. Gini Importance 



Sensors 2019, 19, 288 3 of 14 

 

The Gini importance is used to measure the node impurity, and it can be used to measure the 

feature importance [18]. Suppose that S is a dataset containing s samples, which can be divided into 

n classes. as  is the number of samples contained in class a. The Gini index of the set is: 

2

1

( ) 1
n

a

a

Gini S P


   (1) 

where ( / ) /a a ap p s S s S  , which is used to expressed the probability of any sample belonging to 

class a. 

When RF uses a feature to divide nodes, it can divide S into m subsets, denoted with

( 1, 2, , )cS j m ,  

The Gini index of split S is: 

1

( ) ( )
m

c

split c

j

S
Gini S Gini S

S

  (2) 

where cs  is the samples number in subset cS . 

The Gini importance is: 

( ) ( ) ( )splitGini S Gini S Gini S   (3) 

It is known from Equation (3) that the higher the Gini importance, the better the feature division [18]. 

2.2. Random Forest 

RF is composed of a series of classification and regression tree (CART) models

 ( , ), 1, ,lh X l L  , and voting by multiple decision trees, where ( , )lh X   is a classification 

model for CART, X is an input feature vector,  l  is a random vector that follows the 

independent and identical distribution, and l represents the number of the classifier. For a given 

independent variable X, the optimal classification is achieved by aggregating the voting results of 

each CART. The detailed classification principle of RF can be found in [19–21], and the basic 

classification process is as follows: 

(1) q samples are randomly extracted from the original set Q, to constitute a self-help sample set, 

repeated l times. 

(2) During the training process, random selection from the feature space M is a candidate feature of 

non-leaf node splitting, and the nodes are divided with each candidate feature, and the best 

segmentation feature is chosen as the segmentation feature of the node. This process is repeated 

until all of the non-leaf nodes of each tree are classified, and the training process is then ended. 

(3) Determining the optimal classification results by the majority voting method of each of the 

classification results. 

The optimum ranges of the minimum leaf number ( )MinLS  and the candidate feature number 

( )NumPTS  for each node are 1 MinLS L   and 1 NumPTS T  . The value of L  is set to 10, and 

T  is the dimension of the feature subset. RF integrates the characteristics of bagging and random 

selection feature splitting; its advantages are: (1) out-of-bag (OOB) data generated by the bagging 

method, and it can be used to measure the importance of a single variable and estimate the 

generalization error of the combined classifier models; (2) Due to the large number theorem, with the 

increase of decision tree in RF, it is not easy to be over-fitted; (3) The algorithm can tolerate abnormal 

values and noises properly, and it has high classification accuracy [22]. 

2.3. One-Class Support Vector Machine (OCSVM) 

OCSVM only uses normal samples to complete the training process and to determine the 

mechanical state of the device. The speed of the training and decision is fast, and the anti-noise 
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performance is good. It is suitable for the field of mechanical condition monitoring with  

high reliability. 

Suppose there is a sample { 1,2, , }iz i N ， ; mapping it to a high-dimensional feature space 

through the kernel function  , it has better aggregation and it can solve an optimal hyperplane in 

the feature space, so as to achieve the maximum separation between the target data, and the origin 

of the coordinates. The decision function is    ( )   fsign z sign w z ; it attempts to separate the 

training set from the origin, and maximize the distance between the hyperplane and the origin. 

The weight w  of the support vector and the threshold   can be described by solving the 

following quadratic programming problem: 

  
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where (0,1)v  is used to control the proportion of support vectors in the training samples. After 

introducing the kernel function, the above problem can be transformed into a dual problem: 
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In OCSVM, 
1

( , )
N

i i j
i

k z z 


  is a determined threshold, determining the separation hyperplane 

with the weight vector w , through the decision equation, OCSVM can determine whether the 

sample z is a fault sample [17]. 

2.4. Construction of the Hierarchical Classifier 

Because the types of fault samples are not comprehensive, there are some unknown types of 

faults occurring in practical work. When an unknown type of fault occurs, by using multi-class 

classifier to identify HVCBs mechanical faults, the unknown faults will be identified as a known fault 

or normal. Although OCSVM can accurately monitor the state of mechanical failure, it cannot identify 

the type of fault as known or unknown. Therefore, a hybrid classifier is constructed with OCSVM 

and RF. Using OCSVM to avoid mistaken identifications of fault status, we further identified the 

unknown fault types accurately without training samples, through RF and OCSVM. 

Figure 1 is a flowchart of fault diagnosis based on a hybrid classifier. Firstly, the OCSVM0 

classifier is applied to identify the normal and fault states of HVCB. If the HVCB is in a fault condition, 

RF is used to identify the specific fault types. Then, aiming at the fault condition identified by RF, 

OCSVMl (where l is a three-fault condition) is used to identify and correct the condition, based on the 

OCSVMl model trained by a specific known fault type. 

Fault diagnosis 
using RF

Fault type

No

Test sample

Condition ecognition 
using OCSVM0

Normal?

Normal condition

Identify the correction 
using OCSVMi

Unknown 
fault

Fault type 
recognition correctly

Unknown 
fault

Yes No

Yes

 

Figure 1. Diagnosis process of the hybrid classifier. 
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3. Feature Extraction of Original Vibration Signals Based on Time Domain Segmentation 

3.1. Signal Acquisition System 

The experiment was carried out on LW9-72.5 series SF6 HVCBs, using a spring control 

mechanism. The vibration signal acquisition system was built using a piezoelectric accelerometer and 

a NI 9234 data acquisition card produced by National Instruments. The system is as shown in Figure 

2. The accelerometer was installed on the mechanism box near the operating mechanism. The position 

was close to the vibration source of the HVCBs, and could record the vibration more clearly, without 

affecting the performance of the circuit breaker. The sampling frequency was 25.6 kS/s. The 

coordinate origin of the sampled signal was the time when the circuit breaker would act (The trigger 

sends acquisition instructions to the data acquisition card). The recording starting point and the time 

of the acquisition signal is the same in the four conditions. 

Power
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Opening command
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Figure 2. Vibration signal acquisition system. 

3.2. Feature Extraction Based on Time Domain Segmentation of the Original Signal 

To extract the features of HVCBs vibration signals in a specific time period for the original signal, 

a uniform time scale was used to segment the original signal in the time domain, and the time domain 

features of each segment were extracted after segmentation. The time domain feature was extracted 

directly from the segmented signals, and a loss of high-frequency information could be avoided in time–

frequency processing. The integrity of the feature information was guaranteed, and it saved time in 

signal processing. 

In order to analyze the influences of features on the accuracy of fault diagnosis under different 

segmentation scales, from the original signal, it can be seen that the actions of the iron core stagnation 

fault were delayed, compared with the normal signal. The amplitude of the base screw loosening 

fault signal was smaller and the attenuation process was slow. The amplitude of the poor lubrication 

fault was relatively small. The time of the operating mechanism received trigger instructions to the 

vibration signal amplitude changes (Ts), and the amplitude reached a peak (Tp) to be the unit, 

respectively. The signal is divided into 29 segments and nine segments by Ts and Tp. Different fault 

types are segmented at the same scale. There are obvious differences between two different scales 

and different signals, so we used two scales for time domain segmentation. 

Figure 3 is a map of the measured vibration signal and the time domain segmentation unit. It 

can be seen from the original signal that with the iron core stagnation action delay, compared with 

the normal condition, the amplitude of screw loosening condition was smaller, the attenuation 

process was slower, and the amplitude of the poor lubrication condition was relatively small. 

Therefore, in the time domain segmentation, it can be seen that there were differences between 

different types of fault signals in the same period. The features were extracted from each segmented 

signal, and used to identify the mechanical conditions of the HVCBs. 
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Figure 3. Measured vibration signals and the time domain segmentation unit: (a) The normal 

condition; (b) The iron core stagnation; (c) The screw loosening condition; (d) The poor lubrication 

condition. 

The new method extracts 17 times domain features that can reflect the amplitude changes and 

the attenuation degrees in different periods, and construct feature vectors [14–16]. Table 1 is the 

feature calculation formula, where np  is the probability density, 1,2, ,n N , N is the number of 

sample points per segment after the time domain segmentation. Table 2 is the distribution of the 

features with different time domain segmentation scales. 

Table 1. Formula of features. 

Feature Formula Feature Formula 
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Table 2. Distribution of features. 

Feature 
Feature 

Number (Ts) 

Feature 

Number 

(Tp） 

Feature 
Feature 

Number (Ts) 

Feature 

Number (Tp) 

Mean value F1–F29 F1–F9 Standard deviation F30–F58 F10–F18 

Variance F59–F87 F19–F27 Skewness F88–F116 F28–F36 

Kurtosis F117–F145 F37–F45 Peak-to-peak value F146–F174 F46–F54 
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Square root of amplitude F175–F203 F55–F63 Mean amplitude F204–F232 F64–F72 

Peak value F233–F261 F73–F81 Shape factor F262–F290 F82–F90 

Crest factor F291–F319 F91–F99 Impulse facto F320–F348 F100–F108 

Margin factor F349–F377 F109–F117 Shannon entropy F378–F406 F118–F126 

Renyi entropy F407–F435 F127–F135 Tsallis entropy F436–F464 F136–F144 

Root-mean-square value F465–F493 F145–F153    

4. Comparison of Classification Effects of Different Feature Extraction Methods 

In order to compare the effects of feature extraction in a new method, three signal processing 

methods of EMD, EEMD, and LMD were used to extract features, to compare them with the new 

method. Figure 4 is the result of signal decomposition and time domain segmentation by using EMD, 

EEMD, and LMD. The time domain segmentation scale was the same as the new method. EMD and 

EEMD decompose the signal into some intrinsic mode functions (IMFs). LMD decomposes the signal 

into multiple product functions (PFs) with instantaneous frequency. 
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Figure 4. The time domain segmentation of EMD, LMD, and EEMD: (a) IMFs decomposed by EMD 

method; (b) PFs decomposed by the LMD method; (c) IMFs decomposed by the EEMD method. 

When using different feature extraction methods, Table 3 shows the recognition accuracy 

without unknown types when using multiple classifiers and the original feature set dimension. Di is 

the features dimension, and Ac is the accuracy of the condition recognition. 

As shown in Table 3, when the new method divided the signal into 29 segments and nine 

segments, the new method could identify three states effectively, while the traditional signal 

processing method had mistaken identifications. In this paper, the feature dimensions extracted by 

the new method were 153 and 493. Compared with the traditional signal method, the feature 
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dimension was lower. Therefore, the new method feature extraction not only improved the accuracy 

of the state recognition, but also effectively reduced the complexity of the original feature set. 

Table 3. State recognition results. 

Test 
9 Segments 29 Segments 

C1 C2 C3 Di Ac (%) C1 C2 C3 Di Ac (%) 

C1 10 0 0 153 100 10 0 0 493 100 

C2 0 10 0 153 100 0 10 0 439 100 

C3 0 0 10 153 100 0 0 10 439 100 

EMD-C1 10 0 0 1530 100 10 0 0 4930 100 

EMD-C2 1 9 0 1530 90 0 10 0 4390 100 

EMD-C3 0 0 10 1530 100 1 0 9 4390 90 

LMD-C1 10 0 0 1071 100 10 0 0 3451 100 

LMD-C2 0 10 0 1071 100 0 9 1 3451 90 

LMD-C3 1 0 9 11 90 0 0 10 3451 100 

EEMD-C1 10 0 0 1377 100 10 0 0 4437 100 

EEMD-C2 0 10 0 1377 100 0 10 0 4437 100 

EEMD-C3 0 2 8 1377 80 0 1 9 4437 90 

Figure 5 shows the time statistics for extracting features by direct time-domain segmentation 

and traditional signal processing methods. According to Figure 5, no matter the time domain 

segmentation method that is used, the new method without signal processing removed the signal 

processing, and extracted the time-domain features only for a single time series of the original signal. 

The computation time of the new method was lower than that of the traditional methods, which 

were needed to extract features from multiple IMF or PF time series. The efficiency of the feature 

extraction was higher than EMD, LMD, and EEMD. When the sampling rate of the vibration signal 

to be analyzed is higher, the advantages of the new method will be more obvious. 

New method EMD LMD EEMD
0
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16

18

T
im
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s

Divided into 9 segments

Divided into 29 segments

 

Figure 5. Time statistics of the feature extraction. 

5. Feature Selection 

In the existing feature selection, when the wrapper method was used; combined with the particle 

swarm algorithm, the feature subset satisfying the classification accuracy rate is found according to 

the classifier effect, but the efficiency of the optimization is low. In actual work, the filter method 

receives more applications. Experiments are carried out according to the statistical results of the 

features [23–25]. 

RF is an ensemble learning method. Its Gini importance index takes the comprehensive 

contribution of features in different feature combinations into account, and analysis becomes more 
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comprehensive. The features were in descending order according to the Gini importance, and SFS 

was carried out to obtain a better candidate feature set. After that, the classifier was constructed with 

different feature subsets, and the evaluation index of RFC was calculated. Finally, the best feature 

subset was determined, which was used to train the optimal classifier. 

5.1. The Gini Importance of Time Domain Features 

In order to reduce the complexity of the classifier, three classes of signals were used as the 

classification targets. The complete original feature set was used as the input feature vector to train 

the RF classifier, and all of the Gini importance were obtained. The importance of the original feature 

set constructed by two times domain segmentation methods is shown in Figure 6. As is evident in 

Figure 6, the Gini importance of the different features were quite different. Therefore, feature 

ordering could be carried out according to the Gini importance. 
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Figure 6. Gini importance: (a) Gini importance of 29 segments in time domain segmentation; (b) Gini 

importance of nine segments in time domain segmentation. 

In order to prove the effectiveness of feature classification ability, based on Gini importance, 

Under two kinds of time domain segmentation scales, two groups were selected from the highest and 

lowest Gini importance of the features, respectively. A box plot was drawn to analyze the distribution 

of the features. According to the distribution of features, the classification ability of the features with 

different Gini importance was intuitively compared. According to the Gini importance, the best 

features of 29 segments are F450 and F62, and the worst features are F311 and F313; the best features 

of the nine segments are F31 and F34, and the worst features are F16 and F37. 

As shown in Figure 7, the box diagram distribution was determined by 10 groups of typical fault 

samples. The distribution of the features with high Gini importance was centralized with no crossing. 

The degree of distinction between the different classes was high. The distribution of the features with 

low Gini importance was wide and overlapped. The degree of distinction between the different 

classes was low. The validity of the feature classification ability was verified, based on  

Gini importance. 
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Figure 7. Feature distribution between high and low Gini importance: (a) 29 segments with the highest 

Gini importance; (b) 29 segments with the lowest Gini importance; (c) nine segments with the highest 

Gini importance; (d) nine segments with the lowest Gini importance. 

5.2. Sequential Forward Selection Based on RFC 

In the process of sequential forward selection, the optimal feature subset was determined by the 

classification accuracy of the feature subset, and the JF index of RFC. 

The separation of features could be determined by the Fisher criterion in pattern recognition [25]: 

( )

( )

b

w

tr
J

tr




  (6) 

Fisher’s criterion J is a measurement of the separability among all classes. If the J value of the 

feature set is larger for the training set, the diversity of this feature is better. Where b  and w  are 

the between-class scatter matrix and the within-class scatter matrix, respectively. The calculation 

formula is as follows: 

( )( )

1
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i
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b i i ii
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w i ii
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n m m m m

x m x m
n






   

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 (7) 

The linear transformation matrix W transforms the Fisher criterion to [26]: 

( )
T

b

F T

w

W W
J W tr

W W





 
  

 
 (8) 

When W  is singular or ill-conditioned, a diagonal matrix I  with 0   is added to w . 

Since w  is symmetric positive semi-definite, w I   is non-singular with any 0  . 

To overcome this shortcoming, the RFC was adopted in the new method. The classification effect 

of different feature sets was analyzed. By replacing the regularized matrix w  in (8), the RFC 

becomes [26]: 

( ) ( )
( )

T

b

F T

w

W W
J W tr

W I W



 



 (9) 

Therefore, the problem of singularity is solved, and it can be applied in our feature selection 

algorithm to measure the classification ability of different features [26]. 
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In the condition of time domain segmentation with 29 and nine segments, respectively, the 50 

most important dimensional features were arranged in descending order, and the SFS method was 

used to construct different feature subsets. Figure 8 is the RF classification accuracy, and JF is the 

feature selection process. 
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Figure 8. JF and classification accuracy of different feature sets: (a) 29 segments of time domain 

segmentation; (b) nine segments of time domain segmentation. 

As it can be seen from Figure 8, the accuracy of the feature subset dimension of the two 

segmentation scales was 100% when the feature subset dimensions were nine- and 10-dimensional, 

which cannot measure the effect from a single accuracy. With the increase in features, the evaluation 

index JF of the feature subset first increased and then decreased. Finally, the maximum JF value was 

used to determine the final feature subset. The best feature subset dimension were 12 and 33, when 

time domain segmentation scales were 29 and nine segments, respectively. At this time, when the 

time domain was divided into 29 segments and nine segments in the time domain, JF reached the 

maximum value. When classifying with this feature subset, the class separability was the highest. 

Therefore, JF and the feature dimension were considered comprehensively, and a classifier model was 

constructed, based on the best feature subset, with 12 dimensions of 29 segments. The best subsets of 

the features are shown in Table 4. 

Table 4. The best subset of features. 

Feature Number Feature Description 

F450 Mean amplitude of 27 segments 

F62 Peak value of four segments 

F2 Standard deviation of one segment 

F236 Renyi entropy of 14 segments 

F262 Square root of the amplitude of 16 segments 

F48 Shannon entropy of three segments 

F191 Skewness of 12 segments 

F4 Skewness of one segment 

F438 Margin factor of 26 segments 

F408 Root-mean-square value of 24 segments 

F65 Shannon entropy of four segments 

F234 Margin factor of 14 segments 

6. Analysis of the Recognition Effect of the Hybrid Classifier with Unknown Faults 
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After determining the optimal subset of features, this paper designed an identification 

experiment with an unknown fault type, and verified the advantages of the hybrid classifier adopted 

by the new method. The screw loosening condition in the experiment was regarded as an unknown 

fault of the untrained sample, and it only participates in the final test without participating in the 

training process of the classifier. In the experiment, the error limit v   and RBF kernel width 

parameter were 0.82 and 17.68, respectively [27]. 

In order to compare the classification effects of multiple classifiers, RF and SVM were used to 

analyze normal and three fault types (the iron core stagnation, the screw loosening condition, and 

the poor lubrication condition) with untrained samples. The classifier to build the best feature subset 

was determined by the new method. SVM parameter reference [9] setting. Among them, the screw 

looseness was regarded as an unknown fault state without training samples, and it participated in 

two classifiers but it did not participate in training. Twenty groups of normal samples of two known 

fault states (without an unknown type of fault) were used to train the classifier. Ten groups of normal 

samples of three fault states (with an unknown type of fault) were used to test the classifier. The 

classification results are shown in Table 5. 

Table 5. Diagnosis result of the patterns not contained in the training samples, using random forest 

(RF) and support vector machine (SVM). 

Test 
RF SVM 

C0 C1 C2 C3 Ac C0 C1 C2 C3 Ac 

C0 10 0 0 0 100 10 0 0 0 100 

C1 0 10 0 0 100 0 10 0 0 100 

C2 0 0 10 0 100 0 0 10 0 100 

C3 1 4 5 0 0 10 0 0 0 0 

From the results of Table 5, RF and SVM accurately identified the fault types of the HVCBs. 

Neither RF nor SVM could identify an unknown fault type accurately (C3), in the state recognition 

without training samples. RF identified one group of samples as normal, four groups of samples were 

identified as iron core stagnation, and the five groups are identified as having poor lubrication 

condition, while SVM identified 10 groups of samples as being normal. The reliability of SVM was 

low. Therefore, the RF classifier has advantages, and its classification is more reliable. 

In order to prove that the new method of the hierarchical hybrid classifier is used to identify the 

unknown type without training samples, a comparative test was carried out between the new method 

and the OCSVM-RF method. Table 6 is the result of two hybrid classifiers for OCSVM-RF (O-R) and 

the new method OCSVM-RF-OCSVM (O-R-O). In contrast, O-R could make up for the shortcoming 

that RF mistakenly identified an unknown condition as a normal condition, but the 10 untrained 

samples were wrongly identified as known fault types. 

Table 6. Diagnosis result of the patterns not contained in the training samples using the O-R and O-

R-O. 

Test 
O-R O-R-O 

C0 C1 C2 C3 Ac C0 C1 C2 C3 Ac 

C0 10 0 0 0 100 10 0 0 0 100 

C1 0 10 0 0 100 0 10 0 0 100 

C2 0 0 10 0 100 0 0 10 0 100 

C3 0 4 6 0 0 0 0 0 10 100 

7. Conclusions 

This paper proposes a novel mechanical fault feature selection and diagnosis approach for 

HVCBs, using features extracted without signal processing. The signal is not processed by digital 

signal processing methods, and it extracts features directly in the time domain. Feature selection is 
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used to gain the best feature subsets for achieving high efficiencies and accuracies of fault recognition. 

The main contribution of the new approach is as follows: 

(1) The features is extracted directly after the time domain segmentation of the original signal, with 

less time complexity. 

(2) Feature selection is adopted to reduce the optimal feature subset dimension, the time consuming 

nature of feature extraction, and the complexity of the classifier model. 

(3) The hierarchical hybrid classifier avoids the limitation of identifying the fault samples as the 

normal condition, and identifies the unknown fault types effectively. Compared with the 

traditional multiple classifiers, the condition recognition effect is improved. 

HVCB has many kinds of faults, degrees of faults. It is difficult to obtain all the data that is 

needed for relevant experiments. More samples of fault types and degree data for further 

experimental study will be accumulated in future work. 
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