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Abstract: The reliability and performance of high-voltage circuit breakers (HVCBs) will directly
affect the safety and stability of the power system itself, and mechanical failures of HVCBs are one
of the important factors affecting the reliability of circuit breakers. Moreover, the existing fault
diagnosis methods for circuit breakers are complex and inefficient in feature extraction. To improve
the efficiency of feature extraction, a novel mechanical fault feature selection and diagnosis approach
for high-voltage circuit breakers, using features extracted without signal processing is proposed.
Firstly, the vibration signal of the HVCBs’ operating system, which collects the amplitudes of signals
from normal vibration signals, is segmented by a time scale, and obviously changed. Adopting the
ensemble learning method, features were extracted from each part of the divided signal, and used for
constructing a vector. The Gini importance of features is obtained by random forest (RF), and the
feature is ranked by the features’ importance index. After that, sequential forward selection (SFS)
is applied to determine the optimal subset, while the regularized Fisher’s criterion (RFC) is used
to analyze the classification ability. Then, the optimal subset is input to the hierarchical hybrid
classifier, and based on a one-class support vector machine (OCSVM) and RF for fault diagnosis,
the state is accurately recognized by OCSVM. The known fault types are identified using RF, and the
identification results are calibrated with OCSVM of a particular fault type. The experimental
proves that the new method has high feature extraction efficiency and recognition accuracy by
the measured HVCBs vibration signal, while the unknown fault type data of the untrained samples is
effectively identified.

Keywords: high voltage circuit breaker; one-class support vector machine; random forest

1. Introduction

High-voltage circuit breakers (HVCBs) are the most important control and primary protection
equipment in electric power systems [1,2]. The operation states of HVCBs are directly related to the
stability and reliability of the power system. The analysis object of HVCBs mainly operates via the
moving contact travel-time characteristic method, the tripping (closing) coil current method, and the
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vibration signal method at present [3–6]. The operating mechanism is the main factor affecting the
reliability of circuit breakers. There are many mechanical failures, such as a lack of spring energy
storage, and screw loosening by vibration signals [7]. Therefore, HVCBs fault diagnoses based on
vibration signals is of great significance [8]. The analysis process mainly includes signal processing,
feature extraction, and fault diagnosis.

Due to the non-stationary and the nonlinear characteristics of the vibration signals of HVCBs,
traditional signal processing methods analyze the vibration signal in the time domain and frequency
domain, and extract time–frequency domain features. The commonly used signal processing
methods are empirical mode decomposition (EMD) [9,10], ensemble empirical mode decomposition
(EEMD) [11], and local mean decomposition (LMD) [12], etc. The above methods have achieved good
fault diagnosis results, but there are still some shortcomings. Feature extractions with EMD and
LMD have some problems in the process of decomposition, such as mode mixing and end effects [11].
Although EEMD has suppressed mode mixing by adding white noise, the method also increases
the amount of computation and decomposes many components beyond the real composition of the
signal [12]. At the same time, the process of the signal processing method is complex, with high
time complexity, which improves the computational cost and the industrialization difficulty of the
related technologies.

The features of the traditional vibration signals include time domain features, frequency domain
features, and time-frequency features. The existing features set can accurately describe the different
state of the fault signals. However, the features of HVCBs vibration signals are widely distributed
in the frequency and time domains, and it is difficult to extract effective features from the specific
frequency domain or the time domain, which are affected by the specific installation environment
in the actual work [13]. Because of the differences in the degree of attenuation and starting time
of the different types of fault vibration signals, HVCBs failure states can be analyzed by the time
domain features when directly extracted from the original vibration signal. The features are extracted
by calculating the mean, variance, and standard deviation by different time domain segmentation
scales from the original signal [13–16]. By extracting the abundant original signal features, the fault
information can be described in detail. However, the dimensions of the feature set will be increased,
and redundant features may be included in the feature set. The feature set with high dimensional
features will affect the fault diagnosis accuracy and efficiency of the classifier. Therefore, selecting the
optimal feature subset from higher-dimensional features extracted from original signals is the key to
improve the efficiency and accuracy of HVCBs fault diagnosis.

Fault diagnosis methods for circuit breakers include support vector machine (SVM) [17],
neural networks (NNs) [7], etc. However, there are many kinds of mechanical faults in HVCBs,
and the operation of HVCBs is rare. Furthermore, the cost of obtaining the fault sample experiment is
high. It is difficult to acquire enough fault samples with all fault types. Traditional multi-classifiers are
easily identify the fault type data without training samples as the known or normal states. The effect
of condition monitoring is seriously affected.

To improve the efficiency of feature extraction of vibration signals, and to avoid untrained
samples of unknown type faults from being identified as normal or error known types, a new method
of mechanical fault diagnosis for HVCBs based on feature extraction and selection without signal
processing is proposed. Firstly, the vibration signals of the HVCBs are segmented by a time scale
that starts collecting standard normal vibration signals. Secondly, time–domain features are extracted
from each part of the divided signal and used to construct the feature vector. The sequential forward
selection method with the regulated Fisher’s criterion (RFC) index is used to determine the optimal
feature subset, based on Gini importance. Finally, the optimal subset construction of the hierarchical
hybrid classifier is based on the one-class support vector machine (OCSVM) and random forest (RF)
for state recognition. The effectiveness of the new method is verified by the measured signal.
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2. Feature Importance and Fault Classifiers

2.1. Gini Importance

The Gini importance is used to measure the node impurity, and it can be used to measure the
feature importance [18]. Suppose that S is a dataset containing s samples, which can be divided into n
classes. sa is the number of samples contained in class a. The Gini index of the set is:

Gini(S) = 1−
n

∑
a=1

P2
a (1)

where pa = p(sa/S) = sa/S, which is used to expressed the probability of any sample belonging to
class a.

When RF uses a feature to divide nodes, it can divide S into m subsets, denoted with
Sc(j = 1, 2, · · · , m), The Gini index of split S is:

Ginisplit(S) =
m

∑
j=1

Sc

S
Gini(Sc) (2)

where sc is the samples number in subset Sc.
The Gini importance is:

∆Gini(S) = Gini(S)− Ginisplit(S) (3)

It is known from Equation (3) that the higher the Gini importance, the better the feature
division [18].

2.2. Random Forest

RF is composed of a series of classification and regression tree (CART) models
{h(X, θl), l = 1, · · · , L}, and voting by multiple decision trees, where h(X, θl) is a classification model
for CART, X is an input feature vector, {θl} is a random vector that follows the independent and
identical distribution, and l represents the number of the classifier. For a given independent variable X,
the optimal classification is achieved by aggregating the voting results of each CART. The detailed
classification principle of RF can be found in [19–21], and the basic classification process is as follows:

(1) q samples are randomly extracted from the original set Q, to constitute a self-help sample set,
repeated l times.

(2) During the training process, random selection from the feature space M is a candidate feature
of non-leaf node splitting, and the nodes are divided with each candidate feature, and the best
segmentation feature is chosen as the segmentation feature of the node. This process is repeated
until all of the non-leaf nodes of each tree are classified, and the training process is then ended.

(3) Determining the optimal classification results by the majority voting method of each of the
classification results.

The optimum ranges of the minimum leaf number (MinLS) and the candidate feature number
(NumPTS) for each node are 1 ≤ MinLS ≤ L and 1 ≤ NumPTS ≤ T. The value of L is set to 10, and T
is the dimension of the feature subset. RF integrates the characteristics of bagging and random selection
feature splitting; its advantages are: (1) out-of-bag (OOB) data generated by the bagging method,
and it can be used to measure the importance of a single variable and estimate the generalization error
of the combined classifier models; (2) Due to the large number theorem, with the increase of decision
tree in RF, it is not easy to be over-fitted; (3) The algorithm can tolerate abnormal values and noises
properly, and it has high classification accuracy [22].
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2.3. One-Class Support Vector Machine (OCSVM)

OCSVM only uses normal samples to complete the training process and to determine the
mechanical state of the device. The speed of the training and decision is fast, and the anti-noise
performance is good. It is suitable for the field of mechanical condition monitoring with high reliability.

Suppose there is a sample {zi, i = 1, 2, . . . , N}; mapping it to a high-dimensional feature space
through the kernel function ψ, it has better aggregation and it can solve an optimal hyperplane in the
feature space, so as to achieve the maximum separation between the target data, and the origin of
the coordinates. The decision function is f sign(z) = sign(w× ψ(z)− ρ); it attempts to separate the
training set from the origin, and maximize the distance between the hyperplane and the origin.

The weight w of the support vector and the threshold ρ can be described by solving the following
quadratic programming problem: min 1

2 w2 + 1
vN

N
∑

i=1
ξi − ρ

s.t. (w× ψ(z))� ρ− ξi ξi ≥ 0
(4)

where vε(0, 1) is used to control the proportion of support vectors in the training samples.
After introducing the kernel function, the above problem can be transformed into a dual problem:

min 1
2

N
∑

i=1

N
∑

j=1
αiαjk

(
zi, zj

)
s.t. 0 ≤ αi ≤ 1

vN

N
∑

i=1
αi = 1

(5)

In OCSVM, ρ =
N
∑

i=1
αik(zi, zj) is a determined threshold, determining the separation hyperplane

with the weight vector w, through the decision equation, OCSVM can determine whether the sample z
is a fault sample [17].

2.4. Construction of the Hierarchical Classifier

Because the types of fault samples are not comprehensive, there are some unknown types of faults
occurring in practical work. When an unknown type of fault occurs, by using multi-class classifier to
identify HVCBs mechanical faults, the unknown faults will be identified as a known fault or normal.
Although OCSVM can accurately monitor the state of mechanical failure, it cannot identify the type
of fault as known or unknown. Therefore, a hybrid classifier is constructed with OCSVM and RF.
Using OCSVM to avoid mistaken identifications of fault status, we further identified the unknown
fault types accurately without training samples, through RF and OCSVM.

Figure 1 is a flowchart of fault diagnosis based on a hybrid classifier. Firstly, the OCSVM0 classifier
is applied to identify the normal and fault states of HVCB. If the HVCB is in a fault condition, RF is
used to identify the specific fault types. Then, aiming at the fault condition identified by RF, OCSVMl
(where l is a three-fault condition) is used to identify and correct the condition, based on the OCSVMl
model trained by a specific known fault type.
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Figure 1. Diagnosis process of the hybrid classifier. Figure 1. Diagnosis process of the hybrid classifier.

3. Feature Extraction of Original Vibration Signals Based on Time Domain Segmentation

3.1. Signal Acquisition System

The experiment was carried out on LW9-72.5 series SF6 HVCBs, using a spring control mechanism.
The vibration signal acquisition system was built using a piezoelectric accelerometer and a NI
9234 data acquisition card produced by National Instruments. The system is as shown in Figure 2.
The accelerometer was installed on the mechanism box near the operating mechanism. The position
was close to the vibration source of the HVCBs, and could record the vibration more clearly,
without affecting the performance of the circuit breaker. The sampling frequency was 25.6 kS/s.
The coordinate origin of the sampled signal was the time when the circuit breaker would act (The trigger
sends acquisition instructions to the data acquisition card). The recording starting point and the time
of the acquisition signal is the same in the four conditions.
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3.2. Feature Extraction Based on Time Domain Segmentation of the Original Signal

To extract the features of HVCBs vibration signals in a specific time period for the original signal,
a uniform time scale was used to segment the original signal in the time domain, and the time domain
features of each segment were extracted after segmentation. The time domain feature was extracted
directly from the segmented signals, and a loss of high-frequency information could be avoided in
time–frequency processing. The integrity of the feature information was guaranteed, and it saved time
in signal processing.

In order to analyze the influences of features on the accuracy of fault diagnosis under different
segmentation scales, from the original signal, it can be seen that the actions of the iron core stagnation
fault were delayed, compared with the normal signal. The amplitude of the base screw loosening fault
signal was smaller and the attenuation process was slow. The amplitude of the poor lubrication fault
was relatively small. The time of the operating mechanism received trigger instructions to the vibration
signal amplitude changes (Ts), and the amplitude reached a peak (Tp) to be the unit, respectively.
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The signal is divided into 29 segments and nine segments by Ts and Tp. Different fault types are
segmented at the same scale. There are obvious differences between two different scales and different
signals, so we used two scales for time domain segmentation.

Figure 3 is a map of the measured vibration signal and the time domain segmentation unit. It can
be seen from the original signal that with the iron core stagnation action delay, compared with the
normal condition, the amplitude of screw loosening condition was smaller, the attenuation process
was slower, and the amplitude of the poor lubrication condition was relatively small. Therefore, in the
time domain segmentation, it can be seen that there were differences between different types of fault
signals in the same period. The features were extracted from each segmented signal, and used to
identify the mechanical conditions of the HVCBs.Sensors 2019, 19, x FOR PEER REVIEW 6 of 14 
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The new method extracts 17 times domain features that can reflect the amplitude changes and the
attenuation degrees in different periods, and construct feature vectors [14–16]. Table 1 is the feature
calculation formula, where pn is the probability density, n = 1, 2, · · · , N, N is the number of sample
points per segment after the time domain segmentation. Table 2 is the distribution of the features with
different time domain segmentation scales.

Table 1. Formula of features.

Feature Formula Feature Formula

Mean value Fmv = 1
N

N
∑

n=1
x(n) Standard deviation Fstd =

√
1
N

N
∑

n=1
(x(n)− Fmv)

2

Variance Ftv = 1
N

N
∑

n=1
(x(n)− Fmv)

2 Skewness Fsv = 1
N

N
∑

n=1

(
x(n)−Fmv
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)3

Kurtosis Fkv = 1
N

N
∑

n=1

(
x(n)−Fmv
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)4
Peak-to-peak value Fppv = max(x(n))−min(x(n))

Square root of amplitude Fsta =

(
1
N

N
∑
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√
|x(n)|

)2
Mean amplitude Fav = 1

N

N
∑

n=1
|x(n)|

Peak value Fpv = max(|x(n)|) Shape factor Fs f =
Frms
Fav

Crest factor Fc f =
Fpv
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Impulse factor Fi f =
Fpv
Fav

Margin factor Fm f =
Fpv
Fsra

Shannon entropy Fse = −K
N
∑

n=1
pn log pn

Renyi entropy Fre =
1

1−α log
N
∑

n=1
pn

α Tsallis entropy Fte = − 1
α−1 log(1−

N
∑

n=1
pn

α)

Root-mean-square value Frms =

(
1
N

N
∑

n=1
x(n)2

)1/2
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Table 2. Distribution of features.

Feature Feature
Number (Ts)

Feature
Number (Tp) Feature Feature

Number (Ts)
Feature

Number (Tp)

Mean value F1–F29 F1–F9 Standard deviation F30–F58 F10–F18
Variance F59–F87 F19–F27 Skewness F88–F116 F28–F36
Kurtosis F117–F145 F37–F45 Peak-to-peak value F146–F174 F46–F54

Square root of amplitude F175–F203 F55–F63 Mean amplitude F204–F232 F64–F72
Peak value F233–F261 F73–F81 Shape factor F262–F290 F82–F90
Crest factor F291–F319 F91–F99 Impulse facto F320–F348 F100–F108

Margin factor F349–F377 F109–F117 Shannon entropy F378–F406 F118–F126
Renyi entropy F407–F435 F127–F135 Tsallis entropy F436–F464 F136–F144

Root-mean-square value F465–F493 F145–F153

4. Comparison of Classification Effects of Different Feature Extraction Methods

In order to compare the effects of feature extraction in a new method, three signal processing
methods of EMD, EEMD, and LMD were used to extract features, to compare them with the new
method. Figure 4 is the result of signal decomposition and time domain segmentation by using EMD,
EEMD, and LMD. The time domain segmentation scale was the same as the new method. EMD and
EEMD decompose the signal into some intrinsic mode functions (IMFs). LMD decomposes the signal
into multiple product functions (PFs) with instantaneous frequency.
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Figure 4. The time domain segmentation of EMD, LMD, and EEMD: (a) IMFs decomposed by EMD 
method; (b) PFs decomposed by the LMD method; (c) IMFs decomposed by the EEMD method. 
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Figure 4. The time domain segmentation of EMD, LMD, and EEMD: (a) IMFs decomposed by EMD
method; (b) PFs decomposed by the LMD method; (c) IMFs decomposed by the EEMD method.
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When using different feature extraction methods, Table 3 shows the recognition accuracy without
unknown types when using multiple classifiers and the original feature set dimension. Di is the
features dimension, and Ac is the accuracy of the condition recognition.

Table 3. State recognition results.

Test
9 Segments 29 Segments

C1 C2 C3 Di Ac (%) C1 C2 C3 Di Ac (%)

C1 10 0 0 153 100 10 0 0 493 100
C2 0 10 0 153 100 0 10 0 439 100
C3 0 0 10 153 100 0 0 10 439 100

EMD-C1 10 0 0 1530 100 10 0 0 4930 100
EMD-C2 1 9 0 1530 90 0 10 0 4390 100
EMD-C3 0 0 10 1530 100 1 0 9 4390 90
LMD-C1 10 0 0 1071 100 10 0 0 3451 100
LMD-C2 0 10 0 1071 100 0 9 1 3451 90
LMD-C3 1 0 9 11 90 0 0 10 3451 100

EEMD-C1 10 0 0 1377 100 10 0 0 4437 100
EEMD-C2 0 10 0 1377 100 0 10 0 4437 100
EEMD-C3 0 2 8 1377 80 0 1 9 4437 90

As shown in Table 3, when the new method divided the signal into 29 segments and nine segments,
the new method could identify three states effectively, while the traditional signal processing method
had mistaken identifications. In this paper, the feature dimensions extracted by the new method
were 153 and 493. Compared with the traditional signal method, the feature dimension was lower.
Therefore, the new method feature extraction not only improved the accuracy of the state recognition,
but also effectively reduced the complexity of the original feature set.

Figure 5 shows the time statistics for extracting features by direct time-domain segmentation and
traditional signal processing methods. According to Figure 5, no matter the time domain segmentation
method that is used, the new method without signal processing removed the signal processing,
and extracted the time-domain features only for a single time series of the original signal.
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The computation time of the new method was lower than that of the traditional methods,
which were needed to extract features from multiple IMF or PF time series. The efficiency of the
feature extraction was higher than EMD, LMD, and EEMD. When the sampling rate of the vibration
signal to be analyzed is higher, the advantages of the new method will be more obvious.
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5. Feature Selection

In the existing feature selection, when the wrapper method was used; combined with the particle
swarm algorithm, the feature subset satisfying the classification accuracy rate is found according to
the classifier effect, but the efficiency of the optimization is low. In actual work, the filter method
receives more applications. Experiments are carried out according to the statistical results of the
features [23–25].

RF is an ensemble learning method. Its Gini importance index takes the comprehensive
contribution of features in different feature combinations into account, and analysis becomes more
comprehensive. The features were in descending order according to the Gini importance, and SFS
was carried out to obtain a better candidate feature set. After that, the classifier was constructed with
different feature subsets, and the evaluation index of RFC was calculated. Finally, the best feature
subset was determined, which was used to train the optimal classifier.

5.1. The Gini Importance of Time Domain Features

In order to reduce the complexity of the classifier, three classes of signals were used as the
classification targets. The complete original feature set was used as the input feature vector to train
the RF classifier, and all of the Gini importance were obtained. The importance of the original feature
set constructed by two times domain segmentation methods is shown in Figure 6. As is evident in
Figure 6, the Gini importance of the different features were quite different. Therefore, feature ordering
could be carried out according to the Gini importance.
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Figure 6. Gini importance: (a) Gini importance of 29 segments in time domain segmentation; (b) Gini
importance of nine segments in time domain segmentation.

In order to prove the effectiveness of feature classification ability, based on Gini importance,
Under two kinds of time domain segmentation scales, two groups were selected from the highest and
lowest Gini importance of the features, respectively. A box plot was drawn to analyze the distribution
of the features. According to the distribution of features, the classification ability of the features
with different Gini importance was intuitively compared. According to the Gini importance, the best
features of 29 segments are F450 and F62, and the worst features are F311 and F313; the best features of
the nine segments are F31 and F34, and the worst features are F16 and F37.

As shown in Figure 7, the box diagram distribution was determined by 10 groups of typical fault
samples. The distribution of the features with high Gini importance was centralized with no crossing.
The degree of distinction between the different classes was high. The distribution of the features with
low Gini importance was wide and overlapped. The degree of distinction between the different classes
was low. The validity of the feature classification ability was verified, based on Gini importance.
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5.2. Sequential Forward Selection Based on RFC

In the process of sequential forward selection, the optimal feature subset was determined by the
classification accuracy of the feature subset, and the JF index of RFC.

The separation of features could be determined by the Fisher criterion in pattern recognition [25]:

J =
tr(σb)

tr(σw)
(6)

Fisher’s criterion J is a measurement of the separability among all classes. If the J value of the
feature set is larger for the training set, the diversity of this feature is better. Where σb and σw are the
between-class scatter matrix and the within-class scatter matrix, respectively. The calculation formula
is as follows:  σb = ∑c

i ni(mi −m)(mi −m)T

σw = ∑c
i

1
ni

∑
x∈wi

(x−mi)(x−mi)
T (7)

The linear transformation matrix W transforms the Fisher criterion to [26]:

JF(W) = tr
(

WTσbW
WTσwW

)
(8)

When σW is singular or ill-conditioned, a diagonal matrix λI with λ > 0 is added to σw. Since σw

is symmetric positive semi-definite, σw + λI is non-singular with any λ > 0.
To overcome this shortcoming, the RFC was adopted in the new method. The classification

effect of different feature sets was analyzed. By replacing the regularized matrix σw in (8), the RFC
becomes [26]:

JF(W) = tr(
WTσbW

WT(σw + λI)W
) (9)

Therefore, the problem of singularity is solved, and it can be applied in our feature selection
algorithm to measure the classification ability of different features [26].

In the condition of time domain segmentation with 29 and nine segments, respectively, the 50
most important dimensional features were arranged in descending order, and the SFS method was
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used to construct different feature subsets. Figure 8 is the RF classification accuracy, and JF is the
feature selection process.
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As it can be seen from Figure 8, the accuracy of the feature subset dimension of the two
segmentation scales was 100% when the feature subset dimensions were nine- and 10-dimensional,
which cannot measure the effect from a single accuracy. With the increase in features, the evaluation
index JF of the feature subset first increased and then decreased. Finally, the maximum JF value
was used to determine the final feature subset. The best feature subset dimension were 12 and 33,
when time domain segmentation scales were 29 and nine segments, respectively. At this time, when the
time domain was divided into 29 segments and nine segments in the time domain, JF reached the
maximum value. When classifying with this feature subset, the class separability was the highest.
Therefore, JF and the feature dimension were considered comprehensively, and a classifier model was
constructed, based on the best feature subset, with 12 dimensions of 29 segments. The best subsets of
the features are shown in Table 4.

Table 4. The best subset of features.

Feature Number Feature Description

F450 Mean amplitude of 27 segments
F62 Peak value of four segments
F2 Standard deviation of one segment

F236 Renyi entropy of 14 segments
F262 Square root of the amplitude of 16 segments
F48 Shannon entropy of three segments

F191 Skewness of 12 segments
F4 Skewness of one segment

F438 Margin factor of 26 segments
F408 Root-mean-square value of 24 segments
F65 Shannon entropy of four segments

F234 Margin factor of 14 segments

6. Analysis of the Recognition Effect of the Hybrid Classifier with Unknown Faults

After determining the optimal subset of features, this paper designed an identification experiment
with an unknown fault type, and verified the advantages of the hybrid classifier adopted by the new
method. The screw loosening condition in the experiment was regarded as an unknown fault of the
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untrained sample, and it only participates in the final test without participating in the training process
of the classifier. In the experiment, the error limit v and RBF kernel width parameter were 0.82 and
17.68, respectively [27].

In order to compare the classification effects of multiple classifiers, RF and SVM were used to
analyze normal and three fault types (the iron core stagnation, the screw loosening condition, and the
poor lubrication condition) with untrained samples. The classifier to build the best feature subset
was determined by the new method. SVM parameter reference [9] setting. Among them, the screw
looseness was regarded as an unknown fault state without training samples, and it participated
in two classifiers but it did not participate in training. Twenty groups of normal samples of two
known fault states (without an unknown type of fault) were used to train the classifier. Ten groups of
normal samples of three fault states (with an unknown type of fault) were used to test the classifier.
The classification results are shown in Table 5.

Table 5. Diagnosis result of the patterns not contained in the training samples, using random forest
(RF) and support vector machine (SVM).

Test
RF SVM

C0 C1 C2 C3 Ac C0 C1 C2 C3 Ac

C0 10 0 0 0 100 10 0 0 0 100
C1 0 10 0 0 100 0 10 0 0 100
C2 0 0 10 0 100 0 0 10 0 100
C3 1 4 5 0 0 10 0 0 0 0

From the results of Table 5, RF and SVM accurately identified the fault types of the HVCBs.
Neither RF nor SVM could identify an unknown fault type accurately (C3), in the state recognition
without training samples. RF identified one group of samples as normal, four groups of samples
were identified as iron core stagnation, and the five groups are identified as having poor lubrication
condition, while SVM identified 10 groups of samples as being normal. The reliability of SVM was low.
Therefore, the RF classifier has advantages, and its classification is more reliable.

In order to prove that the new method of the hierarchical hybrid classifier is used to identify the
unknown type without training samples, a comparative test was carried out between the new method
and the OCSVM-RF method. Table 6 is the result of two hybrid classifiers for OCSVM-RF (O-R) and the
new method OCSVM-RF-OCSVM (O-R-O). In contrast, O-R could make up for the shortcoming that
RF mistakenly identified an unknown condition as a normal condition, but the 10 untrained samples
were wrongly identified as known fault types.

Table 6. Diagnosis result of the patterns not contained in the training samples using the O-R and O-R-O.

Test
O-R O-R-O

C0 C1 C2 C3 Ac C0 C1 C2 C3 Ac

C0 10 0 0 0 100 10 0 0 0 100
C1 0 10 0 0 100 0 10 0 0 100
C2 0 0 10 0 100 0 0 10 0 100
C3 0 4 6 0 0 0 0 0 10 100

7. Conclusions

This paper proposes a novel mechanical fault feature selection and diagnosis approach for
HVCBs, using features extracted without signal processing. The signal is not processed by digital
signal processing methods, and it extracts features directly in the time domain. Feature selection is
used to gain the best feature subsets for achieving high efficiencies and accuracies of fault recognition.
The main contribution of the new approach is as follows:
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(1) The features is extracted directly after the time domain segmentation of the original signal,
with less time complexity.

(2) Feature selection is adopted to reduce the optimal feature subset dimension, the time consuming
nature of feature extraction, and the complexity of the classifier model.

(3) The hierarchical hybrid classifier avoids the limitation of identifying the fault samples as the
normal condition, and identifies the unknown fault types effectively. Compared with the
traditional multiple classifiers, the condition recognition effect is improved.

HVCB has many kinds of faults, degrees of faults. It is difficult to obtain all the data that is needed
for relevant experiments. More samples of fault types and degree data for further experimental study
will be accumulated in future work.

Author Contributions: L.L. and N.H. both made important contributions to the research analysis and research
thinking. B.W., J.Q. and L.C. all contributed to the research acquisition, interpretation of data and research analysis.

Funding: Research was funded by the National Nature Science Foundation of China, grant number 51307020,
the Science and Technology Development Project of Jilin Province, grant number 20160411003XH, the Science and
Technology Project of Jilin Province Education Department, grant number JJKH20170219KJ, Major science and
technology projects of Jilin Institute of Chemical Technology, grant number 2018021, and Science and Technology
Innovation Development Plan Project of Jilin City, grant number 201750239, Science and Technology Program
Project of Jilin Provincial Science and Technology Department, grant number 20180101336JC.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, B.; Ding, R.; Zhang, J. Multiphysics-Coupled Modeling: Simulation of the Hydraulic-Operating
Mechanism for a SF6 High-Voltage Circuit Breaker. IEEE/ASME Trans. Mechatron. 2016, 21, 379–393.
[CrossRef]

2. Wan, S.T.; Chen, L.; Dou, L.J.; Zhou, J.P. Mechanical Fault Diagnosis of HVCBs Based on Multi-Feature
Entropy Fusion and Hybrid Classifier. Entropy 2018, 20, 847. [CrossRef]

3. Meier, S.D.; Moore, P.J.; Coventry, P.F. Radiometric Timing of High-Voltage Circuit-Breaker Opening
Operations. IEEE Trans. Power Deliv. 2011, 26, 1411–1417. [CrossRef]

4. Maller, V.N.; Naidu, M.S. Advances in High Voltage Insulation and Arc Interruption in SF6 and Vacuum;
Pergamon Press: Oxford, UK, 1981.

5. Nakanishi, K. Switching Phenomena in High-Voltage Circuit Breakers; CRC Press: Boca Raton, FL, USA, 1991.
6. Garzon, R.D. High Voltage Circuit Breakers: Design and Applications; CRC Press: Boca Raton, FL, USA, 1997.
7. Huang, Y.; Wang, J.; Zhang, W. A Motor-Drive-Based Operating Mechanism for High-Voltage Circuit Breaker.

IEEE Trans. Power Deliv. 2013, 28, 2602–2609. [CrossRef]
8. Lee, D.S.S.; Lithgow, B.J.; Morrison, R.E. New fault diagnosis of circuit breakers. IEEE Trans. Power Deliv.

2003, 18, 454–459. [CrossRef]
9. Landry, M.; Leonard, F.; Landry, C. An Improved Vibration Analysis Algorithm as a Diagnostic Tool for

Detecting Mechanical Anomalies on Power Circuit Breakers. IEEE Trans. Power Deliv. 2008, 23, 1986–1994.
[CrossRef]

10. Bustos, A.; Rubio, H.; Castejon, C.; Garcia-Prada, J.C. EMD-Based Methodology for the Identification of a
High-Speed Train Running in a Gear Operating State. Sensors 2018, 18, 793. [CrossRef]

11. Huang, J.; Hu, X.; Geng, X. An intelligent fault diagnosis method of high voltage circuit breaker based on
improved EMD energy entropy and multi-class support vector machine. Electr. Power Syst. Res. 2011, 81,
400–407. [CrossRef]

12. Qin, W.L.; Zhang, W.J.; Lu, C. Rolling bearing fault diagnosis: A data-based method using EEMD,
information entropy and one-versus-one SVM. In Proceedings of the 2016 12th World Congress on Intelligent
Control and Automation (WCICA), Guilin, China, 12–15 June 2016; pp. 1016–1020.

13. Huang, N.; Fang, L.; Cai, G. Mechanical Fault Diagnosis of High Voltage Circuit Breakers with Unknown
Fault Type Using Hybrid Classifier Based on LMD and Time Segmentation Energy Entropy. Entropy 2016, 18,
322. [CrossRef]

http://dx.doi.org/10.1109/TMECH.2015.2460351
http://dx.doi.org/10.3390/e20110847
http://dx.doi.org/10.1109/TPWRD.2011.2106225
http://dx.doi.org/10.1109/TPWRD.2013.2272741
http://dx.doi.org/10.1109/TPWRD.2003.809615
http://dx.doi.org/10.1109/TPWRD.2008.2002846
http://dx.doi.org/10.3390/s18030793
http://dx.doi.org/10.1016/j.epsr.2010.10.029
http://dx.doi.org/10.3390/e18090322


Sensors 2019, 19, 288 14 of 14

14. Shang, Z.W.; Liu, Z.W.; Li, Y.F. Time-Domain Fault Diagnosis Method of Mechanical and Electrical Equipment
Based Improved Dynamic Time Wraping. Key Eng. Mater. 2016, 693, 1539–1544. [CrossRef]

15. Nayana, B.R.; Geethanjali, P. Analysis of Statistical Time-Domain Features Effectiveness in Identification of
Bearing Faults from Vibration Signal. IEEE Sens. J. 2017, 17, 5618–5625. [CrossRef]

16. Jae, Y.; David, H.; Brandon, V.H. On the use of a single piezoelectric strain sensor for wind turbin planetary
gearbox fault diagnosis. IEEE Trans. Ind. Electron. 2015, 62, 6585–6592.

17. Jan, S.U.; Lee, Y.D.; Shin, J. Sensor Fault Classification Based on Support Vector Machine and Statistical
Time-Domain Features. IEEE Access 2017, 5, 8682–8690. [CrossRef]

18. Huang, N.; Chen, H.; Cai, G. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on
Variational Mode Decomposition and Multi-Layer Classifier. Sensors 2016, 16, 1887. [CrossRef]

19. Lerman, R.I.; Yitzhaki, S. A note on the calculation and interpretation of the Gini index. Econ. Lett. 1984, 15,
363–368. [CrossRef]

20. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
21. Saraswat, M.; Arya, K.V. Feature selection and classification of leukocytes using random forest. Med. Biol.

Eng. Comput. 2014, 52, 1041–1052. [CrossRef]
22. Ma, S.; Chen, M.; Wu, J.; Wang, Y.; Jia, B.; Yuan, J. Intelligent Fault Diagnosis of HVCB with FeatureSpace

Optimization-Based Random Forest. Sensors 2018, 18, 1221. [CrossRef]
23. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222.

[CrossRef]
24. Brankovic, A.; Falsone, A.; Prandini, M. A Feature Selection and Classification Algorithm Based on

Randomized Extraction of Model Populations. IEEE Trans. Cybern. 2017, 48, 1151–1162. [CrossRef]
25. Dang, Z.; Lv, Y.; Li, Y.R.; Wei, G.Q. Improved Dynamic Mode Decomposition and Its Application to Fault

Diagnosis of Rolling Bearing. Sensors 2018, 18, 1972. [CrossRef]
26. Ziani, R.; Felkaoui, A.; Zegadi, R. Bearing fault diagnosis using multiclass support vector machines with

binary particle swarm optimization and regularized Fisher’s criterion. J. Intell. Manuf. 2017, 28, 405–417.
[CrossRef]

27. Huang, N.; Chen, H. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Wavelet
Time-Frequency Entropy and One-Class Support Vector Machine. Entropy 2016, 18, 7. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4028/www.scientific.net/KEM.693.1539
http://dx.doi.org/10.1109/JSEN.2017.2727638
http://dx.doi.org/10.1109/ACCESS.2017.2705644
http://dx.doi.org/10.3390/s16111887
http://dx.doi.org/10.1016/0165-1765(84)90126-5
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s11517-014-1200-8
http://dx.doi.org/10.3390/s18041221
http://dx.doi.org/10.1080/01431160412331269698
http://dx.doi.org/10.1109/TCYB.2017.2682418
http://dx.doi.org/10.3390/s18061972
http://dx.doi.org/10.1007/s10845-014-0987-3
http://dx.doi.org/10.3390/e18010007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Feature Importance and Fault Classifiers 
	Gini Importance 
	Random Forest 
	One-Class Support Vector Machine (OCSVM) 
	Construction of the Hierarchical Classifier 

	Feature Extraction of Original Vibration Signals Based on Time Domain Segmentation 
	Signal Acquisition System 
	Feature Extraction Based on Time Domain Segmentation of the Original Signal 

	Comparison of Classification Effects of Different Feature Extraction Methods 
	Feature Selection 
	The Gini Importance of Time Domain Features 
	Sequential Forward Selection Based on RFC 

	Analysis of the Recognition Effect of the Hybrid Classifier with Unknown Faults 
	Conclusions 
	References

