
sensors

Article

Optimizing Movement for Maximizing Lifetime of
Mobile Sensors for Covering Targets on a Line

Peihuang Huang 1, Wenxing Zhu 2 and Longkun Guo 2,*
1 College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China;

peihuang.huang@foxmail.com
2 College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China;

wxzhu@fzu.edu.cn
* Correspondence: lkguo@fzu.edu.cn

Received: 13 December 2018; Accepted: 8 January 2019; Published: 11 January 2019
����������
�������

Abstract: Given a set of sensors distributed on the plane and a set of Point of Interests (POIs) on a
line segment, a primary task of the mobile wireless sensor network is to schedule covering the POIs
by the sensors, such that each POI is monitored by at least one sensor. For balancing the energy
consumption, we study the min-max line barrier target coverage (LBTC) problem which aims to minimize
the maximum movement of the sensors from their original positions to their final positions at which the
coverage is composed. We first proved that when the radius of the sensors are non-uniform integers,
even 1-dimensional LBTC (1D-LBTC), a special case of LBTC in which the sensors are distributed on the
line segment instead of the plane, is NP-hard. The hardness result is interesting, since the continuous
version of LBTC to cover a given line segment instead of the POIs is known polynomial solvable. Then we
present an exact algorithm for LBTC with uniform radius and sensors distributed on the plane, via solving
the decision version of LBTC. We argue that our algorithm runs in time O(n2 log n) and produces an
optimal solution to LBTC. The time complexity compares favorably to the state-of-art runtime O(n3 log n)
of the continuous version which aims to cover a line barrier instead of the targets. Last but not the
least, we carry out numerical experiments to evaluate the practical performance of the algorithms,
which demonstrates a practical runtime gain comparing with an optimal algorithm based on integer
linear programming.

Keywords: mobile sensor; NP-hard; target coverage; line boundary; optimal solution

1. Introduction

In the past decades, wireless sensor networks have brought tremendous changes to human society
and proposed many technique challenges. Among them, the coverage topics including area coverage [1]
and barrier coverage [2] are among the hop spots that attract lots of research interest. In area coverage,
the task is to schedule the new positions of the sensors, such that each point in the given target region is
covered by at least one sensor. Differently, in barrier cover the task is to monitor only the boundary of a
given region, and the aim is to guarantee that intruders can be detected when they are crossing the barrier.
Comparing to area coverage, barrier coverage has an advantage of using significantly less sensors and
hence is scalable for large scale wireless sensor networks (WSN). Furthermore, some applications only
require a set of Points Of Interest (POIs) along the boundary to be monitored. In the context, a problem
arises how to guarantee every POI on the barrier to be covered. The current-state-of-art method is to first

Sensors 2019, 19, 273; doi:10.3390/s19020273 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/2/273?type=check_update&version=1
http://dx.doi.org/10.3390/s19020273
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 273 2 of 15

cover POIs using the stationary sensors, and then use mobile sensors to cover every not-yet covered POI
along the barrier. For the second phase, we traditionally have the following assumptions for the modeling:
(1) Sensors are acquired with mobile ability; (2) The initial positions of the sensors are distributed on
the plane, and the POIs are distributed along a line segment (Although the shape of the boundary can
be various, most researches nonetheless focus on line boundary because curves in other shapes can be
considered as a variable of line segments); (3) The aim of sensor networks is to prolong the lifetime.
This arises the min-max 2D Line Boundary Target Coverage problem (min-max 2D-LBTC) as follows:

Definition 1. Let P and Γ be respectively a set of POIs distributed in a line segment [0, L] and a set of mobile
sensors distributed on the plane, where j ∈ P has a position (pj, 0) while i ∈ Γ has a position (xi, yi) and a positive
sensing radius ri. The min-max 2D-LBTC problem aims to compute a new position (x′i , 0) for each sensor i ∈ Γ,
such that each POI j ∈ P is covered by at least one sensor, and the maximum movement of the sensors from

their original positions to the new positions is minimized that maxi∈Γ

{√
(xi − x′i)

2 + yi
2
∣∣∣ i ∈ Γ

}
is attained,

where j ∈ P is covered means there exists a sensor i ∈ Γ with position (x′i , 0) that x′i − ri ≤ pj ≤ x′i + ri.

When no confusion arises, we shall use LBTC short for the min-max 2D-LBTC problem for briefness.
In particular, we use one dimensional min-max Line Boundary Target Coverage problem (1D-LBTC) to
denote the special case of LBTC when the initial positions of all the sensors are also distributed on the line
boundary. Moreover, the decision version of LBTC (decision LBTC for short) is, for a given movement
bound D, to determine whether there exists a feasible coverage with each sensor’s movement bounded by
D. Besides, when the aim is to cover the line boundary itself instead of the POIs thereon, we respectively
have the min-max Line Boundary Coverage (LBC) problem and one-dimensional-LBC (1D-LBC) problem,
which have already been well studied and a number of algorithms have been developed. All the notations
of this paper are summarized as in Table 1.

1.1. Related Works

To the best of our knowledge, Kumar et al. [2] were the first to consider the boundary (barrier)
coverage problem using sensors against a closed curve (i.e., a moat), via transforming the coverage
problem to the path problem of determining whether there exists a path between two specified nodes,
although the research of barrier coverage started from early 90s due to Gage [3]. The algorithm from Kumar
et al. is scalable and can also be extended to solve the k-coverage problem by transforming to the k-disjoint
path problem. However, the disadvantage is that it can only be used to determine whether a coverage
exists using the deployed stationary sensors. A problem for stationary sensors is that, after deployment
there might exist no coverage over all POIs. For the case, a state-of-art solution is to employ mobile sensors
to fill the gaps between the stationary sensors. In the scenario, the WSN applications would require to
maximize the minimum lifetime of the mobile sensors or to minimize the total energy consumption. For the
former, the aim is to schedule new positions for the mobile sensors such that the barrier is completely
covered, and that the maximum movement of the sensors is minimized as to prolong the lifetime of the
WSN. When the sensors are on the line of the barrier, the 1D-LBC problem is shown optimally solvable in
O(n2) time for uniform radii in Paper [4]. The same paper has also proposed an algorithm with O(n) time
for uniform radii and ∑i ri ≤ L, and with x1 ≤ · · · ≤ xn for the sensor Γ = {s1, · · · , sn}, where L is the
length of the barrier, n is the number of the sensors. Later, Chen et al have improved the time complexity to
O(n log n) for uniform sensor radii and proposed an O(n2 log n) time algorithm for non-uniform radii in
paper [5]. Besides straight line barrier, circle/simple polygon barriers has been studied and two algorithms
have been given developed by Bhattacharya et al. in [6], which have an O(n3.5 log n) time relative to cycle
barriers and an O(mn3.5 log n) time relative to polygon barriers, in which m is the number of the edges on

Sensors 2019, 19, 273 3 of 15

the polygon. The later time complexity was then decreased to O(n2.5 log n) in [7]. For the more generalized
case in which the sensors are distributed on the plane, the LBC problem is known to be strongly NP-hard
for sensors with general integer sensing radius [8], while LBC using uniform radius sensors is shown
solvable in O(n3 log n) time [9]. Although these elegant algorithms have been developed for LBC for
both 1D and 2D setting, none of them is applicable to LBTC since as we shall show in the paper, LBTC is
NP-complete for non-uniform radius.

Other than the Min-Max case, there are also applications require min-sum coverage that is to minimize
the total energy consumption, which is to minimize the total movement of the mobile sensors. For this
objective, Min-Sum LBC, which aims to minimize the sum of the movements of all the sensors, were studied
in literature. Min-Sum LBC was shown NP-complete for arbitrary radii while solvable in time O(n2)

for uniform radii by Czyzowicz et al. [10]. The Min-Num relocation problem of minimizing the number
of sensors moved, is also proven NP-complete for arbitrary radii and polynomial solvable for uniform
radii by Mehrandish et al. [11]. A PTAS has been developed for the Min-Sum relocation problem against
circle/simple polygon barriers by Bhattacharya et al. [6], which was later improved to an O(n4) time exact
algorithm by Tan and Wu [7]. For covering a barrier with Min-Sum movement, the most recent result
is a factor-

√
2 approximation algorithm for covering POIs along a barrier using uniform-radius sensors,

aiming to minimize the sum of the movement [12]. However, it remains open whether the min-sum
LBC problem is NP-hard. For target coverage task in the plane, Liao et al. have develop algorithms for
Min-Sum movement to minimize the total consumed energy [13].

Table 1. Notations used in the paper.

Notations Description

LBTC Brief for the min-max 2D Line Boundary Target Coverage problem

Decision LBTC The problem that only determines whether LBTC is feasible under given D

LBC Brief for the min-max 2D Line Boundary Coverage Problem

1D-LBTC LBTC but with the original positions of the sensors on the line

1D-LBTC LBC but with the original positions of the sensors on the line

POI Points Of Interest which are the targets to be covered

3-partition A combinatorial optimization problem that is know strongly NP-complete

L The length of the line segment where the POIs are placed

D The bound of the maximum movement of the sensors

D∗ The minimum one among all feasible D

P The set of POIs

pj The position of j ∈ P on the line segment

Γ The set of sensors

dmax The maximum distance between the POIs and the sensors

dij The distance between POI j and sensor i

li The leftmost point sensor i can cover under the given movement bound D

gi The rightmost point sensor i can cover under the given movement bound D

l(C) The leftmost POI of the POI set C

g(C) The rightmost POI of the POI set C

Φ The possible maximal sets of POIs (called combinations) that can be covered by a single sensor

Ψ Ψ = {dij|i ∈ Γ, cj ∈ Φ} is the set of distances between the combinations and the sensors

Sensors 2019, 19, 273 4 of 15

1.2. Our Results

In this paper, we first show that 1D-LBTC isNP-hard when the sensors are with non-uniform integer
radii by proposing a reduction from the 3-partition problem that is known strongly NP-complete [14].
This hardness result is interesting, because 1D-LBC, the continuous version of 1D-LBTC, is shown
solvable in polynomial time O(n2 log n) [5]. This means LBTC and LBC belong to different classes of
computational complexity.

Then, we propose a sufficient and necessary condition to determine whether there exists a feasible
cover for the barrier under the relocation distance bound D. Based on the condition, we propose a simple
greedy approach that outputs “infeasible” if D < D∗, and otherwise computes a feasible solution under
the movement bound D, such that the sensors cover all the POIs in their new positions. We show that the
decision algorithm is with a runtime O(n log n). By employing the binary search technique, we propose an
algorithm using the decision algorithm as a routine to actually find a minimum integer movement bound
D = D∗, when D∗ is integral. The algorithm takes O(n log n log dmax) time, where dmax is the maximum
distance between the sensors and the POIs.

For instances with D∗ being a real number or with large dmax, we propose another algorithm that
employs the binary search method against O(n2) possible values of D∗ instead of the continuous value
range. The trick is to construct the set of all possible values of D∗ and show its size is O(n2). This improves
the runtime of the algorithm to O(n2 log n), which is the time needed to sort the O(n2) possible values
of D∗. The later algorithm remains correct even when D is allowed to be any real number. In contrast,
the former algorithm can only work for integer D∗. To the best of our knowledge, our algorithms are the
first polynomial algorithms for LBTC.

The following paragraphs will be organized as follows: we shall first give the NP-completeness
proof in Section 2; Then present the algorithm for Decision LBTC with uniform sensor radii together with
the correctness proof in Section 3; Next, actually solve the LBTC problem by employing the binary search
method first against a continuous range, and then over our proposed discrete set in Section 4; After that,
evaluate the proposed algorithms via experiments in Section 5; At last, conclude the paper in Section 6.

2. NP-Completeness of Decision 1D-LBTC

In this section, we shall show the decision LBTC problem is NP-complete when the sensors are with
non-uniform integer radii, by giving a reduction from the 3-partition problem that is known strongly
NP-complete [14]. In 3-partition, we are given a set of 3n integers U = {a1, . . . , a3n} with ∑3n

i=1 ai = Bn
for an integer B > 0. The aim is to determine whether U can be divided into n subsets, such that each
subset is with an equal sum B.

Theorem 1. Decision 1D-LBTC is NP-complete when the sensors are with non-uniform integer radii.

The key idea of the construction of a reduction from 3-Partition to the decision LBTC problem is to
model ai ∈ U as the diameter of the sensors, and place POIs on the line segment in a way that a coverage
of the POIs is actually a partition of the numbers in U . More detailed, for a given instance of 3-Partition,
the construction of the corresponding instance of decision LBTC is simply as below:

1. Construct a line segment with length (2n− 1)B;
2. Place 4nB POIs on the line barrier as below:

(a) Decompose the line segment into 2n− 1 subsegments with equal length;
(b) Select n sections from the subsegments, where the ith section is the (2i− 1)th subsegment;
(c) For the ith section, i = 1, . . . , n, do

Sensors 2019, 19, 273 5 of 15

For j = 0, . . . , B− 1 do

Put two POIs respectively to the two positions (2(i− 1)B + j + jε, 0) and

(2(i− 1)B + j + 1− (B− j)ε, 0), where ε is a small positive number;
Endfor

Endfor

3. Place 3n sensors on position (0, 0), where sensor i is with radii ai
2 ;

4. The maximum movement is set as D := (2n− 1)B.

An example of the above construction is as depicted in Figure 1. Note that, the instance of decision
1D-LBTC constructed above contains 2nB POIs and 3n sensors. Anyhow, 3-Partition is known strongly
NP-complete, which means, 3-Partition remainsNP-complete even when B is polynomial to n. Therefore,
the construction can be done in polynomial time for B being polynomial to n.

0 1 + ε 7 − ε2 − 6ε 3 − 5ε 4 − 4ε 5 − 3ε 6 − 2ε2 + 2ε 3 + 3ε 4 + 4ε 5 + 5ε 6 + 6ε1 − 7ε

14 15 + ε 21 − ε16 − 6ε 17 − 5ε 18 − 4ε 19 − 3ε 20 − 2ε16 + 2ε 17 + 3ε 18 + 4ε 19 + 5ε 20 + 6ε15 − 7ε

28 29 + ε 35 − ε30 − 6ε 31 − 5ε 32 − 4ε 33 − 3ε 34 − 2ε30 + 2ε 31 + 3ε 32 + 4ε 33 + 5ε 34 + 6ε29 − 7ε

sensors

Figure 1. An example of the construction of 1D-LBTC against a 3-Partition instance
U = {1, 1, 2, 2, 2, 3, 3, 3, 4, }, n = 3 and B = 7. There are two sensors with diameter 1, one with
diameter 4, three with diameter 2 and the other three with diameter 3, whose original positions are all on
(0, 0). The movement bound is set D = 35.

The main idea behind the construction is to construct a relationship between the number of covered
POIs and the diameters of the sensors that are actually the integers in U . More precisely, the property on
the relationship is as in the following:

Proposition 1. Against a 1D-LBTC instance produced by the above construction, a sensor with diameter 2r can
cover at most 4r POIs.

Proof. When a sensor is with a diameter 2, apparently it can cover at most 4 POIs. Suppose the proposition
is true for sensors with diameter smaller than 2r. Then, let r1 + r2 = r be two positive integers smaller
than r. By induction, we have that sensors with diameters 2r1 and 2r2 can cover upto 4r1 and 4r2 POIs,
respectively. In addition, the two sensors with radii r1 and r2 can cover as many POIs as a sensor with a
radii r = r1 + r2 does. Therefore, the sensor with diameter 2r can cover no more than 4r1 + 4r2 = 4r POIs.
This completes the proof.

Lemma 1. An instance of 3-Partition is feasible if and only if the corresponding 1D-LBTC instance is feasible.

Proof. Suppose the instance of 3-Partition is feasible. Without loss of generality, we assume that
{Ui|i = 0, . . . , n− 1} is a solution to the 3-Partition instance which divides U to a collection of n sets,

Sensors 2019, 19, 273 6 of 15

among which Ui = {ali+1, . . . , ali+1
} and l0 = 0. Since D = (2n− 1)B equals the length of the barrier and

the original position of each sensor is (0, 0), each sensor can be moved any point of the barrier. Then we
need only to use the sensors in Ui, which are with radius aij , . . . , aij+1 and with a sum exactly B, to cover
the segment from 2iB to (2i + 1)B. That apparently results in a coverage for all the POIs in the ith section.

Conversely, suppose the corresponding LBTC instance is feasible. Then since sensor j with radii
aj
2

can at most cover 2aj continuous POIs, and each section contains exactly 2B POIs, so the diameter sum of
the sensors for each section is at least B. Then because the diameter sum of all the sensors is Bn, and there
are n sections, the diameter sum of the sensors for each section is exactly B. Therefore, the diameters for
the sensors for the sections is a solution to the corresponding instance of 3-Partition.

From the fact that 3-Partition is strongly NP-complete, and following a similar idea of the above
proof for Theorem 1, we immediately have the following hardness for LBTC:

Corollary 1. Decision 1D-LBTC is strongly NP-complete.

3. A Greedy Algorithm for 2D-LBTC with Uniform Sensors

The basic idea of the algorithm is to cover the POI from left to right, preferably using sensors that are
likely less useful for later coverage. More precisely, let [li, gi] be the possible coverage range of sensor i,
where li and gi are respectively the positions of the leftmost and the rightmost POIs, with respect to the
given distance D. That is, li and gi are the leftmost and the rightmost positions of POIs sensor i can cover
within movement D. Then the key idea of our algorithm is to cover the POIs from left to right, using the
sensor that can cover the leftmost uncovered POI within movement D and is with minimum gi.

The algorithm is first to compute its possible coverage range [li, gi] for each sensor i with respect
to the movement constraint D. Apparently, (xi, 0) is the projective point of sensor i on the line, so we

have li = xi −
√

D2 − y2
i and gi=xi +

√
D2 − y2

i for each sensor i. Then, the algorithm starts from point
s = (0, 0), to cover the line from left to right. The algorithm prefers using the sensor with a small gi, since a
sensor with a large gi would has a better potential to cover the POIs on the right part of the line.

Let s be the position the uncovered leftmost POI on the line barrier. Then among the set of sensors
{i|li ≤ s ≤ gi}, the algorithm repeats selecting the sensor with minimum gi to cover the uncovered POIs
of the line barrier starting at s. Note that {i|li ≤ s ≤ gi} is exactly the set of sensors that can monitor a set
of uncovered POIs starting at s by relocating at most D distance. The algorithm terminates either the set of
POIs are completely covered, or the instance is found infeasible (i.e., there exists no unused sensor i with
li ≤ s ≤ gi while the coverage is not yet done). The algorithm is formally as in Algorithm 1.

Note that Algorithm 1 takes O(n) time to compute li and gi for all the sensors in Steps 2–3, and takes
O(n log n) time to assign the sensors to cover the targets on the line barrier in Steps 4–15. Therefore,
we have the time complexity of the algorithm:

Lemma 2. Algorithm 1 runs in time O (n log n).

Before proving the correctness of Algorithm 1, we need the following lemma stating the existence of a
special coverage for a feasible LBTC instance.

Proposition 2. Let (xj, yj) be the position of sensor j in the plane. Assume p1(s, 0), p2(x′j, 0) and p3(x′′j , 0)
are three points on a line segment. If s ≤ x′′j ≤ x′j, then d(j, p3) ≤ max{d(j, p1), d(j, p2)} holds. That is,
the distance between the sensor and the middle point is not larger than the larger distance between the sensor and the
other two points.

Sensors 2019, 19, 273 7 of 15

Lemma 3. If an instance of LBTC is feasible, then there must exist a coverage in which the sensors are s-ordered.

Algorithm 1 A greedy algorithm for decision LBTC

Input: A bound D ∈ Z+ on maximum movement, a set of sensors Γ = {1, . . . , n} with original
positions {(xi, yi)|i ∈ [n]+} and r being the sensing radii, a set of POIs P = {1, . . . , m} with
positions p1 � p2 � · · · � pm, where pj is the position for j ∈ P ;

Output: New positions {x′i |i ∈ [n]+} for the sensors or return “infeasible”.
1: Set I := Γ and s := p1, where s is the leftmost point of the uncovered part of the barrier.
2: For each sensor i do
3: Compute the leftmost position li and the rightmost position gi that sensor i can monitor;
4: EndFor
5: While I 6= ∅ do
6: If there exists i′ ∈ I , such that li′ ≤ s ≤ gi′ then
7: Select the sensor with minimum gi among all the sensors {i′|li′ ≤ s ≤ gi′}, which is to find

sensor i ∈ I that gi = mini′ : li′≤s≤gi′
{gi′};

8: Set t := min{s + 2r, gi} and x′i := t− r;
9: Set s := min{pj|pj > t} and I := I \ {i};

10: Else
11: Return “infeasible”;
12: Endif
13: If t ≥ pm then /*All POIs have been covered. */
14: Return “feasible” together with the new positions {x′i |i ∈ Γ};
15: Endif
16: Endwhile

Proof. The key idea of the proof is that, any coverage of LBTC that is not s-ordered, can be converted to
an s-ordered coverage by re-scheduling the sensors of covering the POIs.

Suppose there exist two sensors i and j, such that gi > gj but x′i < x′j. Then we need only to swap the
final positions of i and j, i.e., to simply set the new final positions x′′i and x′′j of sensor i and j as below:

If x′i − r ≥ s then
Set x′′i := x′j and then x′′j := x′i ;

Else
Set x′′i := x′j and x′′j = s + r.

EndIf
Apparently, the POIs exclusively covered by i are now covered by sensor j, and vice versa. So after the

swap the sensors will remains a coverage for the POIs on the line. It remains to show the swap will not
increase the maximum movement. Recall that the leftmost and the rightmost points sensor j can cover are
respectively lj and gj. Because sensor j can move to x′j under the movement bound D, we have

lj ≤ x′j − r ≤ x′j + r ≤ gj ≤ gi. (1)

On the other hand, in either case of the swap, we have x′′i = x′j ≥ x′i . So combining Inequality (1),
we have li ≤ x′′i − r ≤ x′′i + r ≤ gi. That means

li + r ≤ x′′i ≤ gi − r.

Then following Proposition 2, the distance between sensor i and its new position x′′i is bounded by
D = max{d(i, (li + r, 0)), d(i, (gi − r, 0))}. The case for the new position of sensor j is similar except

Sensors 2019, 19, 273 8 of 15

that the distance between sensor j and its new position x′′i is bounded by D = max{d(j, (max{s, lj +

r}, 0)), d(i, (gi − r, 0))}. This completes the proof.

Based on Lemma 3, given a feasible instance of LBTC, we can assume there exists an s-ordered
coverage, say Γ′ = {s1, . . . , sk} which is the set of sensors used to compose the coverage with ji being
the rightmost POI covered by si. Then we have the following lemma, which leads to the correctness of
the algorithm:

Lemma 4. When running against a feasible LBTC instance, Algorithm 1 covers the POIs {1, . . . , ji} without
using any sensor in {si+1, . . . , sk}.

Proof. We shall prove this claim by induction. When i = 1, the lemma is obviously true, as we need
only s1 to cover the POIs {1, . . . , j1}. Suppose the lemma holds for i = h, then it remains only to
show the case for i = h + 1. By induction, Algorithm 1 covers the POIs {1, . . . , jh} without using any
sensor in {sh+1, . . . , sk}. Then Algorithm 1 can simply cover POIs {jh + 1, . . . , jh+1} by using sensor
sh+1. Combining with the induction, we covers {1, . . . , jh+1} without using any sensor in {sh+2, . . . , sk}.
This completes the proof.

We can now prove the following theorem and have the correctness of Algorithm 1:

Theorem 2. Algorithm 1 returns “feasible” iff the POIs can be completely covered by the sensors within relocation
distance D.

Proof. Suppose Algorithm 1 returns “feasible”, then obviously the produced solution {x′i |i ∈ Γ} is truly
a coverage, because in the solution the movement of each sensor is bounded by D and all the POIs are
covered by at least one sensor.

Conversely, suppose there is a coverage for the instance. Then by Lemma 3, there must exist an
s-ordered coverage, say Γ′ = {s1, . . . , sk} which is the set of sensors used to compose the coverage.
Following Lemma 4, Algorithm 1 covers POIs {1, . . . , ji} without using any sensor in {si+1, . . . , sk} for
every i ∈ [1, k]. So the algorithm can always find sensors for further coverage, and in the worst case use
si+1 to cover the POIs {ji + 1, . . . , ji+1}. Therefore, the algorithm will eventually find a feasible coverage.
This completes the proof.

4. The Complete Algorithms

In this section, we will show how to employ Algorithm 1 to really compute D∗ the minimum
movement bound for LBTC. Firstly, when only considering integer D∗, we can find it simply by employing
the binary search method against a large range that contains D∗; Secondly, for real number D∗, we construct
a set of size O(n2) which arguably contains D∗, and then eventually finds D∗ in the set again by the binary
search method.

4.1. A Simple Binary Search Based Algorithm

The algorithm is simply applying the binary search method to find D∗ within the range of [1, dmax],
where dmax is the maximum distance between the POIs and the sensors. The main observation is as the
following proposition whose correctness is easy to prove:

Proposition 3. If LBTC is feasible, then D∗ ≤ dmax holds.

The detailed algorithm is as in Algorithm 2.

Sensors 2019, 19, 273 9 of 15

Algorithm 2 The whole algorithm for optimal LBTC.

Input: A movement bound D ∈ Z+, a set of sensors Γ = {1, . . . , n} with positions {(xi, yi)|i ∈ [n]+},
the sensing radii r, a set of POIs P = {1, . . . , m} with positions p1 � p2 � · · · � pm, where pj is
the position for j ∈ P;

Output: The minimized maximum movement of the sensors together with new positions {x′i |i ∈ [n]+}.
1: Set ub := dmax and lb := 1, where dmax is the maximum distance between the sensors and the POIs;
2: If there exists no coverage returned from calling Algorithm 1 wrt D = dmax then
3: Return “infeasible”;
4: EndIf
5: Set tmp :=

⌈
lb+ub

2

⌉
;

6: While ub− lb > 1 do
7: If there exists no coverage returned from calling Algorithm 1 wrt D = tmp then
8: Set lb := tmp and tmp :=

⌈
lb+ub

2

⌉
;

9: Else
10: Set ub := tmp and then tmp :=

⌈
lb+ub

2

⌉
;

11: EndIf
12: EndWhile
13: Return the result of call Algorithm 1 wrt D = tmp.

For the correctness and time complexity of Algorithm 2, we immediately have the following lemma:

Lemma 5. Using binary search and employing Algorithm 1 for O(log dmax) times, Algorithm 2 will compute the
optimum movement D∗ within time complexity O(n log n log dmax).

4.2. An Improved Algorithm via Discrete Binary Search

In this subsection, we shall show the time complexity of our algorithm can be further improved
via a more sophisticated implementation over the binary search. The key observation is that, we need
only to apply a binary search over a set of discrete values which arguably contain the optimum min-max
movement D∗. Let Φ = {c1, . . . , ct} be the set of possible combinations, that is, all possible different
combinations covered by a sensor (An example of combinations is as depicted in Figure 2). Let dij be the
minimum movement using sensor i to cover combination cj. Then we have the following lemma:

Lemma 6. Let dopt be an optimal solution to the uniform 2D-LBTC problem. Then dopt ∈ Ψ = {dij|i ∈ Γ, cj ∈ Φ}.

Proof. Suppose the lemma is not true. Then let dmax = maxd{d | d ∈ Ψ, d < dopt}. First we show that
under maximum distance dmax and dopt, every sensor i covers an identical collection of combinations.
That is because every POI, which sensor i can cover under movement bound dopt, can also be covered by
sensor i under movement bound dmax (as dij ≤ dmax iff dij < dopt), and conversely every POI, which cannot
be covered by sensor i under dmax, can not be covered by the same sensor within the movement bound dopt

(dij > dmax iff dij > dopt). Therefore, a feasible coverage solution under maximum movement dopt would
also remain feasible under dmax. This together with dmax < dopt contradicts with the fact that dopt is an
optimal solution to the problem.

Following the above lemma, our algorithm will first compute ⊕ = {c1, . . . , ct} the set of possible
combinations; Then compute all the distances between each sensor in Γ and each combination in C,
which is Ψ = {dij|i ∈ Γ, cj ∈ Φ}; Later sort the distance in Ψ in non-decreasing order and apply the binary
search method to Ψ by using Algorithm 1 as a subroutine. Eventually, the algorithm finds a minimum

Sensors 2019, 19, 273 10 of 15

d∗ij ∈ Ψ, such that by setting the bound the maximum movement D = d∗ij there exists a relocation of the
sensors to cover all the POIs.

According to the main structure of the complete algorithm above, we shall first compute ⊕. The key
idea of the computation is to find all the pairs of POIs which can be the first and the final POIs covered
by a sensor. The most important part of the computation is to exclude those pairs of POIs, say i and j,
for which i− 1 and j + 1 are too close, i.e., d(i− 1, j + 1) ≤ 2r. In the case, to cover i and j, either i− 1 or
j + 1 will be also covered, and hence i and j can not respectively be the first and the final POIs covered
by a sensor. The detailed algorithm for computing Φ and the complete algorithm are formally stated in
Algorithms 3 and 4.

1 2 43

Figure 2. An example of combinations: For POIs on the line segment and the radius of sensors (in green) as
depicted, the collection of combinations is Φ = {{1}, {1, 2}, {2}, {2, 3}, {2, 3, 4}, {3, 4}, {4}}.

Algorithm 3 A fast algorithm for constructing combinations.
Input: A set of POIs P = {1, . . . , m} on the line segment with positions p1 � p2 � · · · � pm,

where (pj, 0) is the position for j ∈ P , and a real number r that is the radii of the sensors;
Output: The set of combinations Φ := {c1, . . . , ct}.

1: Set Φ := ∅, p0 := −2r and pm+1 = pm + 2r;
2: For POI j = 1 to |P| do
3: For i := j to |P| do
4: If pi − pj ≤ 2r and pi+1 − pj−1 ≥ 2r then
5: Φ := Φ ∪ {{j, . . . , i}};
6: EndIf
7: EndFor
8: EndFor
9: Return Φ and terminate.

Sensors 2019, 19, 273 11 of 15

Algorithm 4 A fast algorithm for LBTC.

Input: A set of sensors Γ = {1, . . . , n} with original positions {(xi, yi)|i ∈ [n]+} and an identical
sensing radii r, a set of POIs P = {1, . . . , m} with positions p1 � p2 � · · · � pm on the line
segment, where pj is the position for j ∈ P;

Output: A minimum movement D under which the sensors can be relocated to covered all POIs in P.
1: Set Ψ := ∅ and compute Φ := {c1, . . . , ct} the collection of combinations by Algorithm 3;
2: For each sensor i do
3: For each combination cj ∈ Φ do
4: Compute dij, the minimum movement needed when using sensor i to cover cj;
5: Set Ψ := Ψ ∪ {dij};
6: EndFor
7: EndFor
8: Sort Ψ in a non-decreasing order and set lb := 1 and ub := |Ψ|, to prepare for binary search.
9: Use Ψ[1] as the movement bound (i.e., D) and call Algorithm 1;

/*Note that Ψ[1] is the smallest element in Ψ. */
10: If there exists a feasible coverage under movement bound Ψ[1] then
11: Return Ψ[1] as the optimum movement bound;
12: Endif
13: While ub− lb > 1 do
14: Set idx :=

⌈
lb+ub

2

⌉
;

15: Use Ψ[idx] as the movement bound (i.e., D) and call Algorithm 1;
/*Ψ[idx] is the idxth smallest element in Ψ. */

16: If there exists a feasible coverage under movement bound Ψ[idx] then
17: Set ub := idx;
18: Else
19: Set lb := idx;
20: Endif
21: Endwhile
22: Return Ψ[idx] as the optimum movement bound.

Lemma 7. Algorithm 3 returns Φ with |Φ| = O(m).

Proof. W.l.o.g. assume the combinations in Φ are sorted, such that for each ci and ci+1 ∈ Φ, l(ci) ≤ l(ci+1)

and g(ci) ≤ g(ci+1), where l(ci) and g(ci) are respectively the leftmost and rightmost POIs in ci. Then,
following the construction of the combinations as in Algorithm 3, if a POI j appears in ci and ci+∆, then for
any k ∈ [i, i + ∆], j ∈ ck. That is, a POI can result in at most two different combinations, one when the POI
is added and the other when the POI is removed. Therefore, there are at most 2m combinations in Φ.

Lemma 8. The time complexity of Algorithm 4 is O(mn(log m + log n)).

Proof. From Lemma 7, |Φ| = O(m) holds, so we apparently have |Ψ| = O(mn). Then, it takes
O(|Ψ| log |Ψ|) = O(mn log mn) = O(mn(log m + log n)) time to sort the elements in Ψ, provided
merge sort is used [15]. Besides, the while-loop from Step 12 to Step 20 will be repeated for at most
O(log m + log n) times, each of which takes O(n log n) time to run Algorithm 1. Therefore, the total time
complexity of the algorithm is O(mn(log m + log n)).

Following Lemma 6, we immediately have the correctness of Algorithm 4 as below:

Theorem 3. Algorithm 4 produces an optimum solution to the LBTC problem.

Sensors 2019, 19, 273 12 of 15

5. Experiments

In this section, we shall numerically evaluate the practical performance of both Algorithm 2 (the
simple Algorithm based on Binary Search, denoted as ABS) and Algorithm 4 (the Algorithm employing
Binary Search over a specially constructed Discrete set, denoted as ABSD) by comparing its runtime and
practical solution quality with an optimal algorithm baseline—an exact algorithm by solving an Integer
Linear Programming (ILP) formulation which produces optimal solution for LBTC. The experiments are
carried out on a platform with Intel I5 CPU and 8G DDR3 Memory, using Windows 10 Operating system,
and the algorithms are implemented in C++ (The code is available upon request) adopting the CPLEX
library (https://www.ibm.com/analytics/cplex-optimizer) to solve the ILP.

5.1. An ILP Formulation for LBTC

Let variable xij represents whether combination j is covered by sensor i and D be the maximum
movement. Then we have the ILP formulation for LBTC as below (Denoted as ILP (1)):

min D

s.t. ∑i∈Γ xij ≥ 1 ∀j ∈ Φ (2)

∑j∈Φ xij ≤ 1 ∀i ∈ Γ (3)

∑j∈Φ xijdij ≤ D ∀i ∈ Γ (4)

xij ∈ {0, 1} ∀i ∈ Γ, ∀j ∈ Φ (5)

In the above ILP formula, Inequality (2) guarantees that each POI is covered; Inequality (3) ensures
that each sensor is used for at most once; Inequality (4) means D is the maximum movement. It is then
easy to obtain the following property:

Lemma 9. An optimal solution to ILP (1) is an optimum solution to LBTC, and vice versa.

5.2. Numerical Experiments

In the numerical experiments, we shall first evaluate the runtime of the algorithms with n sensors
distributed in the plane, where the radius of the sensors are set 10, the number of sensors n is set in a range
[100, 900], and the positions of the sensors are uniformly and randomly distributed in a rectangle along
the line segment of a length L that is set proportional to the number of the sensors. The POIs are randomly
and uniformly distributed on the line segments, and are with a number proportional to the number of
the sensors.

In both Figures 3 and 4, we compare the runtime of ABS, ABSD and ILP in seconds. For each
n ∈ {100, 300, 500, 700, 900}, to obtain the runtime, we produced 1000 different instances of LBTC, against
which we respectively ran the three algorithms and used the average runtime of the 1000 runs as the
final runtime. Note that as we shall choose L = n ∗ r/4, the generated LBTC instances are all feasible, i.e.,
in every instance, all the POIs can be completely covered.

In Figure 3, the experiments compare the runtimes of ABS and ABSD for different dmax. When dmax is
small, i.e., when the rectangle where the sensors distribute is 60 ∗ L along the line segment, the runtime of
ABS is much better than ABSD (i.e., about 8 times faster as depicted in Figure 3a). However, when dmax is
large (i.e., when the rectangle is 10,000 × 5L), the runtime of ABSD then is very close to ABS that about
1.9 times of that of ABS as depicted in Figure 3b. This result fits the time complexity O(n log n log dmax)

and O(mn(log m + log n)), where m, n and dmax are respectively the numbers of the POIs, sensors and the
maximal distance between the POIs and the sensors. In addition, the runtime of ABS depends on dmax

https://www.ibm.com/analytics/cplex-optimizer

Sensors 2019, 19, 273 13 of 15

while ABSD is insensitive to the distance between the sensors and the POIs, which again coincides with the
theoretical runtime analysis of ABSD. When dmax grows, the runtime gap between ABS and ABSD shrinks.

As depicted in Figure 4, when the problem size grows, the runtime of ABS and ABSD both grows
slow comparing to ILP whose runtime grows fast that it becomes nearly not applicable when there are
more than 500 sensors (its runtime is more than thousands of seconds (The runtime here is the average of
only several runs instead of 1000 runs, because it is too large.) as depicted both in Figure 4a,b). Notably,
the runtime of ABS and ABSD are both under 5 s at 500. So both ABS, ABSD have a significant runtime
advantage comparing to the ILP baseline. Also, the runtime of ILP is insensitive to the distance between
sensors and POIs, as the runtime are almost the same for both instances of small and large dmax.

Note that, although the ABS has the runtime among all the three algorithms, it can only produce
optimal solutions when the movement is an integer. However, in the experiments, the distance are
real numbers, so ABS only produce approximation solutions. On the other hand, according to our
theoretical analysis, ABSD always produces optimal solutions. As depicted in Figure 5a,b, throughout all
the thousands of LBTC instances, every solution produced by ABSD has a maximum movement coincides
with the optimal solution produced by ILP. In contrast, ABS produces only approximation solutions.
When for the instance of small dmax, the solutions produced by ABS are with an average maximum
movement about 1.04 times of the optimal solutions, as illustrated in Figure 5a; while dmax grows large,
the approximation ratio becomes even better that it is 1.02, as illustrated in Figure 5b.

(a) Instances of small dmax. (b) Instances of large dmax.

Figure 3. Runtime comparison between ABS and ABSD.

(a) Instances of small dmax. (b) Instances of large dmax.

Figure 4. Runtime comparison of ABS and ABSD against ILP, where ABS and ABSD overlap as one line
because they are very close to each other comparing to ILP.

Sensors 2019, 19, 273 14 of 15

(a) Instances of small dmax. (b) Instances of large dmax.

Figure 5. Comparison of practical solution quality of the algorithms.

6. Conclusions

In this paper, we first proved that 1D-LBTC is NP-hard when the radius of the sensors are not
identical. It is worth to note that this result is interesting because 1D-LBC problem can be efficiently
solved in a polynomial time. Then, we designed an algorithm for decision LBTC with uniform radius,
and consequently proposed an algorithm for really solving LBTC based on the binary search method.
Moreover, we improved the binary search method to a runtime O(n2 log n) by observing that the optimum
movement bound is within the set of distances between the POIs and the sensors. We also evaluated the
practical performance of our algorithms via numerical experiments. We are currently investigating how to
further improve the runtime of the algorithm.

Author Contributions: Conceptualization, P.H.; methodology, P.H., L.G. and W.Z.; analysis, P.H., L.G. and W.Z.;
writing—original draft preparation, P.H. and L.G.; writing—review and editing, P.H., L.G. and W.Z.; supervision,
W.Z.; project administration, W.Z.; funding acquisition, L.G. and W.Z.

Funding: This research was funded by Natural Science Foundation of China under its grant numbers 61772005 and
61672005, and by Natural Science Foundation of Fujian Province under its grant number 2017J01753.

Acknowledgments: An extended abstract of part of this paper as “On the Complexity of and Algorithms for Min-Max
Target Coverage on a Line Boundary: appeared in proceedings of the 15th Theory and Applications of Models
of Computation.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study;
in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish
the results.

References

1. Li, X.; Frey, H.; Santoro, N.; Stojmenovic, I. Localized sensor self-deployment with coverage guarantee. In ACM
SIGMOBILE Mobile Computing and Communications Review; ACM: New York, NY, USA, 2008; Volume 12,
pp. 50–52.

2. Kumar, S.; Lai, T.H.; Arora, A. Barrier coverage with wireless sensors. In Proceedings of the
11th Annual International Conference on Mobile Computing and Networking, Cologne, Germany,
28 August–2 September 2005; ACM: Chicago, IL, USA; 2005; pp. 284–298.

3. Gage, D.W. Command Control for Many-Robot Systems; Technical Report; The Research, Development, Test &
Evaluation (RDT&E) Infrastructure Division of Naval Command Control and Ocean Surveillance Center:
San Diego, CA, USA, 1992.

Sensors 2019, 19, 273 15 of 15

4. Czyzowicz, J.; Kranakis, E.; Krizanc, D.; Lambadaris, I.; Narayanan, L.; Opatrny, J.; Stacho, L.;
Urrutia, J.; Yazdani, M. On minimizing the maximum sensor movement for barrier coverage of a line
segment. In Proceedings of the International Conference on Ad-Hoc Networks and Wireless, Murcia, Spain,
22–25 September 2009; Springer: Berlin, Germany, 2009; pp. 194–212.

5. Chen, D.Z.; Gu, Y.; Li, J.; Wang, H. Algorithms on minimizing the maximum sensor movement for barrier
coverage of a linear domain. Discret. Comput. Geom. 2013, 50, 374–408. [CrossRef]

6. Bhattacharya, B.; Burmester, M.; Hu, Y.; Kranakis, E.; Shi, Q.; Wiese, A. Optimal movement of mobile sensors for
barrier coverage of a planar region. Theor. Comput. Sci. 2009, 410, 5515–5528. [CrossRef]

7. Tan, X.; Wu, G. New algorithms for barrier coverage with mobile sensors. In Proceedings of the International
Workshop on Frontiers in Algorithmics, Wuhan, China, 11–13 August 2010; Springer: Berlin, Germany, 2010;
pp. 327–338.

8. Dobrev, S.; Durocher, S.; Eftekhari, M.; Georgiou, K.; Kranakis, E.; Krizanc, D.; Narayanan, L.; Opatrny, J.;
Shende, S.; Urrutia, J. Complexity of barrier coverage with relocatable sensors in the plane. Theor. Comput. Sci.
2015, 579, 64–73. [CrossRef]

9. Li, S.; Shen, H. Minimizing the maximum sensor movement for barrier coverage in the plane. In Proceedings
of the 2015 IEEE Conference on Computer Communications (INFOCOM), Kowloon, Hong Kong, China,
26 April–1 May 2015; IEEE: Hoes Lane Piscataway, NJ, USA, 2015; pp. 244–252.

10. Czyzowicz, J.; Kranakis, E.; Krizanc, D.; Lambadaris, I.; Narayanan, L.; Opatrny, J.; Stacho, L.; Urrutia, J.;
Yazdani, M. On minimizing the sum of sensor movements for barrier coverage of a line segment. In Proceedings
of the International Conference on Ad-Hoc Networks and Wireless, Edmonton, AB, Canada, 20–22 August 2010;
Springer: Berlin, Germany, 2010; pp. 29–42.

11. Mehrandish, M.; Narayanan, L.; Opatrny, J. Minimizing the number of sensors moved on line barriers.
In Proceedings of the 2011 IEEE Wireless Communications and Networking Conference (WCNC), Cancun,
Quintana Roo, Mexico, 28–31 March 2011; IEEE: Piscataway, NJ, USA : 2011; pp. 653–658.

12. Cherry, A.; Gudmundsson, J.; Mestre, J. Barrier Coverage with Uniform Radii in 2D. In Proceedings of
the International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and
Distributed Robotics, Vienna, Austria, 4–8 September 2017; Springer: Berlin, Germany, 2017; pp. 57–69.

13. Liao, Z.; Wang, J.; Zhang, S.; Cao, J.; Min, G. Minimizing Movement for Target Coverage and Network
Connectivity in Mobile Sensor Networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 1971–1983. [CrossRef]

14. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to NP-Completeness; W. H. Freeman and Company:
San Francisco, CA, USA, 1979.

15. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA,
USA, 2009.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00454-013-9525-x
http://dx.doi.org/10.1016/j.tcs.2009.07.007
http://dx.doi.org/10.1016/j.tcs.2015.02.006
http://dx.doi.org/10.1109/TPDS.2014.2333011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Our Results

	NP-Completeness of Decision 1D-LBTC
	A Greedy Algorithm for 2D-LBTC with Uniform Sensors
	The Complete Algorithms
	A Simple Binary Search Based Algorithm
	An Improved Algorithm via Discrete Binary Search

	Experiments
	An ILP Formulation for LBTC
	Numerical Experiments

	Conclusions
	References

