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Abstract: Data forwarding for underwater wireless sensor networks has drawn large attention in the
past decade. Due to the harsh underwater environments for communication, a major challenge of
Underwater Wireless Sensor Networks (UWSNs) is the timeliness. Furthermore, underwater sensor
nodes are energy constrained, so network lifetime is another obstruction. Additionally, the passive
mobility of underwater sensors causes dynamical topology change of underwater networks. It is
significant to consider the timeliness and energy consumption of data forwarding in UWSNs, along
with the passive mobility of sensor nodes. In this paper, we first formulate the problem of data
forwarding, by jointly considering timeliness and energy consumption under a passive mobility
model for underwater wireless sensor networks. We then propose a reinforcement learning-based
method for the problem. We finally evaluate the performance of the proposed method through
simulations. Simulation results demonstrate the validity of the proposed method. Our method
outperforms the benchmark protocols in both timeliness and energy efficiency. More specifically,
our method gains 83.35% more value of information and saves up to 75.21% energy compared with a
classic lifetime-extended routing protocol (QELAR).

Keywords: underwater wireless sensor networks; data forwarding; value of information; energy
consumption; passive mobility; reinforcement learning

1. Introduction

Nowadays, marine surveillance, water contamination detection and monitoring, and oceanographic
data collection are indispensable to the exploration, protection and exploitation of aquatic environment [1].
Because of the huge amount of unexploited resources in the ocean, there is an urgent need for research
in the field of sensors and sensor networks [2]. Underwater Wireless Sensor Networks (UWSNs) has
become a main approach to gain information from previously inaccessible waters. Traditional wireless
sensor networks (WSNs) consist of a large number of sensor nodes randomly distributed in a detection
field, and these nodes are usually either stationary or moving in limited ranges. However, in many
practical scenarios, the movement of nodes is relatively large, such as nodes in UWSNs, delay-tolerant
networks, vehicular networks, etc. Nodes in UWSNs can be categorized as stationary nodes and
moving nodes. Stationary nodes are anchored to the water bottom while moving nodes can move in a
preset velocity, such as Autonomous Underwater Vehicles (AUVs). Nevertheless, only a few researchers
take passive mobility of nodes into account. More specifically, nodes may move along internal currents
or vortices. Underwater nodes have no access to GPS signals, and the network topology is completely
time varying due to irregular mobilities of water currents, which is essentially different from terrestrial
WSNs. Meanwhile, due to dynamic topology changes and poor communication conditions underwater,
data packets cannot be delivered to the sink nodes deployed on the water surface rapidly.
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A major challenge of UWSNs is real-time requirements. For instance, fishery surveillance and
real-time monitoring of precious assets such as petroleum pipelines. Specifically, report delay of
sea properties such as temperatures may lead to serious loss of temperature sensitive sea animals,
e.g., sea cucumbers, because they dissolve fast in high temperatures. Moreover, the detection of
leakages of coal oil in early stage prevents water contamination and further resource waste. Therefore,
we adopt the concept of the value of information (VoI) which evaluates information in terms of
timeliness [3]. Additionally, UWSNs are energy constrained due to the fact that they cannot be
recharged or replaced, so their ability to route data diminishes when sensor nodes run out of energy.
Network lifetime remains the performance bottleneck which perhaps is one main obstacle in the
wide scale deployment of wireless sensor networks [4,5]. In this case, energy consumption is also a
fundamental issue in UWSNs.

In conclusion, it is significant to consider the timeliness and energy consumption of data
forwarding in UWSNs, along with the passive mobility of sensor nodes. Motivated by the timeliness
demand and the energy constraint of UWSNs, we aim to explore data forwarding in UWSNs with
passive mobility, jointly considering the timeliness of packets and the energy consumption of the
sensor nodes. Due to irregular dynamics of water, the node movement is unpredictable, i.e., the future
status has little relevance to its historical trajectories. Consequently, the determination of the relay node
of a sensor node depends on its current status and its neighborhood relationship. A reinforcement
learning method is proposed in this paper. To the best of knowledge, we are the first to jointly consider
timeliness and energy consumption of data forwarding in UWSNs with passive mobility.

The main contributions of this paper are as follows. We first formulate the problem of data
forwarding, by jointly considering timeliness and energy consumption under a novel passive mobility
model for UWSNs. We then propose a reinforcement learning-based method for the problem.
We finally evaluate the performance of the proposed method through simulations. Experimental
results demonstrated the validity of the proposed method and they also demonstrated the efficiency,
compared with two benchmark methods.

The rest of this paper is organized as follows. Section 2 will review the related work of the
proposed method. Section 3 will introduce the preliminaries, including the system model, notations
and problem definitions, and the proposed method. Section 4 will show the simulation results.
Section 5 will present the discussion of the simulation results and the look out for future work.

2. Related Work

Data forwarding for underwater wireless sensor networks has drawn a lot of attention in the past
decade. There are several kinds of routing protocols that aim to improve energy efficiency, timeliness
and adaptability to node mobility of UWSNs. In this section, we review the related work on this topic.

Lloret et al. have pointed out the urgent need and significance of UWSNs [1,2]. To satisfy the
demand of timeliness of UWSNs, a lot of research was dedicated to decreasing the latency of data
forwarding. Bassagni et al. [6] devised a forwarding method named Multi-modAl Reinforcement
Learning-based RoutINg (MARLIN) protocol. The MARLIN strategy selects the best relay node along
with the best communication channel, and it can be configured to seek reliable routes to the final
destination, or to provide faster packet delivery. Gjanci et al. [3] proposed a Greedy and Adaptive AUV
Path-finding (GAAP) heuristic. The GAAP strategy proposed a heuristic algorithm which aims to find
the path of the AUV so that the value of information of the data delivered to sink nodes is maximized.
It showed that the GAAP strategy delivers much more value of information than Random Selection
(RS), Lawn Mower (LM) and Traveling Sales Man (TSP) strategies do. Nevertheless, the advantage of
the GAAP strategy over the TSP strategy decreases with the network size which enables TSP strategy to
collect more packets, and the average end-to-end delay of GAAP strategy is higher than TSP strategy.

Meanwhile, many energy-efficient forwarding methods are devised to prolong the network
lifetime. Hu et al. [7] proposed a Q-Learning-based Energy-Efficient and Lifetime-Aware Routing
(QELAR) Protocol for Underwater Sensor Networks. QELAR adopted Q-Learning algorithm which
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defines the residual energy of sensor nodes as the reward function. Therefore, in QELAR protocol,
sensor nodes select the node with the most residual energy as the relay node, thus the network
lifetime can be prolonged. However, QELAR did not constrain the end-to-end delay, which resulted
in longer delay when the number of sensor nodes was increasing. Coutinho et al. [8] devised an
Energy Balancing Routing (EnOR) Protocol for Underwater Sensor Networks. The EnOR protocol
adopted the idea of balancing the energy consumption among neighboring nodes in the forward set
by rotating the priority of them so as to extend the network lifetime. However, a large candidate
set results in high delay because the link quality of the high priority nodes is usually low given the
long distance between the sender and the high priority nodes. In addition, Jin et al. [9] proposed a
Q-Learning-based Delay-Aware Routing (QDAR) Algorithm to Extend the Lifetime of Underwater
Sensor Networks. It took both timeliness and energy efficiency into account by defining delay-related
cost and energy-related cost.

Moreover, several studies of mobility of sensor nodes dealt with topology changes due to node
mobility. For instance, Liu et al. [10] proposed an Opportunistic Forwarding Algorithm based on
Irregualar Mobility (OFAIM). OFAIM aims to maximize the network delivery ratio of UWSNs in a 3-D
mobility model due to irregular movement. However, there are only sensor nodes but no sink nodes in
the scenario of OFAIM, and no descriptions of how the data will be retrieved from underwater sensors.

Additionally, there are some approaches that reduce energy consumption in consideration of
node mobility. Forster et al. [11] proposed a Role-Free Clustering with Q-Learning (CLIQUE) for
WSNs, which determines the selection of cluster heads without control overhead. The number of
hops to reach mobile sink nodes and the residual energy of sensor nodes are jointly adopted as
the reward function, thus enhancing the energy efficiency. However, CLIQUE assumed that sensor
nodes uniformly disseminate data without consideration of the limited storage of sensor nodes.
Webster et al. [12] invented a clustering protocol for UWSNs based on the mobility model proposed
by Caruso et al. [13], which aims to minimize the overall energy consumption.

We distinguish our work from the above-mentioned ones as follows. Existing studies dealt
with either energy consumption or timeliness of data forwarding in stationary topology, or simply
considered energy consumption in dynamic topologies. None of these studies jointly considered all of
them. Therefore, we propose a data forwarding method in joint consideration of timeliness and energy
efficiency in UWSNs with passive mobility.

3. Materials and Methods

3.1. Preliminaries and Notations

3.1.1. System Model

The UWSN is represented by an undirected graph G(t) = (V, E(t)) at time slot t, where V is the
set of sensor nodes and E(t) is the set of links between pairs of nodes within the communication range
of each other at time slot t. As depicted in Figure 1, N sensor nodes are tethered to the water bottom
via wires, and move passively due to internal currents or vortices.

The moving region is a semi-sphere with a radius of Ri while the communication range of sensor
vi is denoted by CR. Ci(t) denotes the 3D-coordinate of vi ∈ V at time slot t, which is expressed
as (xi(t), yi(t), zi(t)). If |Ci(t)− Cj(t)| ≤ CR, then (vi, vj)t ∈ E(t) is a bidirectional link and vj is a
neighbor of vi. H(i, t) denotes the set of neighbors of vi at time slot t.

Meanwhile, we have M sink nodes deployed on the water surface and the set of sink nodes are
denoted by S. Additionally, S(i, t) denotes the set of sink nodes which are within the communication
range of vi. Sink node sm ∈ S is mounted on an autonomous draft so that sm can hold its position.
In addition, they are equipped with acoustic modems for sensors and RF modems for satellites, along
with access to GPS localization. Data packets are periodically generated and Pi,t denotes the set of
packets in vi at time slot t while pi,t denotes the p-th packet in vi at time slot t. Sensor nodes learn to
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forward packets to sink nodes in terms of Value of Information and the energy consumption of sensor
nodes. Packets are supposed to be received by sink nodes via multi-hop relays.

sink nodes

sensor nodes

Figure 1. An Underwater Wireless Sensor Network (UWSN) with passive mobility.

In order to leverage the broadcast property of the wireless channel, each packet is acknowledged
implicitly. Specifically, after transmitting a packet, the sender starts listening to the channel. If it
overhears the packet being retransmitted within a certain period of time, the packet is regarded as
successfully transmitted; otherwise, the packet is considered to be lost and the sensor node will learn
to retransmit it, which will be described in detail in Section 4.

3.1.2. Underwater Movement Model

The movement model is shown in Figure 2. We assume that the moving speed of vi is
denoted as SPi(t) obeys the normal distribution N(µ1, σ2

1 ) and its actual value range is (0, 2µ1).
(dθi(t), dφi(t)) denotes the movement direction of Vi at time slot t, where dθi(t) and dφi(t) obey
uniform distributions U(0, π) and U(0, 2π), respectively. The next location of vi from its current
location Ci(t) = (xi(t), yi(t), zi(t)) will be:

Ci(t + 1) =


xi(t) + SPi(t) sin dθi(t) cos dφi(t)

yi(t) + SPi(t) sin dθi(t) sin dφi(t)

zi(t) + SPi(t) cos dθi(t)

(1)

when |Ci(t + 1)| > Ri, where Ri denotes the length of the tethering wire of vi, the node is held still
by its tethered wire and Ci(t + 1) can be written as (Ri, θi(t) + dθi(t), φi(t) + dφi(t)) in spherical
coordinates. Otherwise, Ci(t + 1) is defined by Formula (1).

3.1.3. Value of Information

Immediate detection of regions of interest in early stage can provide sufficient time to take
corresponding actions. Hence, we adopt the concept of value of information which evaluates
information in terms of timeliness. Hence, the later a packet is forwarded to the sink, the lower
its value is. Therefore, the VoI of a packet can be expressed as Equation (2),

VoI(pi,t) = ke−αtl , tl ∈ [0, TTL] (2)
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where pi,t represents the p-th packet in vi at time slot t, tl indicates the living time duration of packet
pi,t since it is generated, α is the decay factor, k is the discount coefficient and TTL is the maximum life
of the packet, i.e., time to live.

θ

φ

Sensor 
node

ρ

Tethered
wire

x

z

Figure 2. Movement model of sensor nodes.

VoI(pi,t) is a key factor of the decision making of a sensor node as to which packet should be
relayed. If the living duration of a packet approaches its TTL, it will be discarded immediately.

3.1.4. Energy Consumption

Each sensor node has its battery capacity, and with adjustable transmission power. The energy
consumption of a sensor mainly includes the energy consumed on the sensor module, its processor
module and its communication module, among which the communication module consumes the most
energy. Hence, the energy consumption of a sensor node can be approximated by the communication
energy consumption while ignoring its other energy consumptions. According to the typical model of
energy consumption of free-space spherical wave, the energy consumption of a sensor node is:

Ec = ERx + ETx

ERx = pl · es

ETx = pl · (es + erd2)

(3)

where pl is the data volume that a sensor node receives or transmits, in bit; es is the circuit energy
consumption of emitting or receiving per bit data, in J/bit; er is the minimum energy of signal per bit
that can be received by sensor nodes or sink nodes successfully, in J/(bit ·m2); d is the communication
distance, in meter.

3.1.5. Forwarding Orientation

In order to prolong the longevity of UWSNs, it is significant to adopt an energy-efficient
forwarding method. Inspired by the murmuration of a swarm of swallows, Pearce et al. [14] proposed a
biotic model, the Hybrid Projection Model, which defines the murmuration via two metrics: the opacity
and the orientation.
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As can be seen in Figure 3, the orientation is mathematically defined as average accumulation of
vectors created by the neighbors of a node, which can be calculated by Equation (4),

eori(i, t) =
1

|H(i, t)| (v1(i, t) + v2(i, t) + ... + vj(i, t) + ... + v|H(i,t)|(i, t))︸ ︷︷ ︸
|H(i, t)| neighbor vectors

, vj(i, t) ∈ H(i, t) (4)

where eori(i, t) ∈ R3 denotes the vector of orientation, |H(i, t)| is the number of neighbors of vi within
its communication range and vj(i, t) ∈ R3 denotes the vector from vi to its j-th neighbor vj at time slot
t. The orientation can be acquired locally via the Received Signal Strength (RSS) and Arrival of Angle
(AoA) of the broadcasting packets from neighborhood.

CR

Node i

eni

Figure 3. Orientation of sensor nodes.

The length of eori(i, t) denotes the absolute value of the orientation and the orientation direction is
denoted by the direction of eori(i, t). Nodes with large orientation values are generally located on the
edge of a neighborhood. Otherwise, they are near the centers of their neighborhoods and nodes with
lower orientation values are more likely to be the relay node. It has been proved that determining the
forwarding direction via orientation metric is energy-efficient [12]. Moreover, there is no requirement
for localization when using the orientation metric, which is very suitable for underwater sensors due
to their inaccessibility to GPS signals. Therefore, we adopt the orientation metric to determine data
forwarding direction.

3.2. Problem Definition

Given a UWSN G(t) = (V, E(t)) at time slot t. As mentioned above, we ascertain the objective as
minimizing the energy consumption of data forwarding with maximal Value of information within a
given monitoring duration T. Therefore, we aim to solve the problem of data forwarding by jointly
considering timeliness and energy consumption.

min
T

∑
t=0

N

∑
i=0

Ec(i, t) (5)
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s.t.

p∗i,t = arg max
pi,t∈Pi,t

VoI(pi,t) (6)

∀vi ∈ V, t ≤ T, Er(i, t) ≥ 0 (7)

∀vi ∈ V, pi,t ∈ Pi,t, tl ≤ TTL (8)

∀vi ∈ V, t ≤ T, |Ci(t + 1)| ≤ Ri (9)

As shown in Equation (6), p∗i,t represents the candidate packet which has the highest value of
information in vi at time slot t. Furthermore, if vi is able to forward data to any neighbor at time slot t,
p∗i,t will be delivered. In Equation (7), each sensor node has limited energy and is out of use when its
residual energy hits the bottom at 0. The living time of packets cannot exceed the maximum living
duration TTL as shown in Equation (8). In Equation (9), the moving range of each sensor node is
limited to the length of its tethered wire Ri.

3.3. Data Forwarding Method

In our scenario, the sensor nodes are dynamically moving due to water flow. In addition,
the environment and neighborhood topology of each sensor node keep changing. We adopt a reinforcement
learning-based method by which sensor nodes can distributively learn from the changing environments
to forward data. This section describes the data forwarding method in detail. Specifically, we present
the learning model, the learning method to choose a relay and the algorithm for packet forwarding.

3.3.1. Data Forwarding Procedure

The procedure of data forwarding mainly contains the following three stages, as can be seen in
Algorithm 1.

(1) In the beginning of each time slot, each sensor node and sink node broadcasts its beacon
signal, e.g., the identifier, orientation and residual energy. Therefore, each sensor node knows
its neighbors.

(2) When vi hears the beacon signal from sm, it adds sm to the set of its available sink nodes S(i, t).
Similarly, if vi can hear the beacon signal of sensor node vj, vi will add vj to the set of its neighbors
H(i, t). Additionally, the distance and orientation of each neighbor or reachable sink node can be
acquired locally via the Received Signal Strength (RSS) and Arrival of Angle (AoA) of the beacon
signal, respectively. If vi cannot hear from any sink nodes or sensor nodes, vi will wait until the
next time slot coming.

(3) Sensor node vi selects the reachable sink node or next relay node by the algorithm RelaySelect
which performs a learned choice of a relay node. The RelaySelect algorithm will be introduced in
detail in the third subsection.
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Algorithm 1 DataForwarding(t, C(t)).

1: for each vi ∈ V do
2: S(i, t) = ∅
3: H(i, t) = ∅
4: end for
5: for each sm ∈ S do
6: smbroadcasts its beacon signal
7: for each vi ∈ V do
8: if vi can hear sm then
9: S(i, t) = S(i, t) ∪ {sm}

10: end if
11: end for
12: end for
13: for each vi ∈ V do
14: vi broadcasts its beacon signal
15: end for
16: for each vi ∈ V do
17: for each vi ∈ V, j 6= i do
18: if vi can hear vj then
19: H(i, t) = H(i, t) ∪ {vj}
20: end if
21: end for
22: end for
23: for each vi ∈ V do
24: ai(t) = RelaySelect(S(i, t), H(i, t), P(i, t))
25: end for

3.3.2. Q-Learning Model

Q-Learning is a model-free reinforcement learning technique, based on agents taking actions and
receiving rewards from the environment in response to actions [11]. Each action is evaluated a Q-value
due to its fitness. In the learning process, the agent calculates the reward of each potential action and
updates the Q-value by which the real action can be determined. Q-Learning has been widely adopted
in wireless ad hoc communications. The main challenge is the modeling of the Q-Learning process
and the definition of Q-values.

Given the set X = {x1, x2, ..., xt, ..., xT} of states of an agent, a reward rt(at) is received in state xt

after the agent takes action at ∈ A at time slot t.
To evaluate how good an action is at a state, the Q-value of action at at time slot t, Q(xt, at),

is updated as follows:

Q(xt, at) = rt(at) + γ ∑
xt+1∈X

Pat
xt→xt+1

Q(xt+1, at+1) (10)

where rt(at) is the reward of taking action at at time slot t, Q(xt+1, at+1) is the expected fitness at time
slot (t + 1), γ is the learning discount factor and Pa

xt→xt+1
represents the transition probability from

state xt to xt+1.
In order to determine the optimal action, the action with the highest Q-value from state xt to xt+1

at time slot t can be acquired as follows:

a∗t = arg max
at∈A

Q(xt, at) (11)

For each state xt ∈ X, the optimal action a∗t can be greedily acquired by updating the Q-value.

3.3.3. Learning to Forward

If vi transmits a packet to a relay node or a sink node, the state of vi at time slot (t + 1) turns to
1, xt+1 = 1. Otherwise, xt+1 = 0. The action at in our scenario is ai(t) = (pi,t, vj) which denotes the
action of vi forwarding packet pi,t to vj. Then, the reward of of taking action at to next state xt+1 is
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described as r(pi,t, vj). Lastly, the Q-value is updated to Q(pi,t, vj) which indicates the fitness of vi
forwarding packet pi,t to vj at time slot t.

In our data forwarding scenario, each sensor node is an independent learning agent and actions are
options of a relay node or a sink node within its communication range. The following describes details
of the model solution, including time, actions, transmission probabilities, rewards, and Q-values.

Agents Agents are underwater sensor nodes.
Time A vi handling a packet p is associated with a time slot t ∈ {0, 1, 2, 3, ..., T} defined by the

sequential number of time slots.
Actions Actions refer to the joint selection of a packet in the node’s cache and of a relay node in

its neighborhood. The set Ai(t) of available actions is A = {ai(t) = (pi,t, vj)|pi,t ∈ Pi,t, vj ∈ H(i, t)},
where ai(t) = (pi,t, vj) is the action of forwarding packet pi,t to relay node vj.

Transmission Probabilities Denote the probability of transmission from vi to vj at time slot t as
Pri,j(t). Meanwhile, the transmission probability from the current relay node vj to the next potential
relay node vk is denoted by Prj,k(t + 1). Pri,j(t) is computed by vi while Prj,k(t + 1) is computed by vj
and sent to vi in the header of the broadcast packet in each round. The transmission probabilities can
be calculated via the orientation metric by Equation (12), as follows.

Pri,j(t) = 1− 1
π arccos

eori(i,t)vni (i,t)
|eori(i,t)||vni (i,t)|

Prj,k(t + 1) = 1− 1
π arccos

eori(j,t)vnj (j,t)

|eori(j,t)||vnj (j,t)|

(12)

Note that Prj,k(t + 1) is the prediction from the current time slot t because the topology at time
slot (t + 1) cannot be ascertained yet due to the node mobility.

Rewards The rewards mainly consist of two aspects, energy consumption and VoI, as shown in
Equation (13),

r(pi,t, vj) = VoI(pi,t) · Er(i, t) (13)

where r(pi,t, vj) represents the reward of vi transmitting packet pi,t to vj, VoI(pi,t) denotes the VoI of
packet pi,t, and Er(i, t) represents the residual energy of vi after transmission, at time slot t.

Q-values Q-values represent the goodness of actions and agents aim to learn the actual fitness of
potential actions. We initialize the Q-values as shown in Equation (14),

Q(pi,t, vj) = VoI(pi,t) · Er(i, t) (14)

where Q(pi,t, vj) refers to the Q-value of vi in response to the action of choosing vj as the relay node,
VoI(pi,t) denotes the VoI of packet pi,t to be transmitted, and Er(i, t) represents the residual energy of
vi, in the beginning.

Algorithm 2 describes the learning process of vi ∈ V in each time slot as well as the corresponding
determination of the packet to forward and its relay node.

If sink node sm ∈ S is within the transmission range of vi, vi transmits the packet with the
largest VoI in its cache to sm directly. Otherwise, to identify an optimal forwarding decision, vi learns
the value of function Q(pi,t, vj) and updates the Q-value. Based on this value vi determines the
optimal forwarding action ai(t) = (pi,t, vj). Each node starts with no knowledge of its surrounding
environment. Broadcasting and listening in neighborhood, sensor nodes iteratively acquire and update
their knowledge over time. Function r(pj,t+1, vk) in Equation (15) is approximated via Equation (13)
based on the localization and neighborhood at time slot t The Q-values can be updated as shown in
Equation (15),

Q(pi,t, vj) = r(pi,t, vj) + γ ∑
k∈H(j,t),k 6=j,k 6=i

Prj,k(t + 1)r(pj,t+1, vk) (15)

where r(pj,t+1, vk) is the reward of vj transmitting packet pj,t+1 to vk at time slot (t+ 1), and r(pj,t+1, vk)

is approximated via Equation (13) based on the localization and neighborhood at time slot t.
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Additionally, Prj,k(t + 1) represents the probability of transmission from vj to vk and γ is the learning
factor. In the learning process, sensor nodes calculate the reward of each potential relay node and
update the Q-value. Finally, sensor nodes acquire the Q-table by which the most appropriate relay
node can be determined.

Algorithm 2 RelaySelect(S(i, t), H(i, t), P(i, t)).

1: for each vi ∈ V do
2: if ∃sm ∈ S(i, t) then
3: pi,t = arg maxpi,t∈Pi,t VoI(pi,t)
4: ai(t) = (pi,t, sm)
5: else
6: for each pi,t ∈ Pi,t do
7: for each vj ∈ H(i, t) do
8: for each vk ∈ H(j, t) and k 6= i do
9: Q(pi,t, vj) = r(pi,t, j) + γ ∑k∈H(j,t),k 6=j,k 6=i Prj,k(t + 1)r(pj,t+1, k)

10: end for
11: end for
12: end for
13: (pi,t, vj) = arg maxai(t)∈A Q(pi,t, vj)
14: ai(t) = (pi,t, vj)
15: end if
16: return ai(t)
17: end for

In our method, each sensor node has to ascertain its neighborhood and then selects the relay node
in its neighborhood. Specifically, we have to execute two rounds of calculation for each sensor node
in each time slot: (1) the determination of neighbor nodes within the sensor’s communication range;
(2) the selection of the neighbor node with highest Q-value. In the first round of calculation, it takes
a complexity of O(N(N−1)

2 ) to calculate the distances between sensor nodes. In the second round,
the complexity depends on the size of the neighborhood of sensor nodes. In the most complicated
case, all the sensor nodes in the same neighborhood, i.e., ∀j 6= i, vj ∈ Hi, we need to calculate (N − 1)
times of Q-value of the neighbor nodes of vi. Therefore, it takes a complexity of O(N(N − 1)) at most
to select relay nodes of all the sensor nodes. Since the number of time slots is constant, the complexity
of our method can be ascertained as O(N2).

4. Results

In this section, we evaluate the performance of our proposed method compared with two
well-known routing protocols: (i) QELAR, a machine learning-based protocol designed for minimizing
and balancing node energy consumption [7]; (ii) DBR, a data forwarding method for UWSNs based
on the depth of the sender [15]. It is worth mentioning that we use the total residual energy of sensor
nodes, Value of Information and the ratio of packet delivery to sink nodes as the main metrics of
performance evaluation.

4.1. Experimental Setup

The region of interests cover a space of 1000 m × 1000 m × 1000 m. We assume that the
anchors are randomly deployed at the bottom and the length of tethering wires are also randomly
generated, while the sink nodes are stationary at (333, 333, 1000) m and (666, 666, 1000) m. We consider
UWSNs with different sizes of 10 and 100 sensor nodes, respectively. The sensors use Orthogonal
Frequency-division Multiplexing (OFDM) modulation which allows simultaneous transmission from
several users.

The simulation parameters are shown in Table 1. Each sensor node has a communication range of
300 m with initial energy of 100 J. The packets are set to the length of 1000 bit with the TTL of 10 time
slots. Sensor nodes move passively at a maximum speed of 100 m per time slot. The coefficient of
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energy consumption es and er are set to 5× 10−8 J/bit and 10−8 J/(bit ·m2), respectively. The decaying
factor of VoI, i.e., α, is set as 0.5, while the learning discount factor γ is set as 1, which speeds up the
learning rate. All simulation results are acquired with runs of 100 times.

Table 1. Simulation Parameters.

Name Value

CR 300 m
pl 1000 bit

Eini 100 J
es 5× 10−8 J/bit
er 10−8 J/(bit ·m2)
SP 100 m per time slot

TTL 10 time slots
α 0.5
k 1
γ 1

4.2. Simulation Metrics

Data forwarding performance is assessed through the following three metrics.
Value of Information defined as the VoI of packets acquired by the sink nodes within the

monitoring duration.
Residual Energy defined as the total residual energy of sensor nodes within the

monitoring duration.
Packet Delivery Ratio defined as the fraction of packets received by the sink nodes within the

monitoring duration.

4.3. Simulation Results

In this section, we illustrate the results from simulations. All results are obtained by averaging
over 100 simulation times.

(1) Value of Information As can be seen in Figure 4, the value of information acquired by sink
nodes in the scenario of 10 sensor nodes is presented. Our method gains the highest VoI, 14.63% and
51.61% higher than QELAR and DBR, respectively. QELAR comes in the second place while DBR
obtains the lowest VoI among the three methods.
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Figure 4. Value of Information obtained by sink nodes (10 sensor nodes).
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Moreover, as shown in Figure 5, the VoI acquired by our method performs better as the
network size increases, which is 43.48% and 83.35% higher than QELAR and DBR, respectively.
When forwarding data, QELAR and DBR choose the earliest packet in the cache. Not surprisingly,
DBR achieves the lowest VoI because the forwarding decision of DBR depends on the accessibility of
neighbors with smaller depths. Specifically, compared with QELAR and our method, sensor nodes
have to wait longer for the qualified neighbors, which leads to more decay of the VoI of packets.
Our proposed method performs the highest VoI, because our method explicitly takes VoI into account
in its reward function (Section 4), which leads to the choice of the packet with largest VoI in the
sensor cache.
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Figure 5. Value of Information obtained by sink nodes (50 sensor nodes).

(2) Residual Energy The results of residual energy of QELAR, DBR and our method with 10 sensor
nodes is indicated in Figure 6. The residual energy of QELAR is the lowest while our method consumes
the smallest energy among the three methods. More specifically, our method consumes 31.21% and
37.26% of the energy consumed by QELAR and DBR, respectively.
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Figure 6. Residual energy of sensor nodes (10 sensor nodes).

As shown in Figure 7, our method still consumes the least energy among the three methods when
the network size increases, only 24.79% and 31.43% of the energy consumption of QELAR and DBR,
respectively. That is mainly because by choosing packets and relay nodes smartly, our method achieves
excellent performance in energy consumption. Our method always selects the latest packets in the
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cache while QELAR always selects the earliest packets. Moreover, in our method, earlier packets may
have been discarded due to TTL constraint when the latter packets are forwarded, which leads to
the avoidance of forwarding too many early packets in the cache, compared with QELAR. Therefore,
the energy consumption of our method is much lower than that of QELAR.

0 10 20 30 40 50 60 70 80 90 100

Time Sequence
50 sensor nodes

0

100

200

300

400

500

600

700

800

900

1000
R

es
id

ua
l E

ne
rg

y 
(J

)

our method
QELAR
DBR

Figure 7. Residual energy of sensor nodes (50 sensor nodes).

(3) Packet Delivery Ratio The packet delivery ratio (PDR) of QELAR, DBR and our method can
be seen in Table 2. DBR achieves higher PDR than other two methods in both scenarios. Because
packets are forwarded towards sensor nodes with less depths, the packets are either staying in a sensor
node or approaching the water surface, which prevents the packets from being forwarded repeatedly
between several sensor nodes and trapped in a certain region. Therefore, DBR decreases the repeating
forwarding between sensor nodes and increases the PDR. The PDR to sink nodes of our method in
scenarios of 10 and 50 sensor nodes are 66.36% and 71.64%, respectively. Our method achieves a PDR
slightly lower than QELAR does, mainly because more packets with earlier generation time in the
cache are discarded due to the maximum living duration.

Table 2. Packet Delivery Ratio.

PDR() DBR QELAR Our Method

PDR(10) 79.47% 70.25% 66.36%
PDR(50) 93.12% 76.86% 71.64%

5. Discussion and Conclusions

In this paper, we proposed the data forwarding method in joint consideration of VoI of packets
and energy consumption, with passive mobility of sensors in UWSNs. We explicitly take both VoI and
energy consumption into account in its reward function, thus reducing the energy consumption as well
as enhancing the timeliness of data forwarding in UWSNs. In our method, the Q-value of the same
sensor node can be different along the time, thus avoiding the same node acting as a relay node until
the depletion of its battery. Meanwhile, packets with larger value of information have higher priority
to be transmitted so as to realize better timeliness. Although the packet delivery ratio of our method is
relatively lower, our proposed method achieves much higher timeliness and consumes less energy
than DBR and QELAR in the circumstance of dynamical topology change due to the passive mobility
of sensor nodes. Given that the timeliness and energy consumption were more significant than the
delivery ratio in our scenario, our method enhances the performance of UWSNs. In our scenario,
the sink nodes are stationary and the performance of data collection may be different if the sink nodes
are moving on the surface of the detection region. As a future work, we will study how the movement
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of sink nodes can influence the data collection of UWSNs. Additionally, recent studies of harvesting
ambient energy of UWSNs has drawn large attention. For instance, the kinetic energy of underwater
currents can be harvested to prolong the lifetime of UWSNs. Therefore, we intend to carry out the
research of energy harvesting-aware data forwarding in UWSNs with passive mobility in the future.
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