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Abstract: For the past decades, recognition technologies of multispectral palmprint have attracted
more and more attention due to their abundant spatial and spectral characteristics compared
with the single spectral case. Enlightened by this, an innovative robust L2 sparse representation
with tensor-based extreme learning machine (RL2SR-TELM) algorithm is put forward by using an
adaptive image level fusion strategy to accomplish the multispectral palmprint recognition. Firstly,
we construct a robust L2 sparse representation (RL2SR) optimization model to calculate the linear
representation coefficients. To suppress the affection caused by noise contamination, we introduce a
logistic function into RL2SR model to evaluate the representation residual. Secondly, we propose a
novel weighted sparse and collaborative concentration index (WSCCI) to calculate the fusion weight
adaptively. Finally, we put forward a TELM approach to carry out the classification task. It can deal
with the high dimension data directly and reserve the image spatial information well. Extensive
experiments are implemented on the benchmark multispectral palmprint database provided by
PolyU. The experiment results validate that our RL2SR-TELM algorithm overmatches a number of
state-of-the-art multispectral palmprint recognition algorithms both when the images are noise-free
and contaminated by different noises.

Keywords: multispectral palmprint recognition; robust L2 sparse representation; WSCCI; adaptive
weighted fusion; tensor based ELM

1. Introduction

Palmprint recognition technologies have become a novel biometric approach and have attracted
increasingly attention in recent years. In comparison with some other biological features (i.e.,
the iris and fingerprints, etc.), palmprints have a larger collection area with more abundant
information. Besides, palmprints possess the characteristics of uniqueness, stability, scalability and
non-contact acquisition, etc. As a consequence, they have strong anti-noise capability and efficient
discrimination performance.

The current palmprint recognition algorithms can be mainly categorized into various sorts, such as
subspace-based methods, feature-based methods and sparse representation-based classification (SRC)
methods, etc. The subspace-based methods [1–10] adopt dimension reduction theory to accomplish
the feature space transformation. This can reduce the data complexity and efficiently improve the
discrimination of image characteristics. The conventional subspace transformation methods mainly
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includes the principal component analysis (PCA) [1], linear discriminant analysis (LDA) [4] and
independent component analysis (ICA) [7], etc. However, due to their sensitivity to lighting, noise
and other contaminations, the conventional linear discriminant methods already don’t meet the
requirements of actual palmprint recognition problems. To address these issues, a nonlinear spatial
structure transformation technique, namely the kernel PCA method [9,10], was introduced into the
palmprint recognition field. In addition, lots of feature-based methods were presented to implement
palmprint recognition tasks. For instance, the coding-based method [11–17] has been extensively
researched in the past decades. In these studies, the palmprint features were extracted by using the
coding of some filtering results. The common coding methods include binarized statistical image
features (BSIF) [13], double-orientation code (DOC) [14] and block dominate orientation code [17], etc.
Minaee et al. [18] proposed a palmprint recognition algorithm by using the deep scattering network
which achieved fine recognition performance. Some other feature- based methods [19–24] mainly
take advantage of the statistic characteristics, such as mean, variance, and covariance and so on, to
implement palmprint recognition. In recent years, the linear representation methods based on sparse
theory [25] were proposed and popularly applied to the palmprint recognition problem [26–31]. These
methods consider a testing sample as a linear representation of the training set. That is, a given
testing sample was anticipated to be approximately expressed by the training samples lied in a unitary
class. This can be effectively accomplished by imposing the sparseness constraint on the approximate
representation with the training samples.

For the sake of higher recognition accuracy, some multispectral palmprint recognition methods [32–44]
have been studied. Because the collected images under different spectra contain more plentiful feature
information, the recognition rate can be effectively improved. In these studies, different fusion
strategies were utilized to increase the recognition accuracy. The conventional multispectral palmprint
recognition methods can be mainly categorized into image level fusion strategies and matching score
level fusion strategies. The basic idea of image level fusion is to decompose the images under different
spectra at the start, then integrate these separated decompositions for a compound approximation
and reconstruct the fusion image through the inverse transformation to implement the recognition
task. Based on this, Han et al. [32] used the discrete wavelet transform (DWT) method to decompose
palmprint images acquired under different spectra, and then reconstructed the fused palmprint image
to accomplish the multispectral palmprint recognition. Xu et al. [37] introduced the quaternion matrix
to represent the palmprint images under different spectra, and then extended PCA and DWT into
the quaternion domain to implement feature extraction. Finally, the Euclidean distance was used
to perform the recognition task. Gumaei et al. [38] employed an autoencoder with the regularized
extreme learning machine (AE-RELM) to accomplish the multispectral palmprint recognition and
effectively improve the accuracy. Xu et al. [39] presented a novel multispectral palmprint recognition
algorithm. They used the digital shearlet transform (DST) to implement the image fusion and proposed
a multiclass projection ELM (MPELM) to accomplish the classification task. For the score level fusion
method, the matching scores are obtained separately by a comparator for different spectral bands firstly,
then the obtained matching scores are fused by utilizing some rules and accomplish the classification
based on the fusion score. Zhang et al. [41] presented a novel algorithm named line orientation-based
coding (LOC) to extract the featurew of the palmprint images with different spectrq, and then carried
out the recognition task with a matching level fusion rule. Minaee et al. [42] used the co-occurrence
matrix to extract the texture features, then employed the minimum distance classifier (MDC) and
weighted majority voting system (WMV) to accomplish the multispectral palmprint recognition.
Minaee et al. [43] presented a set of wavelet-DCT features for multispectral palmprint recognition.
Although many achievements have been made in the study of multispectral palmprint recognition,
there are still many open questions that need to be further studied. For example, how to increase the
recognition accuracy when the collected images are contaminated by different noises.

Inspired by the these studes, in this article, we present a novel robust L2 sparse representation
with a tensor-based extreme learning machine (RL2SR-TELM) algorithm by using an adaptive image
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level fusion strategy to accomplish the multispectral palmprint recognition. The key contributions of
our algorithm can be summarized as follows: Firstly, a robust L2 norm-based sparse representation
model is constructed to calculate the linear representation coefficients. It overcomes the defects of
high computational complexity of the L1 norm regularization and the lack of robustness to noise
contamination. Secondly, an adaptive weighted method is presented to accomplish the fusion of
multispectral palmprint images at the image level. In this method, a weighted sparse and collaborative
concentration index (WSCCI) is proposed that can quantify the multispectral palmprint image
discrimination efficiently. By using the robust sparse coefficients and WSCCI, an adaptive weighted
fusion strategy is proposed to reconstruct the fused palmprint image. Finally, aiming at the high order
signal classification problem, we extend the conventional ELM [45] into the tensor space, then put
forward a novel TELM method. It inherits the advantages of the conventional ELM (i.e., excellent
learning speed and generalization performance) which achieves an outstanding recognition efficiency.

The rest of this paper is organized as follows: in Section 2, we introduce the principle of
multispectral palmprint acquisition device. Then we discuss our proposed RL2SR-TELM algorithm in
Section 3. In Section 4, simulation experiments and the result analysis of our proposed algorithm are
illustrated in detail. Section 5 concludes this paper.

2. Acquisition Device of Multispectral Palmprint Images

The Biometrics Research Centre (BRC) of Hong Kong Polytechnic University (PolyU) has developed
an acquisition device [46] for multispectral palmprints. It can collect the palmprint images using
the Blue, Green, Red and Near Infrared (NIR) spectra, respectively. Figure 1 illustrates the principle
of the acquisition device. It mainly includes a multispectral light source module, a light source
control module, a CCD imaging sensor, an image acquisition module (A/D conversion module) and
an image display module, etc. The multispectral light source module locates at the bottom of the
device and consists of four monochromatic light sources. The light controller module controls the
multispectral light and enables CCD imaging module to acquire palmprint images under different
spectrums. The image acquisition module captures the multispectral palmprint images and converts
analog image into a digital one by an A/D conversion. Figure 2 shows the acquired palmprint images
with different spectrums.
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Figure 2. Palmprint images acquired with different spectrums.

3. Proposed Algorithm

Figure 3 illustrates the flowchart of the presented RL2SR-TELM algorithm. It can be mainly
separated into the following steps: Firstly, the acquired multispectral palmprint image is preprocessed
to obtain the region of interest (ROI) of the image. Then, we calculate the sparse representation
coefficients of sample images under different spectra by utilizing the proposed robust L2 sparse
representation method. After that, an adaptive weighted fusion strategy is presented to obtain the
fused images. Finally, by integrating the tensor theory with ELM, we propose a TELM method to
complete the recognition task.
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3.1. Robust L2 Sparse Representation Method

3.1.1. SRC Model

The sparse representation idea was introduced into the biometric recognition for the first time in
2009 by Wright et al. Given the training set matrix denoted as X = [x1, x2, . . . , xn] ∈ Rd×n, where xi is
a training sample, d and n denote the training sample dimension and number, respectively. For any
given testing sample y ∈ Rd, we suppose that it can be coded over the training matrix X approximately,
then the SRC model can be described as:

α = argmin
α
‖α‖0, s.t. y = Xα, (1)

where α ∈ Rn is the representation coefficient, ‖α‖0 denotes the L0 norm and it counts the nonzero
element number of the vector. The objective of SRC is to find as fast as possible as sparse coefficient
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α which can represent the testing sample over the training set. Model (1) is a NP hard problem and
theoretically intractable. Reference [47] has proved that when the representation coefficient is sparse
enough, the L0 norm can be approximately represented by using the L1 norm. On the basis of this
theory, Wright et al. proposed the following model:

α = argmin
α
‖α‖1, s.t. y = Xα. (2)

This is a classical model and it has been extensively used in various areas including the image
reconstruction, image de-noising, compressive sensing and machine learning, and so on. Although
many scholars have devoted themselves to this algorithm and proposed largely improvements,
the drawback of inefficiency is still not completely resolved.

3.1.2. Robust L2 Sparse Representation Method

A SRC model actually supposes that the coding residual obeys a Gaussian or Laplacian probability
density function distribution. However, this hypothetical description is not always accurate enough in
practice. In addition, the SRC needs to solve the L1 regularization problem and its calculation speed
is very slow. To address these drawbacks, many researchers have proposed a lot of improved SRC
algorithms. For examples, Yang et al. [48] proposed a novel sparse representation method that solved
the sparse representation problem by using the maximum likelihood estimation (MLE) method. It can
deal with the occlusion and outliers more robustly. Xu et al. [49] made use of the L2 regularization to
acquire the sparse coefficient and proposed a new discriminative sparse representation method (DSRM).
Inspired by these ideas, we propose a novel robust L2 regularization based sparse representation
method, namely RL2SR.

Suppose that there are s different spectral bands, the class number of each spectral palmprint
is C and each class has m training samples. Thus, there are N = mC training samples
for each spectrum. Vectorize the training sample into the d− dimensional column vector,
then the training sample matrix can be denoted as X = [X1, . . . , Xi, . . . , XC], where Xi =

[x1
m(i−1)+1, x2

m(i−1)+1, . . . , xs
m(i−1)+1, . . . , x1

mi, x2
mi, . . . , xs

mi] is the training sample sub-matrix of the i-th

class, x1
mi, x2

mi, . . . , xs
mi are the (m×i)-th training samples under different spectra. Then, given any

testing sample yl , where l = 1, 2, . . . , s denotes the spectral bands, we can construct the following
optimization problem:

argmin
Al

ρ(yl − XAl) + λφ(Al), (l = 1, 2, . . . , s), (3)

where λ > 0 is a constant namely regularization parameter which can balance the representation
residual term and the regularization term. Here, Al = [Al

1; Al
2; · · · ; Al

C] is the linear representation
coefficient with respect to the testing sample yl over the training set.

For the first term of the optimization function (3), it can be denoted as ρ(el) = ρ(yl − XAl), where
ρ(·) : Rd → R . Then:

ρ(el) =
d

∑
k=1

ρ(el
k), (4)

where el
k =

∣∣∣yl
k − Xk Al

∣∣∣ denotes the residual term with respect to the kth element between yl and its

approximate linear representation XAl . yl
k and Xk are the k-th element of the testing sample and the

kth row of the training set matrix, respectively. In general, the residual function ρ(·) is designed to
minimize the effect generated by the occlusion and outliers. Huber, Cauchy and Welsch functions can
be used to express the residual function. In reference [48], Yang et al. utilized the logistic function
to describe the residual information and got satisfactory performance. The logistic function can be
expressed as follows:

ρ(el
k) = −

1
2µ

(ln(1 + exp(−µ(el
k)

2
+ µδ))− ln(1 + exp(µδ))) (5)
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where µ and δ are the positive parameters. The selection of parameters µ and δ will be discussed in
Section 4.2. In order to solve question (3), we derivative ρ(yl − XAl) with respect to Ai, then we have:

dρ(yl − XAl)

dAl =

d
∑

k=1
dρ(el

k)

dAl =
d

∑
k=1

dρ(el
k)

del
k

del
k

dAl =
1
2

d

∑
k=1

dρ(el
k)

del
k

1
el

k

d(el
k)

2

dAl =
1
2

d

∑
k=1

ω(el
k)

d(el
k)

2

dAl . (6)

Furthermore, since d
dAl (‖(W l)

1/2el‖
2

2) = W l d
dAl (‖yl − XAl‖2

2), where W l =

diag(ω(el
1), ω(el

2), . . . , ω(el
d)) denotes the residual function, Equation (6) can be regarded as

the derivative of 1
2‖(W l)

1/2el‖
2

2.
By using Equation (5), the residual function can be calculated as follows:

ω(el
k) =

dρ(el
k)

del
k

1
el

k
=

exp(−µ(el
k)

2
+ µδ)

1 + exp(−µ(el
k)

2
+ µδ)

. (7)

For the residual matrix W l , the following method is proposed to calculate it:
Step 1: Initiate W l,1 = diag(1, 1, . . . , 1) and calculate the collaborative code γl of each testing

sample by using the collaborative representation model

γl = argmin
γl
‖W l(yl − Xγl)‖2

2 + ξ‖γl‖2
2, (l = 1, 2, . . . , s).

Step 2: Substitute the collaborative residual el
k =

∣∣∣yl
k − Xkγl

∣∣∣, (k = 1, . . . , d) into Equation (7) and

obtain the residual matrix W l .
Step 3: If W l is not convergent, repeat step 1 and step 2, otherwise output W l .
With the residual matrix W l calculated, Equation (3) can be rewritten as follows

argmin
Al

1
2
‖(W l)

1/2
el‖

2

2 + λφ(Al), (l = 1, 2, . . . , s). (8)

Due to the existence of parameter λ, omit the coefficient in front of the first term and the
Equation (8) becomes:

argmin
Al
‖(W l)

1/2
el‖

2

2 + λφ(Al), (l = 1, 2, . . . , s). (9)

For the second term φ(Al) of the optimal objective function, SRC [25] adopted the L1 norm to
realize the sparseness of linear representation coefficient. In general, an iterative algorithm is employed
to solve the L1 norm regularization based sparse representation problem. There are many famous
algorithms [50] to implement the iteration, such as L1 regularized least squares (L1LS), homotopy
method, augmented Lagrangian method (ALM), orthogonal matching pursuit method (OMP) [51]
and fast iterative shrinkage thresholding algorithm (FISTA), etc. However, these methods still suffer
from the issue of low efficiency. To address this issue, Zhang et al. [52] introduced the collaborative
representation-based classification (CRC) into the method and utilized the L2 regularization to obtain
the representation coefficient. Although CRC provided an efficient algorithm, it failed to give full
consideration to the sparseness of linear representation. Reference [49] employed L2 regularization to
implement the face recognition by utilizing a discriminative sparse representation method. Inspired
by this, the L2 regularization item is introduced into our model and a novel RL2SR model is proposed
as follows:

argmin
Al
‖(W l)

1/2
el‖

2

2 + λ
C

∑
i=1

C

∑
j=1

∥∥∥Xi Al
i + Xj Al

j

∥∥∥2

2
, (l = 1, 2, . . . , s). (10)
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Since:

C

∑
i=1

C

∑
j=1

∥∥∥Xi Al
i + Xj Al

j

∥∥∥2

2
= 2

C

∑
i=1

∥∥∥Xi Al
i

∥∥∥2
+ 2

C

∑
i=1

C

∑
j=1

((Xi Al
i)

T
(Xj Al

j)), (l = 1, 2, . . . , s), (11)

Equation (11) can be separated into two parts. Minimizing (Xi Al
i)

T
(Xj Al

j) implies that the
correlation between the i-th class and j-th class is also minimal with respect to the linear representation.
This makes the linear approximation combination have the best discrimination ability. Thus, the second
term of Equation (11) has the capability of decorrelating the linear representation combination with
different classes. Correspondingly, minimization of the sum (Xi Al

i)
T
(Xj Al

j), instead of any individual
terms, can accomplish the decorrelation affection for different classes. In consequence, this approach
can discriminate the testing sample to the really nearest class. Minimization of ‖Xi Al

i‖
2
, (i = 1, 2, . . . , C)

means that the norm of the linear representation combination with each class is also small. Similar
to the presented linear representation approaches, such as SRC and CRC, there is a competitive
relationship between different classes of training samples. In other word, the testing sample can be
denoted by the weight sum of the training samples from all of the classes. Obviously, that is a linear
representation which means every class makes its impact to represent the testing sample. Competition
in representation implies that when a class makes an important impact to the linear representation,
the remainder classes make considerably less impact.

The objective function shown in Equation (10) can be rewritten as:

L(Al) = argmin
Al
‖(W l)

1/2
(yl − XAl)‖

2

2 + λ
C

∑
i=1

C

∑
j=1

∥∥∥Xi Al
i + Xj Al

j

∥∥∥2

2
, (l = 1, 2, . . . , s). (12)

For the first term of objective function (12), using argmin
Al
‖(W l)

1/2
(yl − XAl)‖

2

2 instead of

yl = XAl implies that XAl is a linear approximation of the test image. That is to say, this model can
tolerate considerable noise contamination. In the meantime, the residual function can measure the
linear representation residual well and enhance the noise robustness of the proposed model. In order
to optimize the presented model, we introduce the following theorem:

Theorem 1. The proposed RL2SR model (12) is convex and differentiable w.r.t. coefficient Al , and it has a closed
form solution.

Proof. Firstly, the objective function (12) can be considered as a combination of two L2 regularization

terms, i.e., ‖(W l)
1/2

(yl − XAl)‖
2

2 and
C
∑

i=1

C
∑

j=1

∥∥∥Xi Al
i + Xj Al

j

∥∥∥2

2
. By adopting the properties of L2 norm,

the convexity and derivative of the proposed model (12) can be easily proved.

Secondly, the derivative of function ‖(W l)
1/2

(yl − XAl)‖
2

2 can be computed as follows:

d
dAl ‖(W

l)
1/2

(yl − XAl)‖
2

2 = −2XTW l(yl − XAl).

On the other hand, for the second term
C
∑

i=1

C
∑

j=1

∥∥∥Xi Al
i + Xj Al

j

∥∥∥2

2
, since it does not contain the

coefficient Al explicitly, we could not compute the derivative directly. To address this issue,

we compute the partial derivatives of
C
∑

i=1

C
∑

j=1

∥∥∥Xi Al
i + Xj Al

j

∥∥∥2

2
w.r.t. Al

k(k = 1, 2, . . . , C). Denote

ϕ(Al) =
C
∑

i=1

C
∑

j=1

∥∥∥Xi Al
i + Xj Al

j

∥∥∥2

2
, we have:
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∂ϕ

∂Al
k
= ∂

∂Al
k

(
C
∑

i=1

C
∑

j=1

∥∥∥Xi Al
i + Xj Al

j

∥∥∥2

2

)

= ∂
∂Al

k


C
∑

j = 1
j 6= k

∥∥∥Xk Al
k + Xj Al

j

∥∥∥2

2
+

C
∑

i = 1
i 6= k

∥∥∥Xi Al
i + Xk Al

k

∥∥∥2

2
+

C
∑

i = 1
i 6= k

C
∑

j = 1
j 6= k

∥∥∥Xi Al
i + Xj Al

j

∥∥∥2

2
+ ‖Xk Al

k + Xk Al
k‖

2
2



= ∂
∂Al

k

2
C
∑

j = 1
j 6= k

∥∥∥Xk Al
k + Xj Al

j

∥∥∥2

2
+

C
∑

i = 1
i 6= k

C
∑

j = 1
j 6= k

∥∥∥Xi Al
i + Xj Al

j

∥∥∥2

2
+ ‖Xk Al

k + Xk Al
k‖

2
2



= 4XT
k

(C + 1)Xk Al
k +

C
∑

j = 1
j 6= k

Xj Al
j)


= 4XT

k

(
CXk Al

k +
C
∑

j=1
Xj Al

j)

)
= 4XT

k (CXk Al
k + XAl)

Then, we can obtain the derivative as follows:

dϕ

dAl =


∂ϕ

∂Al
1

...
∂ϕ

∂Al
C

 =

 4XT
1 (CX1 Al

1 + XAl)
...

4XT
C(CXC Al

C + XAl)

 = 4C

 XT
1 X1 · · · 0
...

. . .
...

0 · · · XT
CXC

Al + 4XTXAl .

By denoting:

M =

 XT
1 X1 · · · 0
...

. . .
...

0 · · · XT
CXC

,

we have:
dϕ

dAl = 4(CM + XTX)Al .

As a consequence, the derivative of objective function (12) with respect to Al is:

dL
dAl = −2XTW l(yl − XAl) + 4λ(CMAl + XTXAl), (l = 1, 2, . . . , s).

By employing the property of optimal solution, and setting is as zero, the closed solution of
objective function (12) is obtained as follows:

Al = (2λCM + 2λXTX + XTW lX)
−1

XTW lyl , (l = 1, 2, . . . , s). (13)

The proof of Theorem 1 is thus completed. �

The proposed RL2SR method is summarized in Table 1.
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Table 1. Robust L2 sparse representation algorithm.

Input: testing sample yl , (l = 1, 2, . . . , s), training sample matrix X = [X1, . . . , Xi, . . . , XC], initiate the residual
function matrix W l,1 = diag(1, 1, . . . , 1).
Output: linear representation coefficient Al , (l = 1, 2, . . . , s).

While error not convergent, do
1. Calculate the collaborative representation code γl by solving

γl,t+1 = argmin
γl
‖W l,t(yl − Xγl)‖2

2 + ξ‖γl‖2
2.

2. Calculate the residual by employing

el,t+1
k =

∣∣∣yl
k − Xkγl,t+1

∣∣∣, (k = 1, . . . , d).

3. Calculate the residual function by using

ω(el,t+1
k ) =

exp(−µ(el,t+1
k )

2
+ µδ)

1 + exp(−µ(el,t+1
k )

2
+ µδ)

, (k = 1, . . . , d).

4. Update W l by utilizing
W l,t+1 = diag(ω(el,t+1

1 ), ω(el,t+1
2 ), . . . , ω(el,t+1

d )).

5. Calculate error = ‖W l,t+1 −W l,t‖F/‖W l,t‖F.
End while
6. For each spectral testing sample yl , (l = 1, 2, . . . , s), calculate Al , (l = 1, 2, . . . , s) by using

Al = (2λCM + 2λXT X + XTW l X)
−1

XTW lyl

3.2. Image Fusion Based on Adaptive Weighted Method

In this section, a weighted sparse and collaborative concentration index is introduced to quantify
the discrimination of each spectral testing sample and an adaptive weighted fusion method is proposed
to construct the fused palmprint image.

Definition 1. [25] (sparse concentration index (SCI)) The SCI of a coefficient vector α ∈ Rn is defined as:

SCI(α) =
C ·max

i
‖δi(α)‖1/‖α‖1 − 1

C− 1
, (14)

where C is the class number, δi(α) is an indicator function defined on Rn which keeps the coefficients affiliated to
the ith class and sets all the other coefficients to be zero.

Obviously, SCI(α) = 1 implies that the training samples from a unitary class can express the
testing sample well. On the contrary, SCI(α) = 0 means that all of the training samples have an
average impact to represent the testing sample. Therefore, SCI can measure the sparseness of the linear
representation coefficient and the discrimination ability of the testing sample efficiently. If SCI(α) = 1,
the testing sample has the strongest discrimination ability and it can be easily classified into the correct
class. If SCI(α) = 0, the testing sample has the weakest discrimination ability and we cannot determine
the actual class that the testing sample should belong to.

The SCI uses the L1 norm to evaluate the sparseness of the linear representation coefficient
and it can’t efficiently evaluate the coefficient obtained by our RL2SR method since the L2 norm
regularization is utilized. It considers not only the sparseness, but also the collaborative representation
information of the representation coefficient. To address this issue, the definition of SCI is extended
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and a weighted sparse and collaborative concentration index, namely WSCCI, is proposed to evaluate
the representation coefficient obtained by our RL2SR model.

Definition 2. (weighted sparse and collaborative concentration index (WSCCI)) The WSCCI of a coefficient
vector α ∈ Rn is defined as:

WSCCI(α) =
µ1

(
C ·max

i
‖δi(α)‖1/‖α‖1 − 1

)
+ µ2

(
C ·max

i
‖δi(α)‖2/‖α‖2 − 1

)
(µ1 + µ2)(C− 1)

, (15)

where C denotes the class number, µ1 and µ2 are nonnegative parameters.

In WSCCI, the weighted fusion of the sparse and collaborative concentration index defined by the
L1 norm and L2 norm is utilized to evaluate the discriminative performance of the given sample. As a
consequence, it can be regarded as the weighted sum of SCI and CCI (i.e., collaborative concentration
index). From the above analysis, the proposed WSCCI can be utilized to model our adaptive weighted
fusion method.

The proposed adaptive weighted image fusion method can be summarized as follows:
(1) For the linear representation coefficients Al , (l = 1, 2, . . . , s) obtained by Equation (13), calculate

the WSCCI(Al), (l = 1, 2, . . . , s) by using Equation (15).
(2) Normalize WSCCI(Al), (l = 1, 2, . . . , s) by using:

ηl =
WSCCI(Al)

WSCCI(A1) + WSCCI(A2) + . . . + WSCCI(As)
=

WSCCI(Al)
s
∑

i=1
WSCCI(Ai)

, (l = 1, 2, . . . , s). (16)

(3) Reconstruct the fused multispectral palmprint image y by using:

y = X(η1 A1 + η2 A2 + . . . + ηs As) = X
s

∑
l=1

ηl Al . (17)

With the fused multispectral palmprint image obtained, TELM is proposed to implement the
recognition task.

3.3. Principle of Tensor Based ELM

ELM can be considered as a generalized single hidden layer feedforward neural network (SLFN).
Since ELM randomly chooses the initial values of the hidden nodes and analytically calculates the
output weights, the learning speed is extremely fast compared to the conventional supervised learning
algorithms (i.e., support vector machine (SVM) [53] and k-nearest neighbor (KNN) algorithm, etc.).
In addition, its generalization ability is better than many back propagation neural networks algorithms.
In consequence, ELM has been extensively studied and widely applied in lots of areas (such as pattern
classification, clustering analysis and regression etc.) and plenty of research achievements have been
acquired. Inspired by this idea, we present a novel TELM by extend the conventional ELM to the
tensor space, and it can regard the image as a tensor to execute the recognition task.

3.3.1. ELM

Given a training set with N different training samples (xj, tj) ∈ Rd × Rm, (j = 1, 2, . . . , N), where
xj = [xj1, xj2, . . . , xjd]

T ∈ Rd denotes the jth training sample, tj = [tj1, tj2, . . . , tjm]
T ∈ Rm represents

the target of sample xj. A classical SLFNs can be theoretically defined by:

L

∑
i=1

βi fi(xj) =
L

∑
i=1

βi f (ai · xj + bi) = tj, j = 1, 2, . . . , N. (18)
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In this model, the hidden node number is L and activation function is f (x). ai = [ai1, ai2, . . . , aid]
T

denotes the input weight value which connects the input nodes with the ith hidden node. βi =

[βi1, βi2, . . . , βim]
T denotes the output weight value which connects the output nodes with the ith

hidden node. bi denotes the bias for the ith hidden node. ai · xj means a dot product between ai and xj.
The classical SLFNs can approximate the given training samples set with the minimum residual.

Obviously, Equation (18) is a system of linear equations. By introducing the concept of matrix,
we can rewrite it as follows:

Hβ = T, (19)

where:

H =

 f (a1 · x1 + b1) · · · f (aL · x1 + bL)
...

. . .
...

f (a1 · xN + b1) · · · f (aL · xN + bL)


N×L

, β =

 βT
1
...

βT
L


L×m

, T =

 tT
1
...

tT
N


N×m

.

Theorem 2. For a given normative SLFNs which possesses L hidden nodes and an activation function f ,
where f : R→ R is an infinitely differentiable function on the definition interval. Given a training set with
N different samples (xj, tj), where xj ∈ Rn denotes the sample data and tj ∈ Rm represents the target
of xj. For any randomly assigned weight ai and bias bi, the output matrix H of the hidden layer can be
obtained by the pseudo-inverse and satisfies ‖Hβ− T‖ = 0 for probability one with respect to any continuous
probability distribution.

For the proof of the Theorem 2 readers can refer to [45]. Based on this theory, ELM can be
descripted as follows: With the initial weight vector and the biases of hidden layer nodes determined
by random assignment, we can obtain the output matrix H for the hidden layer based on the input
samples. Therefore, we can transform the training procedure of ELM to a classical least squares
problem of linear equations, i.e.,

min
β
‖Hβ− T‖2. (20)

We can obtain the least square solution of Equation (20) as follows:

β̂ = H+T. (21)

where H+ refers to the Moore-Penrose pseudo-inverse for matrix H.

3.3.2. Tensor Based ELM

Although the conventional ELM can deal well with one-dimensional signals, for two-dimensional
images, it needs to be vectorized and solved in the one-dimensional space. However, in this transformation
it is easy to lose the spatial structure information of the image. In order to solve this problem, we
extend the conventional ELM to the tensor space and put forward a novel tensor- based ELM to deal
with the high-dimensional signals.

In view of the high-dimensional characteristics of the palmprint image, we regard the fused image
as a second-order tensor and classify it by the proposed TELM. In our method, the high order singular
value decomposition (HOSVD) algorithm [54] is utilized to decompose the fused palmprint image and
construct the input weight values of the TELM model.

Given an M order tensor F ∈ RI1×I2×···×IM and a matrix U ∈ RJm×Im , we define B ∈
RI1×···×Im−1×Jm×Im+1×···×IM as the mth modal product of F and U, the elements of B can be calculated by:

(F×Um)i1···im−1 jmim+1···iM
= ∑

in

fi1···im−1imim+1···iM ujmim . (22)
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so the m-th modal tensor product can be simply denoted by:

B = F×Um. (23)

The HOSVD algorithm can be implemented by using the tensor product. Given an M order tensor
F ∈ RI1×I2×···×IM , we can use the tensor product to decompose F in the following:

F = S×U(1) ×U(2) × · · · ×U(M), (24)

where S denotes an M order tensor which is called as a core tensor, U(1) ∈ RI1×I1 , U(2) ∈ RI2×I2 , . . . ,
U(M) ∈ RIM×IM are unitary matrices and each column is corresponding to the orthogonal basis of
unfolded matrices F(1), F(2), . . . , F(M).

The low rank approximation of tensor F can be calculated by HOSVD, i.e.,

F ≈ S(q1, q2,··· , qM) ×U(1)
q1 ×U(2)

q2 × · · · ×U(M)
qM , (25)

where S ∈ Rq1×q2×···× qM represents the principal component core tensor, U(i)
qi represents the truncation

matrix composed by the first qi columns of U(i), i = 1, 2, . . . , M.
According to the above discussion, we summarize the detailed process of the tensor based ELM

as follows: let Gi ∈ Rs×t, (i = 1, 2, . . . , N) be the ith fused training palmprint image, ti ∈ Rm, (i =
1, 2, . . . , N) be the target of sample Gi. Denoted the training sample set as G ∈ Rs×t×N . Then the
HOSVD algorithm utilized to decompose Gi ∈ Rs×t, (i = 1, 2, . . . , N) can be formulated as:

Gi ≈ S(L1, L2)
×UL1 ×VL2 , (26)

where UL1 = [u1, u2, . . . , uL1 ] and VL2 = [v1, v2, . . . , vL2 ] represent the truncation matrix with L1 and
L2 columns, respectively. Then TELM can be defined as:

L1

∑
l1=1

L2

∑
l2=1

g(Gj × ul1 × vl2)βl2+(l1−1)L1
= tj , (j = 1, 2, . . . , N), (27)

where L1 and L2 denote the hidden layer node numbers along the tensor directions. In consequence,
there are in total L = L1 × L2 hidden layer nodes. ul1 and vl2 denote the input weight vectors of the
hidden layer along the tensor directions, respectively. βl2+(l1−1)L1

denotes the weight value between
the output nodes and the (l2 + (l1 − 1)L1)th node in the hidden layer. Similar to ELM algorithm, g(·)
denotes the activation function. Finally, the output weight β can be obtained from Equation (27) by
utilizing the least squares method.

4. Experiments

In this section, we evaluate the presented multispectral palmprint recognition algorithm on
the benchmark available database offered by PolyU. Extensive experiments are implemented to
demonstrate the effectiveness of the presented RL2SR method, adaptive fusion strategy and TELM.
In the experiment of this paper, we use the fused palmprint image as the input of TELM classifier. In
this section, we accomplish the experiments on a PC equipped with Windows 7, Intel Core i5-2320
CPU (3.0 GHz), and 6 GB RAM, and the algorithm is programmed using MATLAB 2017a.

4.1. The PolyU Multispectral Palmprint Database

The PolyU multispectral palmprint database was taken from 250 persons where the males are
195 and females are 55. The age of volunteers was mainly between 20 and 60 years old. In order to
embody the differences of the acquired palmprint and make the palmprint images be various, the
palmprint images were acquired in two separate phases. The time interval between the two phases
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was 5–15 days and each phase lasted about 9 days. In each phase, both hands of the volunteers were
acquired six times respectively under the condition of four different spectra: Blue (470 nm), Green
(525 nm), Red (660 nm) and NIR (880 nm). For each spectrum, 500 different palmprints were acquired
from the 250 volunteers in the two phases. Therefore, the database contains 6000 palmprint images
under each spectrum. That is, the multispectral palmprint database contains 6000 × 4 = 24,000 images
in total. Reference [46] provided the ROI extraction process from the acquired multispectral palmprint
images and established the database namely PolyU multispectral palmprint database (see Figure 4).
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Figure 4. ROI extraction.

Figure 5 illustrates some images in the multispectral palmprint database. The images in the
rows 1–4 are acquired under the Blue, Green, Red and NIR spectra, respectively. Every column is
from the same class. In practice, the acquirement process is easily contaminated by various noises.
To simulate this, the white Gaussian noise and salt & pepper noise are added into the images and the
recognition experiments are implemented, respectively.
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Figure 5. Some multispectral palmprint images of PolyU database.

Figure 6 displays some multispectral palmprint images contaminated by different noises. Figure 6a
shows the images contaminated by white Gaussian noise. Here, the mean is 0 and the standard
deviation is 25. Meanwhile, Figure 6b shows the images contaminated by 50% salt & pepper noise.
Rows 1–4 of Figure 6 exhibit the noisy palmprint images under the Blue, Green, Red and NIR
spectra, respectively.
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4.2. Parameter Selection

4.2.1. Selection of µ and δ for Residual Function

Now, let’s discuss the selection of parameters µ and δ for the residual function in Equation (7).
It can be seen from Equation (7) that ω(el

k)→ exp(µδ)/(1 + exp(µδ)) when el
k → 0 . Similarly, when

el
k → ∞ , ω(el

k) = exp(µδ)/(exp(µ(el
k)

2
) + exp(µδ))→ 0 . In order to make ω belong to (0, 1), set the

product µδ to be large enough, then ω(el
k) ≈ exp(µδ)/exp(µδ) = 1. For simplicity, we denote T = µδ.

Since e7 > 1000, in order to meet ω(el
k)→ 1 when el

k → 0 , set T = µδ > 7. From Equation (7),

ω(el
k) = 1/2, when δ = (el

k)
2
, so the parameter δ determines the boundary point position of the

residual function value. That is to say, δ is determined when the weight ω will pass through 0.5. For
the sake of enhancing the robustness of the model for the outlier or noise contamination efficiently,
a novel method of selecting the parameter δ is presented as follows. Firstly, vectorize the square of

the error (el
k)

2
and denote it as el = [(el

1)
2
, (el

2)
2
, . . . , (el

d)
2
]
T

, then arrange this vector’s elements in
descending order and denote the new vector by ẽl . By denoting its maximum element as M and
the minimum element as m, set τ1 = (1− θ)m + θM, where θ is a constant and θ ∈ [0.6, 0.8]. Since
the dimension of ẽl is d, suppose that s is the nearest integer to θd and the sth biggest element of ẽl

is selected as τ2. Finally, let δ = (τ1 + τ2)/2. Once δ is selected, parameter µ can be calculated by
µ = T/δ. In our experiments, select the constant T = 8.

4.2.2. Selection of the Hidden Node Numbers Along the Directions of TELM

To evaluate the effect of the hidden node numbers along the directions of TELM, the experiments
are implemented by setting the hidden node numbers varying from 1 to 20 under the cases of noise-free
and different noise contaminations. The recognition performance is illustrated in Figures 7–9. At the



Sensors 2019, 19, 235 15 of 25

same time, Figures 7 and 8 illustrate that our algorithm could converge rapidly with the increase
of hidden node numbers. Obviously, when the hidden node numbers are both greater than 7, our
algorithm achieves a perfect performance. From Figure 9, although the convergence performance is
inferior to the noise-free case, our algorithm can still obtain better convergence speed. As a consequence,
the appropriate hidden node numbers can be selected according to the above analysis. For simplicity,
the hidden node numbers in our experiments are set as L1 = L2 = 10.
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4.3. Experiment Results and Analysis

In this subsection, the experiments are implemented to validate the efficiency of our presented
algorithm from the aspects of sparse representation, fusion strategy, classification approach and the
overall algorithm. For the sake of demonstrating the robustness of the presented RL2SR model,
we accomplish the experiments compared with several different models, such as SRC, CRC and DSRM.
The recognition rates are shown in Table 2.

Table 2. Recognition rates for different representation methods.

Representation Method
Recognition Rate (%)

Noise-Free White Gaussian Noise Salt & Pepper Noise

SRC 99.64 97.84 94.28
CRC 99.44 98.76 96.68

DSRM 97.96 96.68 96.28
RL2SR 99.68 99.20 97.24

From Table 2, it is easy to discover that each algorithm achieves the highest and the lowest
recognition rates under the cases of noise-free and salt & pepper noise contamination, respectively.
Since our proposed adaptive weighted fusion process approximates a spatial smoothing filtering, the
decrease of recognition rate under the white Gaussian noise contamination is not obvious. Furthermore,
by using our RL2SR coefficient for fusion, the recognition rates achieve 99.68%, 99.20% and 97.24%,
which are 1.72%, 2.52 and 2.96% higher than DSRM under the cases of noise free, white Gaussian
noise and SRC in the case of salt & pepper noise contamination, respectively. This indicates that our
RL2SR is robust to different noises, which can improve the discriminant competency and increase the
recognition rate of the fusion image.

To evaluate the efficiency of the presented adaptive fusion strategy, some comparison fusion
experiments (i.e., the sum and min-max fusion strategy) are simulated and the recognition performance
is listed in Table 3. In this experiment, the training sample number of each class varies from 2 to 4.
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Table 3. Recognition rates for different fusion methods when the training sample number per class
varies from 2 to 4 under the cases of noise-free and different noise contaminations.

Fusion Method Noise Contamination Case
Recognition Rate (%)

2 3 4

Sum fusion
Noise-free 97.50 99.56 99.90

White Gaussian noise 96.70 99.44 99.65
Salt & pepper noise 89.63 96.56 98.55

Min-max fusion
Noise-free 92.83 97.68 99.25

White Gaussian noise 92.67 97.44 99.20
Salt & pepper noise 72.53 82.16 85.85

Our adaptive
fusion

Noise-free 97.73 99.68 100.00
White Gaussian noise 97.47 99.20 99.95
Salt & pepper noise 92.27 97.24 99.05

Table 3 illustrates that the recognition accuracies under different fusion strategies increases
with the training sample number. In particularly, our presented fusion strategy achieves the highest
recognition accuracy of 100%, 99.95% and 99.05% when we set the number of training samples
as 4. Even when the training sample number declines to 2, our approach achieves an accuracy of
92.27% which is 19.74% higher than the min-max fusion strategy in the case of salt & pepper noise
contamination (72.53%). This implies that our fusion strategy has the strongest robustness compared
with the sum and min-max fusion methods.

To demonstrate the classification efficiency of the presented TELM, we accomplish the experiments
compared with some other classifiers, such as NN, KNN, ELM, MPELM and RELM. For these comparison
classifiers, we vectorize the fused image and take this vector as the input. For each classifier, 3–6
training samples are selected to complete the recognition experiments and the classification accuracy
curves are plotted in Figure 10.
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Figure 10. Recognition rate curves for different classifiers when the training sample number varies
from 3 to 6 in the case of noise-free.

The curves in Figure 10 indicate that when the training sample number is greater than or equal
to 4, the recognition rates of all the algorithms achieve excellent performance. The experimental
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results also show that, in the case of noise-free, the recognition rate of our proposed TELM algorithm
gradually increases with the number of training samples. On the other hand, our TELM achieves higher
recognition rates than the other algorithms. Although the improvement is not significant because the
recognition rate is much approximate or even reaches to 100%. From the above analysis, it is easy to
observe that the presented TELM algorithm can achieve efficient recognition performance and has
strong stability compared with the other classifiers. Furthermore, more simulation experiments are
implemented with the multispectral palmprint database when it is contaminated by the aforementioned
noise. The recognition performances are illustrated in Table 4.

Table 4. Recognition rates for different classifiers under the cases of noise-free and noise contaminations.

Classifiers
Recognition Rate (%)

Noise-Free White Gaussian Noise Salt & Pepper Noise

NN 99.24 96.48 44.24
KNN 97.12 93.32 38.92
ELM 99.18 99.16 95.55

MPELM 99.00 98.80 95.60
RELM 99.41 98.96 96.07
TELM 99.68 99.20 97.24

It is observed from Table 4 that, in the case of white Gaussian noise contamination, the recognition
rate of TELM outperforms the other classifiers. Meanwhile, the recognition accuracy of the presented
TELM is remarkably higher than the other methods under the case of salt & pepper noise contamination.
In consideration of the pulse characteristic of the salt & pepper noise, it impacts remarkably on the
distance measurement between different samples. When the testing samples are contaminated by
salt & pepper noise, the recognition accuracy of KNN method achieves 38.92%, which is significantly
lower than our TELM algorithms (97.24%). Since the proposed TELM abandons the eigenvectors
corresponding to the smaller eigenvalues which have the higher correlation to the noise contamination,
and retains the principal components corresponding to the major eigenvalues, TELM has the ability of
noise reduction and the better discrimination ability. The experimental results in Table 4 also validate
that our algorithm can achieve the higher recognition rate and possess the stronger robustness to noise
contamination compared with the other classifiers.

To further validate the robustness of the proposed TELM algorithm, we add different degrees
of salt & pepper noise to the testing sample and implement the recognition experiment. Figure 11
shows some noisy multispectral palmprint images contaminated by salt & pepper noise with 10% to
80% percentages. Figure 11a is the original images under different spectra. Figure 11b–i are the noisy
contaminated images under different spectra when the degree of salt & pepper noise varies from 10%
to 80%.

Figure 12 illustrates the recognition rate curves of our TELM algorithm and some of the aforementioned
comparison classifiers. It is easy to find that the recognition rate curves of ELM MPELM, RELM and
our algorithm drop significantly when the percentage of noise contamination is greater than 60%.
Particularly, the recognition rate curves of NN and KNN methods are obviously lower than the other
algorithms when the palmprint image is contaminated by more than 20% salt & pepper noise. That is
to say, the accuracy curves of NN and KNN have the fast decline. The experiment result curves mean
that our proposed TELM algorithm outperforms the comparison classifiers with different percentages
of noise contamination and possesses stronger robustness.
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Table 5 illustrates the average classification times of the aforementioned classifiers on the whole
database. Although our TELM classifier is slower than the ELM method, the difference (i.e., 0.08 s) is
very small. Moreover, it is distinctly faster than NN, KNN, MPELM and RELM classifiers. Especially,
the classification time of NN is about five times that of our TELM. In additional, the above experiment
results demonstrate that the recognition performance of our classifier significantly exceeds the NN,
KNN, ELM, MPELM and RELM classifiers. This validates the recognition ability and efficiency of
our algorithm.
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Table 5. Classification time for different classifiers.

Classifiers Classify Time (s)

NN 7.76
KNN 5.17
ELM 1.51

MPELM 1.82
RELM 1.67
TELM 1.59

Table 6 lists the recognition rates of our RL2SR-TELM algorithm with different spectral combinations.
This experiment is implemented under the cases of noise-free, white Gaussian noise and 50% salt &
pepper noise contamination and the training sample number per class is 4.

Table 6. Recognition rates for our RL2SR-TELM with different spectral combinations under the cases
of noise-free and different noise contaminations.

Spectral Combination
Recognition Rate (%)

Noise-Free White Gaussian Noise Salt & Pepper Noise

Blue 99.55 98.65 80.90
Green 99.50 99.25 87.65
Red 99.45 99.15 83.10
NIR 98.65 94.50 76.75

Blue, Green 100.00 99.80 95.80
Blue, Red 99.95 99.80 93.30
Blue, NIR 100.00 99.85 90.70

Green, Red 99.75 99.50 96.15
Green, NIR 100.00 99.80 95.80
Red, NIR 99.90 99.90 96.60

Blue, Green, Red 100.00 99.85 98.65
Blue, Green, NIR 100.00 99.90 97.60
Blue, Red, NIR 100.00 99.90 97.15

Green, Red, NIR 99.95 99.85 98.35
Blue, Green, Red, NIR 100.00 99.95 99.05

Table 6 summarizes the excellent performance of our presented algorithm in the cases of noise-free
and white Gaussian noise contamination. In the noise-free case, the recognition accuracy achieves
100% for most of the spectral combinations. Even when the sample is contaminated by white Gaussian
noise, our algorithm achieves the accuracy of more than 99.50% for all of the spectral combinations
and 99.95% under the combination of Blue, Green, Red and NIR spectra. When the testing sample
is contaminated by salt & pepper noise, the recognition rate declines significantly and achieves the
lowest recognition rate 76.75% under the NIR spectrum. At the meantime, our RL2SR-TELM algorithm
achieves an recognition performance under the combination of Blue, Green, Red and NIR spectra in the
noise-free , white Gaussian noise and salt & pepper noise contamination cases, i.e., 100%, 99.95% and
99.05%, respectively. This indicates that our proposed RL2SR-TELM algorithm has excellent robustness
to noise pollution.

Table 7 illustrates the recognition rates of our RL2SR-TELM algorithm compared with some
state-of-the art palmprint recognition methods, such as deep scattering network method [18], texture
feature-based method [42], and DCT-based features method [43] etc. It is easy to find that in the case
of different training samples, our algorithm achieves an excellent recognition performance. Although
the recognition accuracy of our algorithm is 0.32% lower than the deep scattering network method
when the training sample number is three, and it is higher than the texture feature based method and
DCT-based features method when the training sample number is four. Particularly, the recognition rate
of our proposed algorithm reaches 100% when the number of training samples is greater than four.
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Table 7. Recognition rates for different multispectral palmprint recognition algorithms in the case
of noise-free.

Algorithm Recognition Rate (%) for Different Training Sample Number

3 4 5 6

Deep scattering network method [18] 100 100 100 100
Texture feature based method [42] - 99.96 99.99 100
DCT-based features method [43] - 99.97 100 100

Our proposed RL2SR-TELM 99.68 100 100 100

Table 8 lists the recognition rates of our RL2SR-TELM algorithm comparing with some
state-of-the-art multispectral palmprint recognition algorithms, such as matching score-level fusion
by LOC method, DST-MPELM method, AE-RELM method, quaternion PCA using quaternion DWT
method and image-level fusion by DWT method. In this experiment, we choose three samples per
class to constitute the training set. The experimental results in Table 8 illustrate that our proposed
algorithm can achieve an excellent recognition accuracy in the cases of both the noise-free (99.68%)
and various noise contaminations (99.20% and 97.24%, respectively).

Table 8. Recognition rates for our RL2SR-TELM and some other multispectral palmprint
recognition algorithms.

Algorithm Recognition Rate (%)

Noise-Free White Gaussian Noise Salt & Pepper Noise

Matching score-level fusion by LOC [41] 99.43 99.23 96.48
DST-MPELM [39] 99.47 98.30 89.98

AE-RELM [38] 99.16 98.48 95.76
QPCA + QDWT [37] 98.83 93.33 90.16

Image-level fusion by DWT [32] 99.03 96.23 82.75
Our proposed RL2SR-TELM 99.68 99.20 97.24

When the sample is contaminated by salt & pepper noise, the presented algorithm has more
obvious advantages, which an accuracy that is respectively 0.76%, 7.26%, 1.48%, 7.08% and 14.49%
higher than that of the other comparison algorithms. Table 9 demonstrates the time cost of our
proposed RL2SR-TELM multispectral recognition algorithm for each test sample. It is easy to find that
our RL2SR-TELM algorithm takes about 0.10945 s for a test sample recognition task.

Table 9. Time cost of our RL2SR-TELM algorithm.

Procedure RL2SR and Adaptive Fusion TELM Total Time

Average time (s) 0.10892 0.00053 0.10945

To further demonstrate the performance of our presented RL2SR-TELM method, in the case of salt
& pepper noise contamination, we plot the cumulative match characteristic (CMC) curves generated
by our RL2SR-TELM method and the aforementioned comparison methods. Figure 13 shows the
CMC curves.

From Figure 13, it is easy to find that our presented RL2SR-TELM method has the highest rank-1
recognition accuracy. Meanwhile, the cumulative match characteristic curve of our algorithm is mostly
close to the upper left corner of the coordinate system comparing with the comparison multispectral
palmprint recognition approaches which means that it has the rapidest convergence speed. This implies
that our algorithm outperforms the others in recognition accuracy and noise robustness, and it is quite
consistent with the aforementioned experiment results and analysis.
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5. Conclusions

In this paper, a novel RL2SR-TELM algorithm is presented to implement multispectral palmprint
recognition. Since the L2 regularization term is employed, the regularization optimal objective function
is convex and a closed solution can be efficiently obtained. In addition, a new measurement, namely
WSCCI, and an adaptive fusion framework are proposed to construct the fused multispectral palmprint
images. For the classification task, we extend the conventional extreme leaning machine to the tensor
domain and present a TELM algorithm. It deals with the palmprint image in two-dimensional space
directly and makes the best use of its spatial structure to enhance the classification ability. Extensive
experiments on PolyU multispectral palmprint database confirm the strong robustness, excellent
recognition accuracy and high efficiency of our proposed algorithm.

Author Contributions: Conceptualization, D.C. and X.Z.; Methodology, D.C.; Software, D.C.; Validation, D.C.,
X.Z. and X.X.; Formal Analysis, D.C.; Writing-Original Draft Preparation, D.C.; Writing-Review & Editing, D.C.;
Supervision, X.Z.; Project Administration, X.Z.; Funding Acquisition, X.Z. and X.X.

Funding: This research was funded by National Natural Science Foundation (No. 61673316), Major Science and
Technology Project of Guangdong Province (No. 2015B010104002).

Acknowledgments: The authors would like to thank the anonymous reviewers and academic editor for all the
suggestions and comments and MDPI Branch Office in China for improving this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cui, J.R. 2D and 3D Palmprint fusion and recognition using PCA plus TPTSR method. Neural Comput. Appl.
2014, 24, 497–502. [CrossRef]

2. Lu, G.M.; Zhang, D.; Wang, K.Q. Palmprint recognition using eigenpalms features. Pattern Recogn. Lett. 2003,
24, 1463–1467. [CrossRef]

3. Bai, X.F.; Gao, N.; Zhang, Z.H.; Zhang, D. 3D palmprint identification combining blocked ST and PCA.
Pattern Recogn. Lett. 2017, 100, 89–95. [CrossRef]

4. Zuo, W.M.; Zhang, H.Z.; Zhang, D.; Wang, K.Q. Post-processed LDA for face and palmprint recognition:
What is the rationale. Signal Process. 2010, 90, 2344–2352. [CrossRef]

5. Rida, I.; Herault, R.; Marcialis, G.L.; Gasso, G. Palmprint recognition with an efficient data driven ensemble
classifier. Pattern Recogn. Lett.. In press. [CrossRef]

http://dx.doi.org/10.1007/s00521-012-1265-y
http://dx.doi.org/10.1016/S0167-8655(02)00386-0
http://dx.doi.org/10.1016/j.patrec.2017.10.008
http://dx.doi.org/10.1016/j.sigpro.2009.06.004
http://dx.doi.org/10.1016/j.patrec.2018.04.033


Sensors 2019, 19, 235 23 of 25

6. Rida, I.; Al Maadeed, S.; Jiang, X.; Lunke, F.; Bensrhair, A. An ensemble learning method based on random
subspace sampling for palmprint identification. In Proceedings of the 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 2047–2051.

7. Shang, L.; Huang, D.S.; Du, J.X.; Zheng, C.H. Palmprint recognition using FastICA algorithm and radial
basis probabilistic neural network. Neurocomputing 2006, 69, 1782–1786. [CrossRef]

8. Pan, X.; Ruan, Q.Q. Palmprint recognition using Gabor feature-based (2D)2PCA. Neurocomputing 2008, 71,
3032–3036. [CrossRef]

9. Ekinci, M.; Aykut, M. Gabor-based kernel PCA for palmprint recognition. Electron. Lett. 2007, 43, 1077–1079.
[CrossRef]

10. Ekinci, M.; Aykut, M. Palmprint recognition by applying wavelet-based kernel PCA. J. Comput. Sci. Technol.
2008, 23, 851–861. [CrossRef]

11. Fei, L.; Zhang, B.; Xu, Y.; Yan, L.P. Palmprint recognition using neighboring direction indicator. IEEE Trans.
Hum. Mach. Syst. 2016, 46, 787–798. [CrossRef]

12. Zheng, Q.; Kumar, A.; Pan, G. A 3D feature descriptor recovered from a single 2D palmprint image.
IEEE Trans. Pattern Anal. 2016, 38, 1272–1279. [CrossRef] [PubMed]

13. Younesi, A.; Amirani, M.C. Gabor filter and texture based features for palmprint recognition. Procedia Comput.
Sci. 2017, 108, 2488–2495. [CrossRef]

14. Fei, L.K.; Xu, Y.; Tang, W.L.; Zhang, D. Double-orientation code and nonlinear matching scheme for palmprint
recognition. Pattern Recogn. 2016, 49, 89–101. [CrossRef]

15. Gumaei, A.; Sammouda, R.; Al-Salman, A.M.; Alsanad, A. An effective palmprint recognition approach for
visible and multispectral sensor images. Sensors 2018, 18, 1575. [CrossRef]

16. Tabejamaat, M.; Mousavi, A. Concavity-orientation coding for palmprint recognition. Multimed. Tools Appl.
2017, 76, 9387–9403. [CrossRef]

17. Chen, H.P. An efficient palmprint recognition method based on block dominant orientation code. Optik 2015,
126, 2869–2875. [CrossRef]

18. Minaee, S.; Wang, Y. Palmprint recognition using deep scattering convolutional network. In Proceedings of
the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May
2017; pp. 1–4.

19. Tamrakar, D.; Khanna, P. Kernel discriminant analysis of block-wise Gaussian derivative phase pattern
histogram for palmprint recognition. J. Vis. Commun. Image Represent. 2016, 40, 432–448. [CrossRef]

20. Li, G.; Kim, J. Palmprint recognition with local micro-structure tetra pattern. Pattern Recogn. 2017, 61, 29–46.
[CrossRef]

21. Luo, Y.T.; Zhao, L.Y.; Zhang, B.; Jia, W.; Xue, F.; Lu, J.T.; Zhu, Y.H.; Xu, B.Q. Local line directional pattern for
palmprint recognition. Pattern Recogn. 2016, 50, 26–44. [CrossRef]

22. Jia, W.; Hu, R.X.; Lei, Y.K.; Zhao, Y.; Gui, J. Histogram of oriented lines for palmprint recognition. IEEE Trans.
Syst. Man Cybern. Syst. 2014, 44, 385–395. [CrossRef]

23. Zhang, S.W.; Wang, H.X.; Huang, W.Z.; Zhang, C.L. Combining modified LBP and weighted SRC for
palmprint recognition. Signal Image Video Process. 2018, 12, 1035–1042. [CrossRef]

24. Guo, X.M.; Zhou, W.D.; Zhang, Y.L. Collaborative representation with HM-LBP features for palmprint
recognition. Mach. Vis. Appl. 2017, 28, 283–291. [CrossRef]

25. Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation.
IEEE Trans. Pattern Anal. 2009, 31, 210–227. [CrossRef] [PubMed]

26. Maadeed, S.A.; Jiang, X.D.; Rida, I.; Bouridane, A. Palmprint identification using sparse and dense hybrid
representation. Multimed. Tools Appl. 2018, 1–15. [CrossRef]

27. Tabejamaat, M.; Mousavi, A. Manifold sparsity preserving projection for face and palmprint recognition.
Multimed. Tools Appl. 2017, 77, 12233–12258. [CrossRef]

28. Zuo, W.M.; Lin, Z.C.; Guo, Z.H.; Zhang, D. The multiscale competitive code via sparse representation for
palmprint verification. In Proceedings of the 2010 International IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 2265–2272.

29. Xu, Y.; Fan, Z.Z.; Qiu, M.N.; Zhang, D.; Yang, J.Y. A sparse representation method of bimodal biometrics and
palmprint recognition experiments. Neurocomputing 2013, 103, 164–171. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2005.11.004
http://dx.doi.org/10.1016/j.neucom.2007.12.030
http://dx.doi.org/10.1049/el:20071688
http://dx.doi.org/10.1007/s11390-008-9173-4
http://dx.doi.org/10.1109/THMS.2016.2586474
http://dx.doi.org/10.1109/TPAMI.2015.2509968
http://www.ncbi.nlm.nih.gov/pubmed/27164564
http://dx.doi.org/10.1016/j.procs.2017.05.157
http://dx.doi.org/10.1016/j.patcog.2015.08.001
http://dx.doi.org/10.3390/s18051575
http://dx.doi.org/10.1007/s11042-016-3544-6
http://dx.doi.org/10.1016/j.ijleo.2015.07.031
http://dx.doi.org/10.1016/j.jvcir.2016.07.008
http://dx.doi.org/10.1016/j.patcog.2016.06.025
http://dx.doi.org/10.1016/j.patcog.2015.08.025
http://dx.doi.org/10.1109/TSMC.2013.2258010
http://dx.doi.org/10.1007/s11760-018-1246-4
http://dx.doi.org/10.1007/s00138-017-0821-y
http://dx.doi.org/10.1109/TPAMI.2008.79
http://www.ncbi.nlm.nih.gov/pubmed/19110489
http://dx.doi.org/10.1007/s11042-018-5655-8
http://dx.doi.org/10.1007/s11042-017-4881-9
http://dx.doi.org/10.1016/j.neucom.2012.08.038


Sensors 2019, 19, 235 24 of 25

30. Rida, I.; Al Maadeed, N.; Al Maadeed, S. A novel efficient classwise sparse and collaborative representation
for holistic palmprint recognition. In Proceedings of the 2018 IEEE NASA/ESA Conference on Adaptive
Hardware and Systems (AHS), Edinburgh, UK, 6–9 August 2018; pp. 156–161.

31. Rida, I.; Maadeed, S.A.; Mahmood, A.; Bouridane, A.; Bakshi, S. Palmprint identification using an ensemble
of sparse representations. IEEE Access 2018, 6, 3241–3248. [CrossRef]

32. Han, D.; Guo, Z.H.; Zhang, D. Multispectral palmprint recognition using wavelet-based image fusion.
In Proceedings of the IEEE International Conference on Signal Processing (ICSP), Beijing, China, 26–29
October 2008; pp. 2074–2077.

33. Aberni, Y.; Boubchir, L.; Daachi, B. Multispectral palmprint recognition: A state-of-the-art review.
In Proceedings of the IEEE International Conference on Telecommunications and Signal Processing,
Barcelona, Spain, 5–7 July 2017; pp. 793–797.

34. Bounneche, M.D.; Boubchir, L.; Bouridane, A.; Nekhoul, B.; Cherif, A.A. Multi-spectral palmprint recognition
based on oriented multiscale log-Gabor filters. Neurocomputing 2016, 205, 274–286. [CrossRef]

35. Hong, D.F.; Liu, W.Q.; Su, J.; Pan, Z.K.; Wang, G.D. A novel hierarchical approach for multispectral palmprint
recognition. Neurocomputing 2015, 151, 511–521. [CrossRef]

36. Raghavendra, R.; Busch, C. Novel image fusion scheme based on dependency measure for robust
multispectral palmprint recognition. Pattern Recogn. 2014, 47, 2205–2221. [CrossRef]

37. Xu, X.P.; Guo, Z.H.; Song, C.J.; Li, Y.F. Multispectral palmprint recognition using a quaternion matrix. Sensors
2012, 12, 4633–4647. [CrossRef] [PubMed]

38. Gumaei, A.; Sammouda, R.; Al-Salman, A.M.; Alsanad, A. An improved multispectral palmprint recognition
system using autoencoder with regularized extreme learning machine. Comput. Intell. Neurosci. 2018,
2018, 8041069. [CrossRef] [PubMed]

39. Xu, X.B.; Lu, L.B.; Zhang, X.M.; Lu, H.M.; Deng, W.Y. Multispectral palmprint recognition using multiclass
projection extreme learning machine and digital shearlet transform. Neural Comput. Appl. 2016, 27, 143–153.
[CrossRef]

40. El-Tarhouni, W.; Boubchir, L.; Elbendak, M.; Bouridane, A. Multispectral palmprint recognition using Pascal
coefficients-based LBP and PHOG descriptors with random sampling. Neural Comput. Appl. 2017, 1–11.
[CrossRef]

41. Zhang, D.; Guo, Z.H.; Lu, G.M.; Zhang, L.; Zuo, W.M. An online system of multispectral palmprint
verification. IEEE Trans. Instrum. Meas. 2010, 59, 480–490. [CrossRef]

42. Minaee, S.; Abdolrashidi, A.A. Multispectral palmprint recognition using textural features. In Proceedings
of the 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA,
13 December 2014; pp. 1–5.

43. Minaee, S.; Abdolrashidi, A.A. On the power of joint wavelet-DCT features for multispectral palmprint
recognition. In Proceedings of the 2015 49th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, USA, 8–11 November 2015; pp. 1593–1597.

44. Li, C.; Benezeth, Y.; Nakamura, K.; Gomez, R.; Yang, F. A robust multispectral palmprint matching algorithm
and its evaluation for FPGA applications. J. Syst. Archit. 2018, 88, 43–53. [CrossRef]

45. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing
2006, 70, 489–501. [CrossRef]

46. Zhang, D.; Kong, W.K.; You, J.; Wong, M. Online palmprint identification. IEEE Trans. Pattern Anal. 2003, 25,
1041–1050. [CrossRef]

47. Donoho, D. For most large underdetermined systems of linear equations the minimal `1-norm solution is
also the sparsest solution. Commun. Pur. Appl. Math. 2006, 59, 797–829. [CrossRef]

48. Yang, M.; Zhang, L.; Yang, J.; Zhang, D. Robust sparse coding for face recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June
2011; pp. 625–632.

49. Xu, Y.; Zhong, Z.F.; Jang, J.; You, J.; Zhang, D. A new discriminative sparse representation method for robust
face recognition via `2 regularization. IEEE Trans. Neural Netw. Learn Syst. 2017, 28, 2233–2242. [CrossRef]

50. l1_ls: Simple MATLAB Solver for l1-Regularized Least Squares Problems. Available online: http://web.
stanford.edu/~{}boyd/l1_ls/ (accessed on 15 May 2008).

51. Yang, A.Y.; Zhou, Z.H.; Balasubramanian, A.G.; Sastry, S.S.; Ma, Y. Fast `1-minimization algorithms for
robust face recognition. IEEE Trans. Image Process. 2013, 22, 3234–3246. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/ACCESS.2017.2787666
http://dx.doi.org/10.1016/j.neucom.2016.05.005
http://dx.doi.org/10.1016/j.neucom.2014.09.013
http://dx.doi.org/10.1016/j.patcog.2013.12.011
http://dx.doi.org/10.3390/s120404633
http://www.ncbi.nlm.nih.gov/pubmed/22666049
http://dx.doi.org/10.1155/2018/8041609
http://www.ncbi.nlm.nih.gov/pubmed/29977278
http://dx.doi.org/10.1007/s00521-014-1570-8
http://dx.doi.org/10.1007/s00521-017-3092-7
http://dx.doi.org/10.1109/TIM.2009.2028772
http://dx.doi.org/10.1016/j.sysarc.2018.05.008
http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1109/TPAMI.2003.1227981
http://dx.doi.org/10.1002/cpa.20132
http://dx.doi.org/10.1109/TNNLS.2016.2580572
http://web.stanford.edu/~{}boyd/l1_ls/
http://web.stanford.edu/~{}boyd/l1_ls/
http://dx.doi.org/10.1109/TIP.2013.2262292
http://www.ncbi.nlm.nih.gov/pubmed/23674456


Sensors 2019, 19, 235 25 of 25

52. Zhang, L.; Yang, M.; Feng, X.C. Sparse representation or collaborative representation: Which helps face
recognition? In Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain,
6–13 November 2011; pp. 471–478.

53. Cortes, C. Support vector network. Mach. Learn. 1995, 20, 273–297. [CrossRef]
54. Kolda, T.G.; Bader, B.W. Tensor decompositions and applications. SIAM Rev. 2009, 51, 455–500. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1137/07070111X
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Acquisition Device of Multispectral Palmprint Images 
	Proposed Algorithm 
	Robust L2 Sparse Representation Method 
	SRC Model 
	Robust L2 Sparse Representation Method 

	Image Fusion Based on Adaptive Weighted Method 
	Principle of Tensor Based ELM 
	ELM 
	Tensor Based ELM 


	Experiments 
	The PolyU Multispectral Palmprint Database 
	Parameter Selection 
	Selection of  and  for Residual Function 
	Selection of the Hidden Node Numbers Along the Directions of TELM 

	Experiment Results and Analysis 

	Conclusions 
	References

