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Abstract: Perimeter barriers can provide intrusion detection for a closed area. It is efficient for
practical applications, such as coastal shoreline monitoring and international boundary surveillance.
Perimeter barrier coverage construction in some regions of interest with irregular boundaries can
be represented by its minimum circumcircle and every point on the perimeter can be covered. This
paper studies circle barrier coverage in Bistatic Radar Sensor Network (BRSN) which encircles
a region of interest. To improve the coverage quality, it is required to construct a circle barrier with
a predefined width. Firstly, we consider a BR deployment problem to constructing a single BR circular
barrier with minimum threshold of detectability. We study the optimized BR placement patterns
on the single circular ring. Then the unit costs of the BR sensor are taken into account to derive
the minimum cost placement sequence. Secondly, we further consider a circular BR barrier with
a predefined width, which is wider than the breadth of Cassini oval sensing area with minimum
threshold of detectability. We propose two segment strategies to efficiently divide a circular barrier
to several adjacent sub-ring with some appropriate width: Circular equipartition strategy and an
adaptive segmentation strategy. Finally, we propose approximate optimization placement algorithms
for minimum cost placement of BR sensor for circular barrier coverage with required width and
detection threshold. We validate the effectiveness of the proposed algorithms through theory analysis
and extensive simulation experiments.

Keywords: circle barrier coverage; bistatic radar sensor; minimum cost placement

1. Introduction

Barrier Coverage is an important sensor deployment issue in many industrial, consumer, and
military applications, such as machine management, health care monitoring, battlefield surveillance [1],
etc. Recent years have witnessed a trend that radar sensors have been increasingly deployed in
guarding militarized zones, and monitoring hazards warehouse and frontier [2–5]. Traditional passive
sensors typically leverage on a disk sensing model. In contrast, Bistatic Radar (BR) sensors use
a Cassini oval sensing model [6]. The sensing region of a BR sensor depends on the locations of
both the BR transmitter and receiver, and is characterized by a Cassini oval. Moreover, since a BR
transmitter (or receiver) can potentially form multiple BRs with different BR transmitters (or receivers,
respectively), the sensing regions of different BRs are coupled, making the coverage of a BR network
(BRN) highly non-trivial.

Some recent works on BR sensor coverage are mainly focused on line barrier. In [7], a minimum
cost placement algorithm was developed for line barrier coverage. To improve quality, a belt with
a predefined breadth is considered and covered by several same lines. In [8], the authors studied both
fault tolerance and energy-saving issues combining the minimum cost placement of BR sensors for belt
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barrier coverage. They focus only on the line-based barrier coverage that cannot be completely applied
to other application scenarios, such as perimeter barrier which can encircle the whole protected region.

Perimeter barrier consisting of BR sensors can provide intrusion detection for a closed area. It is
efficient for practical applications, such as coastal shorelines monitoring and international boundary
surveillance. Perimeter barrier coverage construction in some regions of interest whose irregular
boundary can be represented by its minimum circumcircle and bistatic radars are to be deployed on the
circumcircle perimeter to construct a perimeter barrier coverage such that every point on the perimeter
can be covered [6]. Given the characteristics of a Cassini oval model, it is challenging to optimize the
radar sensors deployment in the circle perimeter barrier coverage. In addition, to improve coverage
quality, we need to construct several circular BR barriers which form a circular ring with some width to
achieve higher reliability of monitoring. Moreover, to efficiently construct a cost-efficient circle barrier,
the unit costs of the BR transmitter and receiver also should be considered in the barrier optimization
stage. These factors in the real applications affect the design of barrier coverage algorithms or models.

In this paper, we study a minimum cost BR sensor placement algorithm to construct a circular
BR coverage with a predefined breadth, to improve coverage quality of perimeter monitoring for
a protected area with minimum threshold of detectability. Firstly, we consider a BR deployment
problem to constructing a single BR circular barrier with minimum threshold of detectability. We study
and prove the optimized BR placement patterns on the single circular ring. Then the unit costs of
the BR sensor are taken into account to derive the minimum cost placement sequence. Secondly, to
enhance the coverage quality, we consider an annulus BR sensor barrier with a predefined breadth,
which is wider than the breadth of Cassini oval sensing area with minimum threshold of detectability.
In [7], the authors study the BR deployment scheme of line barrier and how to construct a belt coverage
with predefined width. But how to efficiently segment an annulus ring to several adjacent sub-rings
with some appropriate width so as to ensure the minimum cost annulus BR barrier coverage is also
challenging. We propose two segment strategies: (1) A circular equipartition strategy such that the BR
sensors deployed on a circle can form a barrier with some breadth, and one or more such circles can
form an annulus barrier with the required breadth; and (2) an adaptive segmentation strategy such
that multiple circle barriers with appropriate breadths can optimum form an annulus barrier with the
required breadth. Finally, we propose optimization algorithm to optimize the segmentation of circular
ring and BR placement pattern on each circle to minimize the total placement cost, and to achieve
approximate optimal circular coverage with predefined width and detectability.

The proposed algorithms are validated by simulation results. To the best of our knowledge, this
appears the first paper to investigate the minimum cost circle barrier coverage problem. The main
contributions of our work are summarized as follows.

• Firstly, we investigate the Cassini oval sensing models and discuss a variety of barrier coverage
cases. We discover and prove the optimized BR placement patterns and sequence on a circular
ring. Then the unit costs of the BR sensor are taken into accounts to derive the minimum cost
placement sequence, which is then used to design an algorithm for any minimum cost placement
in circle-based barrier construction.

• Secondly, we further study the optimal BR placement on an circular barrier with a predefined
breadth. We propose two division strategies, circular equipartition strategy and an adaptive
segmentation strategy, to segment an annulus ring to several adjacent sub-ring with appropriate
width so as to ensure the minimum cost annulus BR barrier coverage with required
detection threshold.

• Finally, we propose approximate optimization placement algorithms for minimum cost placement
of BR sensor for annulus barrier coverage with required width and detection threshold. We validate
the effectiveness of the proposed algorithms through extensive simulation experiments.

The rest of paper is organized as follows: Section 2 reviews the related work. Section 3 introduces
the system model and problem description. Section 4 describes the optimal placement sequence on the
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single circle-based barrier and Section 5 provides the solution to the minimum placement cost problem
and simulation experimente. Section 6 concludes the paper.

2. Related Work

Barrier coverage is an important issue in many wireless sensor network applications, such as
border intrusion detection and environmental safety monitoring. We review the related work in
barrier coverage based on the following three models—the disk cover model [9–14], the sector cover
model [15–18], and the BR sensor cover model [6,19,20].

We first review the work leveraging on the disk cover model. In [9], the authors considered the
barrier coverage problem of heterogeneous wireless sensor networks, and used Helly’s Theorem to
solve the problem of k-coverage based on heterogeneous sensors and data acquisition. The authors
in [10] described a new deployment method of probabilistic sensor to improve network coverage.
In [11], the maximum life scheduling of target coverage and data collection was proposed. In [12],
to address the problem of maximizing the life cycle of barrier coverage, the authors proposed two
sleep-wake scheduling algorithms named Stint and Prahari, and then proposed three enhanced
algorithms, i.e., Greedy-Cover-Eraser, Greedy-Edge-Eraser, and MaxFlow-Edge-Eraser. In [13],
the authors firstly introduced the concept of strong and weak barrier coverage, and then deduced
the critical conditions to construct weak barrier coverage. The authors in [14] introduced the concept
of local barrier coverage nad proposed a local algorithm a protocol to maximize the life of barrier
coverage. In [21], the authors introduced a heterogeneous barrier-coverage in which guarantees
that any penetration variation of intruder is detected by at least one sensor with different sensing
capabilities. The authors in [22] considered the problem of intrusion in transversal directions. They
introduced the concept of crossed barrier coverage which can prevent an intruder from crossing the
entire target area from a specific direction without being detected. In addition, they also proposed
a multi-round shortest path algorithm (MSPA) to solve the optimization problem, which works
heuristically to guarantee efficiency while maintaining near-optimal solutions. The authors in [23]
introduced a new type of barrier, virtual emotion barrier, which is able to detect emotion by devices
with wireless signal in Internet of Things (IoT) environment. They formally defined a problem whose
objective is to construct virtual emotion barrier in the given area including IoT devices such that the
detection accuracy of emotion by virtual emotion barrier is maximized. To solve the problem, they
proposed a greedy-emotion-accuracy approach.

We now move to the studies leveraging on the sector cover model. The authors in [15] proposed
a polynomial-time algorithm to determine the orientation of the sensors to build strong barrier coverage.
In [16], the authors mainly adopted the sector coverage model and guaranteed the communication
of the whole network by constructing connected dominating set. In [17], the authors proposed
a distributed β-breadth belt-barrier construction algorithm without rotation (D-TriB) to improve the
image quality in the wireless vision sensor network. In [18], the authors studied the exposure path
prevention problem based on directional sensor network coverage, and mapped the exposure path
problem into the sector-based percolation model, and then deployed the critical density boundary of
the directional sensors according to the two-dimensional Poisson process.

Some recent work considers the problem of mobile sensor coverage. For example, in [24],
the authors deployed a sensor network which consists of both mobile and static sensors, and the mobile
sensors can move from a dense area to a sparse area to improve coverage rate. In [25], the authors
proposed a distributed algorithm for building k-coverage based on mobile sensors. In [26], a fully
distributed algorithm based on virtual force and convex analysis is developed for the objective to
relocate the sensors from the original positions to uniformly distribute on the convex hull of the
region to building the barrier. In [6], the authors discussed how to construct a barrier on the smallest
circumcircle of the area which is protected to minimize the cost. At the same time, the minimum
matching algorithm is given to calculate the minimum total moving distance of the barrier formed
by mobile sensors. In [27], the authors introduced a new architecture of barrier, event-driven partial
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barrier, which is able to monitor any movements of objects in the event-driven environment. Also,
a resilient event-driven partial barrier is introduced to consider the case that the constructed barriers
collapsed due to failures of some sensors consisting of those barriers. We know that existing works on
barrier coverage typically assume that sensor nodes have accurate location information, which is not
reasonable or practical for many real sensor networks. In [28], the authors studied the barrier coverage
problem when sensor nodes have location errors and deploy mobile sensor nodes to improve barrier
coverage if the network is not barrier-covered after initial deployment. They analyzed the effects of
location errors for barrier coverage and propose a fault-tolerant weighted barrier graph to model the
barrier coverage formation problem.

Recently, the technology of BR sensor began to receive wider attention. In [19], the authors
considered the problem of deploying a network of BRs in a region to maximize the worst-case intrusion
detectability, while minimizing the vulnerability of a barrier. In [20], the authors proposed a random
Voronoi algorithm to calculate the optimal position of transmitters and receivers so that the maximum
distance between all the points of interest in the area to their nearest sensor pair is minimized.

The general problem of barrier coverage does not require the coverage width of the barrier, but
only needs to ensure that the behavior of the object across the boundary can be monitored. For example,
in [6], to protect an irregular region, the author selected the boundary of the smallest circumscribed
circle of the region to construct a barrier, and proposed a matching algorithm to calculate the minimum
cost of resetting sensors under the condition of disrupting the sensor sequence. Since there is only one
barrier, it has a great potential safety hazard for intruder invaders and emergencies. On the basis of
this, in [7], the authors discussed the problem of straight-line barrier with a certain width and proposed
a corresponding effective solution. Our work is motivated by the first two papers, but differs in several
aspects. First, we focus on different background of the problem. We address the problem of annulus
barrier coverage which in particular poses an unprecedented challenge compared to the traditional
background of barrier coverage. Secondly, the calculation of the effective width and length will be
more challenging than that in the straight barrier coverage, requiring an innovative solution to the
boundary problem of the circle. In addition, we consider minimum cost coverage which is essential to
real deployment. Our intuition is to divide the annulus barrier into a number of circles. Since each
circle’s radius is different, it is difficult to achieve the complete coverage while minimizing cost.

3. Sensor Model and Problem Description

We define some variables used in the paper in Table 1.

Table 1. Symbols and descriptions.

Symbols Descriptions

Ti(Rj) The ith BR transmitter (jth receiver)
H The width of circular barrier coverage
ε The detection threshold of SNR
l(A) The detectability of A
lmax The maximum threshold
d(T, R) The distance between T and R
CT(CR) The unit price of BR transmitter(receiver)
M(N) The number of BR transmitter(receiver)
q The number of circles
S The deployment sequence of BR sensors
Pn

i The optimal deployment sequence of BRs
h The width of circle
Rmin The inner radius of circle
Rmax The outer radius of circle
r Rmin+Rmax

2
θi The center angle of a circle
θmax The maximum angle which the sequence Pn

i can cover
dn The effective coverage width of Pn

i
Ln The effective coverage length of Pn

i
µ The upper bound of the number of circles
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3.1. Sensor Model

In the BR sensor model, the transmitter and sensor can be placed in different positions. Let XY
denote the line segment between point X and point Y. ‖XY‖ denotes the European distance of the line
segment, and Ti and Rj denote transmitter Ti and receiver Rj, respectively.

According to [29], for a pair of BR sensor Ti−Rj, the signal-to-noise ratio (SNR) of a monitocircular
point can be computed as follows:

SNR(A) =
K

‖ Ti A ‖2 · ‖ Rj A ‖2 (1)

Here, K is a constant determined by the physical properties of the BR sensor, such as the energy
of sensor, the radar sensor cross section and the antenna’s power gain. ‖TiA‖ represents the European
distance of the monitocircular point A to transmitter Ti. ‖RjA‖ represents the European distance from
the monitocircular point A to receiver Rj.

In a Bistatic Radar Sensor Network (BRSN), we assume that all sensors operate at an orthogonal
frequency [30,31] to avoid mutual interference between receivers. We also assume that all the
transmitters and receivers have the same physical attributes. Because a transmitter can match multiple
receivers, a receiver can also match multiple transmitters. In the fourth part, we only consider receiving
the signal from the nearest two transmitters for a receiver. Consider circular the signal-to-noise
ratio (SNR) of any monitocircular points A, according to [19,32], we can select the maximum SNR
for this point as its SNR, as it can be monitored by many pairs of radar sensors. We define SNRmax

A
as follows.

SNRmax
A = max

(Ti ,Rj)

K

‖ Ti A ‖2 · ‖ Rj A ‖2 (2)

Thus, if a point of interest A can be monitored, then SNRmax
A ≥ ε should be satisfied, where ε is

the given threshold of SNR. We set the SNR threshold of the barrier to ε.
For convenience in the paper, we introduce the concept of detectability where the detectability of

a point A is described as follows.

l(A) = min
(Ti ,Rj)

‖ Ti A ‖ ·‖ Rj A ‖ (3)

Consider the requirement of minimum threshold, we obatin the threshold of detectability as:

l2
max =

…
K
ε

(4)

where ε is the given threshold ε of SNR. It is clear that we need to satisfy l(A) ≤ l2max to make the point
of interest A be covered, which is equivalent to SNRmax

A ≥ ε.
Under the given threshold of SNR, according to [9], with change in the distance between

transmitter and receiver sensor, the coverage area of the BR sensor model can be divided into four
cases, as shown in Figure 1.

(a) d(T, R) > 2lmax, the coverage area is two disjointed parts;
(b) d(T, R) = 2lmax, the coverage area is surrounded by the Bernoulli double new line;
(c)

√
2lmax < d(T, R) < 2lmax, the coverage area is surrounded by the waist closed curve;

(d) 0 < d(T, R) <
√

2lmax, the coverage area is surrounded by the elliptical curve,
where d(T, R) represents the distance between the transmitter and the receiver.

For the particular problem we study in this paper, we need to consider three sensor coverage
cases, i.e., (a), (c), and (d).
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Figure 1. (a) d(T, R) > 2lmax; (b) d(T, R) = 2lmax; (c)
√

2lmax < d(T, R) < 2lmax; (d) 0 < d(T, R) <
√

2lmax.

3.2. Problem Definition

To improve coverage quality for a particular protected region D, we aim to construct a BR circular
barrier P with the breadth not smaller than a predefined width H, while the minimum detection SNR
within the circular barrier coverage is not less than a threshold ε. Furthermore, the unit cost of a radar
transmitter may be different from a receiver. Then the bistatic radar placement problem is to construct
a circular barrier with the minimum total cost of all BR sensors deployed, as shown in Figure 2a.
Besides, to satisfy H width circular coverage with predefined sensing threshold ε, the circular barrier
may be composed of multiple adjacent sub-circles barrier, as shown in Figure 2b. Hence, it is highly
non-trivial to optimize the segmentation of the whole circular barrier into multiple adjacent sub-circles
barrier and placement of BR transmitters and receivers on the sub-circles.

Figure 2. (a) The monitoring area D and the annulus barrier coverage P of width H; (b) A deployment
scheme the monitoring area D, the annulus barrier coverage P, solid circle represents transmitter and
triangle represents receiver.

Usually, the unit cost of transmitter is higher than that of receiver. We quantify their costs using
λ = CT/CR > 1, where CT represents the unit cost of transmitter and CR represents the unit cost of
receiver. Given that we have M transmitters and N receivers, the minimum cost coverage problem can
be then formulated as follows.

minimize MCT + NCR
s.t. l(A) ≤ l2

max ∀A ∈ P
(5)

Here, l(A) ≤ l2max is equivalent to SNRmax
A ≥ ε. We must ensure that the detecting SNR of each point

on the BR barrier is greater than or equal to ε.
Given the constraints of BR’s physical parameters and predefined width H of circular BR barrier,

a single barrier is often insufficient to meet the circular coverage requirements. In belt barrier coverage,
Ammari [9] divides the original belt barrier into several identical parallel sub-barriers, and uses the
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same sensor placement sequence on each sub-barrier. Comparing to the belt barrier, the division
problem of circular barrier and BR’s placement problem of multiple sub-circles are more complex to
solve. First, the circular barrier may be divided into multiple sub-circles with different width and
different length, hence how to divide the circular barrier into multiple sub-circles and how to determine
BR’s placement sequence for those sub-circles are non-trival issues. Second, the minimum number of
sensors required for each sub-circle may be different, requiring each circle to be handled individually.
We demonstrate a possible solution in Figure 2b where circle represents transmitter, triangle represents
receiver, and the circular with width H is the barrier area we intend to build. We can see that BR
sensors are placed with different sequences in different sub-circles, and the number of BR transmitters
and receivers in each sub-circle is different.

3.3. Basic Deployment Pattern Ti − Rn − Ti+1

We consider placing sensors on a single circle. For convenience, we set transmitter T1 as the first
transmitter with coordinate (r, 0). Similar to [7], we use S to represent the placement sequence of
sensors, for example, S1

.
= (T1, R1, R2,T2), S2

.
= (R1, T1, T2, R2), and etc. For two placement sequences

(T, R) and (R, T), they both have the same coverage effect according to the SNR Equation (1) and the
characteristics of the Cassini oval line (Figure 1). We hence derive that (T, Rn) and its mirror mode
(R, Tn) have the consistent coverage area. Without lossing generality, we focus on the following two
placement sequences: S1 = (Ti, R1, R2, R3, ..., Rn, Ti+1), S2 = (Ri, T1, T2, T3, ..., Tn, Ri+1), where Ti and
Ti+1 represent the ith and the i + 1th transmitter, respectively, and Ri, Ri+1, represent the ith and the
i + 1th receiver. The two sequences have the same coverage effect.

However, since the unit cost of transmitter is higher than that of receiver, sequence S1 is selected.
For convenience, we set the placement sequence as Pn

i = (Ti, Rn, Ti+1), where Ti is shared by Pn1
i−1 and

Pn2
i . The placement sequence of circular barrier coverage may be composed of several sequences P

nj
i ,

for example the sequences of sensors (T1, R1, R2, R3, R4, T2), (T2, R5, R6, R7, R8, T3), and (T3, R9, T1),
as shown in Figure 3.

Figure 3. A deployment scheme of circle: The monitoring area D, solid circle represents Bistatic Radar
(BR) transmitter and triangle represents BR receiver.

Next, in Section 4, we focus on how to solve the barrier placement problem on a single sub-circle
barrier of width h. Then, in Section 5, we propose two strategies to divide circular barrier into
multiples sub-circles and solve the minimum cost placement problem of circular barrier with width H
and predefined detection threshould.

4. Solution for Single Circle with Width h

In this section, we focus on the sensor optimized deployment on a single circle with width h.
We need to use basic deployment pattern Pn

i = (Ti, Rn, Ti+1) to complete the deployment. First,
we will consider how to deploy the first pair of sensors Ti − R1. In Section 4.1, we determine how
to choose the most suitable deployment model through detailed analysis. We mainly discuss the
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waist model (Section 4.1.1) and elliptical model (Section 4.1.2). Then, in Section 4.2.1, we determine
the deployment location of other sensors in deployment pattern Pn

i through detailed mathematical
calculation. The effective coverage width (Section 4.2.2) and effective coverage length (Section 4.2.3) of
pattern Pn

i are calculated, and the coverage validity proof of pattern Pn
i is given (Section 4.2.2). Since

a single circle may require multiple patterns Pn
i to complete deployment, we discuss the combination

of multiple patterns Pn
i in Section 4.3 and give detailed mathematical proof. We know that a single

circle may not be deployed in integer pattern Pn
i , so in Section 4.4, we discuss the coverage of the

boundary part whose length is less than the coverage length of pattern Pn
i , and give a suitable coverage

method through detailed mathematical calculation.

4.1. Ti − R1 Coverage Model

We first determine the coverage model of the first pair of sensors Ti − R1 in sequence Pn
i .

As mentioned in Section 3.1 for several effective sensor coverage patterns, we discuss model (c)
and (d) as follows.

4.1.1. Case of Waist

In this case, the sensor’s covecircular area exhibits the shape of a waist, as shown in Figure 1c.
An intuition is to place sensors in the middle of the circle so that we can make rational use of the
effective coverage area of each sensor, and also facilitate efficient processing and calculation.

We start placing sensors in a counterclockwise direction, i.e., the first transmitter T1(r, 0), followed
by the first receiver, and etc.

Theorem 1. For a pair of sensors T − R, the vulnerability in the two points where the midnormal of line
segment TR intersects with the covecircular area is the largest, and it is also the place where the signal-to-noise
ratio is the smallest.

Proof of Theorem 1. The proof of Theorem 1 is given in the Appendix A.

We denote the two points in Theorem 1 as X1 and X1
′, respectively. In Figure 4a, we only need to

consider how to determine the location of these two points X1, X1
′. We divide the problem into three

cases as follows.

1.1 Suppose that there is only one point between X1 and X1
′ at the inner and outer boundaries of

the annulus, and we find that point X1 at the outer boundary is better than point X1
′ at the inner

boundary, as shown in Figure 4a(1). Since point X1
′ is on the inner boundary, T− R cannot meet

the coverage requirement, one of the cases is shown in Figure 4a(3).
1.2 Suppose that the two points X1 and X1

′ are not inside and outside the boundary of the annulus.
To meet the coverage requirements, X1 must be outside of the outer boundary and X1

′ must be
inside of the inner boundary, as shown in Figure 4a(2). However, it draws closer to the distance
between T − R, compared to the first case, the length of the cover is smaller.

1.3 Suppose that the two points X1 and X1
′ are in the inner and outer boundaries of the annulus

separately, as shown in Figure 4a(1). In this case, X1
′ is on the location of point A, but X1 cannot

be on the outer boundary of the annulus, hence it is not feasible.

Based on the above three cases, we conclude that the best solution is that point X1 is on the
outer boundary of the annulus, and point X1

′ is inside the inner boundary of the annulus to meet the
coverage requirements.
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Figure 4. Solid circle represents BR transmitter and triangle represents BR receiver. (a) The sensor
location schematic diagram (waist); (b) The sensor location schematic diagram (ellipse).

4.1.2. Case of Ellipse

The coverage area of the sensors is oval in this case, as shown in Figure 1d. We also denote two
points as X1 and X1

′. Similarly, we discuss three cases as follows.

2.1 Suppose that there is only one point between X1 and X1
′ inside and outside the boundary of the

annulus. We find that when point X1 on the outer boundary of the annulus, the covering area is
tangent to the outer boundary of the annulus at point X1. It is obvious that it does not meet the
coverage requirements, as shown in Figure 4b(1), and the same conclusion can be drawn when
point X1

′ is on the inner boundary, as shown in Figure 4b(2).
2.2 Assuming that the two points X1 and X1

′ are not inside and outside the boundary of the annulus,
it is possible to satisfy the coverage condition at this point, but the coverage length is shorter
than that of the waist model, as shown in Figure 4b(3).

2.3 Suppose that both points X1 and X1
′ are inside and outside the boundary of the annulus, similar

to the case of the waist coverage. This case is not feasible.

To conclude the above cases we have discussed, we will focus on the waist coverage in the
remaining of the paper.

4.2. Placement Pattern of Pn
i = (Ti, Rn, Ti+1)

In this section, we present the deployment scheme for sequence Pn
i , including determining the

specific location of transmitters and receivers, proposing the method to compute the effective coverage
width and length, and also providing the proof of the coverage reliability of sequence Pn

i . Here,
the coverage area formed by the second receiver R2 and transmitter Ti may be a waist region or two
separate regions, as shown in Figure 1a,c. For convenience, we choose the latter to discuss.

4.2.1. Determining Sensor Locations

Given sequence Pn
i = (Ti, R1, R2, ..., Rn, Ti+1), the arc is divided into several successive sub-arcs.

We aim to determine the location of the radar sensors to cover the entire circular portion. We first
introduce the concept of the central angle. For the arc of sequence Pn

i , we use (2θ1, 2θ2, ..., 2θn+1)

to represent the sequence of its central angle, where θ1 = 1
2∠TiOR1, θ2 = 1

2∠R1OR2, . . . ,
θn = 1

2∠Rn−1ORn, θn+1 = 1
2∠RnOTi+1, as shown in Figure 5a. To determine the location of the

corresponding sensors, we need to get the values of these central angles. We compute the central
angles based on Theorem 2.

Theorem 2. For a sequence Pn
i , the central angles can be calculated as follows: (1) If n is odd, then θ1 = θn+1,

θ2 = θn, ... , θ n+1
2

= θ n+1
2 +1, (2) if n is even, then θ1 = θn+1, θ2 = θn, ... , θ n

2
= θ n

2 +2, θ n
2 +1 = θ n

2 +1, where
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θx is the central angle, x = 1, 2, ...,
†

n+1
2

£
, r is the length between the central position of the part of annulus and

the center of the circle, Rmax is the length between the outer boundary of the annulus and the center of the circle.

θx =



arccos r2+R2
max−l2

max
2rRmax

, x = 1

arccos

á
(R2

max+r2) cos
x−1∑
i=1

θi−

 
(Rmax+r)2(Rmax−r)2(cos2

x−1∑
i=1

θi−1)+l4
max

2rRmax

ë
−

x−1∑
i=1

θi, x > 1
(6)

Proof of Theorem 2. The proof of Theorem 2 is given in the Appendix A.

Figure 5. The deployment scheme of T1− R4− T2: (a) The center angle; (b) The effective coverage width.

For the upper and lower bounds of n in Theorem 2, it is difficult to give the maximum value
nmax of n explicitly. We first determine the physical properties of the sensors and the inner and outer
radius of the annulus are determined so that we can obtain the maximum central angle of sequence
Pn

i . We then derive the maximum value of n under this condition, which is the maximum number of
receivers in a single sequence Pn

i . Theorem 3 gives the computing equation.

Theorem 3. For a sequence Pn
i , the largest circle angle can be covered by it is 2θmax, the maximum number of

receivers can be derived by the following equation:
nmax+1∑

i=1
2θi = 2θmax, where θmax can be calculated as follows.

θmax = arccos

Ç
(R2

max + r2) · (Rmax − r)2 − l4
max

2rRmax · (Rmax − r)2

å
(7)

Proof of Theorem 3. The proof of Theorem 3 is given in the Appendix A.

4.2.2. Effective Coverage Width of Pn
i = (Ti, Rn, Ti+1) and Coverage Quality

We now discuss the coverage quality of sequence Pn
i , i.e., whether the minimum width of the

coverage area is greater than the width of the circle.
We first discuss the effective coverage width of sequence Pn

i . In Pn
i , the coverage area of each pair

of sensors T− R is different. With the number of receivers increased, the width of the receiver which
is farther away from the transmitter is smaller. Therefore, we only need to find out the minimum
coverage width of sequence Pn

i when the number of receivers is determined, that is also the coverage
width of the receiver in the middle of sequence Pn

i , i.e., the effective coverage width of sequence Pn
i .

As shown in Figure 5b, the value of n is four, the cover sequence is P4
i . We observe that the middle

position of sequence is where the line segment X3X3
′ is in, and the width of the coverage is the length
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of line segment X3X3
′. It is obvious that the actual width of the coverage is greater than the width of

the annulus, and this is in fact the effective coverage width.
For sequence Pn

i , the effective coverage width is the length of line segment XmidXmid
′, but the

calculation of this value is very complicated. For convenience, to meet the coverage requirements, we
introduce the concept of two times value. Assuming that the intersection point between line segment
XmidXmid

′ and the two nearest receivers is Kmid, we use 2 ‖XmidKmid‖ as an approximate value for the
length of line segment XmidXmid

′. For example, in Figure 5b, we use 2 ‖X3K3‖ as an approximate value
for the length of line segment X3X3

′. Please note that an analysis of the approximate method is given
in the Appendix A. We hence obtain the equation to compute the effective coverage width of sequence
Pn

i , which is given in Theorem 4.

Theorem 4. For sequence Pn
i , to meet the coverage requirements, when n takes different values, the effective

coverage area width is given as follows.

dn = 2(Rmax − r · cos θ n
2 +1), 1 ≤ n ≤ nmax (8)

Proof of Theorem 4. The proof of Theorem 4 is given in Appendix A.

We have now obtained the effective coverage width of sequence Pn
i . To verify the reliability of the

sequence coverage, we only need to compare the effective coverage width with the width of the circle,
which is described in Theorem 5.

Theorem 5. In sequence Pn
i , until the number of receivers n is taken to the upper bound, Pn

i always meets the
requirements of coverage, i.e., the coverage of sequence Pn

i is reliable.

Proof of Theorem 5. The proof of Theorem 5 is given in Appendix A.

4.2.3. Effective Coverage Length of Pn
i = (Ti, Rn, Ti+1)

In Sections 4.2.1 and 4.2.2, we give the location of sensors in sequence Pn
i , the method to compute

the effective coverage width, and provide the proof of the sequence coverage quality. We now
determine the effective coverage length of sequence Pn

i when the number of receivers n is determined.
We leverage the central angle to solve this problem. As shown in Figure 6a, we observe a pair

of sensors T1 − R1 intersect the circle at two points X0, X0
′. We need the line segments X0X0

′ as the
starting position to compute the effective coverage length, but this computation is very cumbersome,
requiring simplifying. We consider that in real applications, it requires multiple sequences to complete
the deployment of the barrier, and multiple sequences will be end to end. In Figure 6a, the coverage
area of the last sequence at least needs to cross point X0, existing coverage areas overlap. We connect
point X0 to the center O, and it will intersect the circular at point X0 and point P. Because the line
segment X0P is still in the coverage of the sensors, we can consider line segment X0P as the starting
position to compute the effective coverage length. By symmetry, we find that θ = θ2. Since the other
angle has been given by the equation in Theorem 2, we can obtain the effective coverage length of
sequences Pn

i by using the above conditions. Theorem 6 gives the computing equation.

Theorem 6. For sequence Pn
i , when the number of receivers n takes different values, the length of the effective

coverage area is calculated as follows, where n = 1, 2, ..., nmax, nmax represents the maximum number of
receivers, hence meeting the coverage conditions.

Ln =


2r · (2

n+1
2∑

i=1
θi + θ2), n is odd

2r · (2
n
2∑

i=1
θi + θ n

2 +1 + θ2), n is even

(9)
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Proof of Theorem 6. The proof of Theorem 6 is given in Appendix A.

Figure 6. (a) The effective coverage length; (b) The overlay boundary.

4.3. Optimal Placement Sequence on Single Circle with Width h

We have so far solved the deployment of a single sequence P
nj
i . We know that a circle may

have multiple P
nj
i sequences. We use sequence Y = (n1, n2, ..., nt) to represent the coverage sequence

on a single circle, denoted as (Pn1
i , Pn2

i+1, ..., Pnt
t−1). To addess this problem, we first need to find out

the numerical relation between n1, n2, ..., nt in order to determine the optimal placement sequence.
We formally formulate this problem as follows. Suppose we have M1 transmitters and N1 receivers,
and we use sequence Y = (n1, n2, ..., nt) to form a barrier with width h, how do we maximize the
length of this barrier?

Let us consider the general sequence S = (T1, Rn1 , T2, Rn2 , T3), where n1, n2 is the number of
receivers. Assume that n1 is odd, n2 is even, and n1 < n2. We can construct another sequence, it is

S′ = (T1, R
n1+n2−1

2 , T2, R
n1+n2+1

2 , T3), where n1+n2−1
2 and n1+n2+1

2 are odd or even. We define ψ1, ψ2

represent the coverage angle of sequence S and S′, respectively, we can compare the coverage length
of the two sequence by comparing the value of the two parameters. We now have Theorem 7.

Theorem 7. For sequences S and S′, assuming that n1 is odd, n2 is even, and n1 < n2, we have (1) If
n2 − n1 = 1, then ψ1 = ψ2; (2) If n2 − n1 > 1, then ψ1 < ψ2.

Proof of Theorem 7. The proof of Theorem 7 is given in the Appendix A.

When both n1 and n2 are even or odd, we can also use the proof of Theorem 7 to prove:
If |n1 − n2| ≤ 2, then ψ1 = ψ2; if |n1 − n2| > 2, then ψ1 < ψ2. Therefore, we find that with M1

transmitters and N1 receivers, without considering the boundary problem, we can get the longest
coverage barrier by using multiple same deployment sequences, and this deployment sequence is also
known as the optimal deployment sequence. We therefore use this optimal deployment sequence in
this paper.

4.4. Overlay Boundary Problem on Single Circle with Width h

In this section, we prove that the same sequence should be used as much as possible to complete
the deployment. We first determine how many identical sequences are needed to complete the
deployment and deal with the problem of the overlay boundary, as shown in Figure 6b.

Suppose the deployment sequence of a circle is S = A + B, where A = xPn
i , representing x

sequence Pn
i , and B is the remainder. We use C to represent the coverage angle of a single sequence

Pn
i , use D to represent the angle of the overlapping part, and use Lt to represent the angle of the

remainder. We can get C = Ln/r, Lt = 2π − x · C + D, D = 2(x− 1) · θ2. Because of Lt ≤ C, it is only
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necessary to place the appropriate receivers in the remaining part. But we cannot directly compare
Lt = 2π − x · C + D with the angle of sequence Pn

i to determine the number of receivers due to
the overlap of x optimal sequences, for example, if −2θ2 < Lt < 0, it still satisfies the coverage
requirements. We hence get a reasonable range of the remaining angle, i.e., −2θ2 ≤ Lt ≤ 2an − 2θ2,
where an is given in Theorem 8.

Theorem 8. For the circle which is covered by sequence Pn
i , the number of receivers needed for the remaining arcs

is computed as follows: (1) If−2θ2 ≤ Lt ≤ 0, there is no need for additional receivers; (2) if 0 < Lt ≤ 2an− 2θ2,
the number of receivers is determined by the following equation: if 2ak−1 < Lt + 2θ2 ≤ 2ak, then it needs
k receivers, where 1 ≤ k ≤ n, Lt represents the angle of the remaining part of arc, and ak can be calculated
as follows.

ak =



0, k = 0

2
k+1

2∑
i=1

θi, k is odd

2
k
2∑

i=1
θi + θ k

2+1, k is even and k 6= 0

(10)

Proof of Theorem 8. The proof of Theorem 8 is given in Appendix A.

Up to this point, we have solved the problem of BR sensor deployment on a single circle. In the
next section, we will discuss the minimum coverage cost of the whole circular barrier coverage with
width H (H > h).

5. Solution of Minimum Coverage Cost on the Whole Circular Barrier with Width H

We now discuss how to solve the minimum cost placement problem of BR sensors for the whole
circular barrier coverage. Because the coverage area of bistatic radar sensors is variable and one
transmitter (receiver) can form sensor pairs with multiple receivers (transmitters), it is very difficult
to obtain the optimal solution of the minimum cost coverage problem. Therefore, we consider the
approximate optimal solution of this problem. In Section 4, we discuss the optimal deployment method
of a single circle with width h. On this basis, we discuss the approximate optimal deployment method
of the whole circular barrier with width H(H � h). Since the width H of whole circular barrier
exceeds the coverage width of single BR circle barrier, we need multiple adjacent sub-circle barrier to
cover the whole circular areas in a cooperative way.

Consider that the width of the waist coverage model of BR sensor is variable, and each sub-circle
of the circular barrier coverage may have different coverage length and width, and different BRs’
placement sequence. Hence we need to further investigate the optimal sub-circle’s division and
BR placement algorithm to achieve minimum cost placement of BR sensors on the whole circular
barrier with predefined coverage quality. We first design a width equalization division strategy and
BR placement algorithm for circular barrier. We analyze and validate effectiveness of the width
equalization division strategy and algorithm by simulation experiments. Secondly, by analyzing
the results of the experiment, we further propose an adaptive division strategy and approximate
optimization BR placement algorithm for circular barrier. By comparing with the width equalization
strategy and algorithm in simulation experiments, we validate the effectiveness of the adaptive division
strategy and minimum cost placement BR deployment algorithm on the whole circular barrier with
Width H and required coverage quality.

In this paper, we mainly consider the calculation of the coverage cost of the sensors when CT > CR,
where CT represents the unit cost of transmitter and CR represents the unit cost of receiver.
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5.1. Equal Circle width Division Strategy and BR Sensors Placement Algorithm

5.1.1. Equal width Circle Division and Optimal Placement Algorithm

For ease of understanding, we give a detailed pattern diagram, as shown in Figure 7. This strategy
divides the circular barrier into q circles, and each of them has the same width. Due to different radius
of each circle, we cannot use the same deployment sequence for all the circles. We first divide each
circle separately, and apply the same deployment idea to analyze and calculate the specific radius of
the circle to get the minimum coverage cost of each circle. We finally obtain the total cost of coverage
with all the costs.

Figure 7. The schematic diagram of the width equalization strategy: (1) The barrier consists of
three sub-barriers; (2) The deployment patterns of each sub-barrier are Ti − R4 − Ti+1, Ti − R4 − Ti+1

and Ti − R3 − Ti+1, respectively; (3) Solid circle represents BR transmitter and triangle represents
BR receiver.

We need to determine the number of circles, i.e., q, and obtain value n in sequence Pn
i , which is the

number of receivers. For the two parameters q and n, if the two parameters have a certain relationship,
we can easliy use one of them to determine the other. However, we find that the two parameters are not
related. Therefore, for the number of circle q and n, we design an exhaustive algorithm to enumerate q
and n. By comparison, we can get the minimum coverage cost under meeting the conditions.

We find that the width of the circle exists the upper and lower bounds, so the number of circles
also has a certain range. We mainly use the waist shape covering model to maintain the waist shape of
the sensor, and we need to satisfy the following conditions:

√
2lmax < d(T, R) < 2lmax, then we get the

constraint condition of the circle’s width is 0 < h <
√

2lmax. For the number of circles q, we can first
determine H√

2lmax
< q. For the upper bound of q, in practice, we find that when h is reduced to a certain

width while q is taken to an upper bound. Then, with the number of circles q increases, the optimal
number of sensors continues to increase, resulting in cost increase. We set up this upper bound as µ,
so there is H√

2lmax
< q < µ. After determining the constraints of the two parameters, the exhaustive

algorithm can be used to calculate the minimum coverage cost.

We increase the number of circles from q =
⌈

H√
2lmax

⌉
to q = µ− 1, each time by 1 unit. For each

circle, we enumerate n and calculate the minimum coverage cost on each circle, then sum up them to
get the global minimum coverage cost. Finally, we compare the minimum coverage cost in all cases so
as to get the optimal solution. Here, we set the global minimum coverage cost as C∗total , the optimal
number of circles as q∗. The specific calculation process is given in Algorithms 1 and 2, respectively.
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Algorithm 1 Find q∗ and C∗total When CT > CR

1: Initialization: σ = ϕ, τ = ϕ, υ = ϕ, Ctotal = 0
2: for q←

⌈
H√

2lmax

⌉
: µ do

3: for t← 1 : q do

4: for n← 1 : Qt do

5: h← H/q
6: Cn ← Compute(n, h)
7: σ← σ ∪ {Cn}
8: end for
9: Ctotal ← Ctotal + min(σ)

10: σ.clear()
11: end for
12: τ ← τ ∪ {q}
13: υ← υ ∪ {Ctotal}
14: Ctotal ← 0
15: end for
16: C∗total ← min(υ)
17: index ← υ.index(C∗total)
18: q∗ ← τ(index)

Algorithm 2 Compute(n, h) Compute Cost When n and h are determined

1: Initialization :M = 0, N = 0, RT = 0, RR = 0, Lt = 0, Cost = 0
2: for x ← 1 : 3 · 2π

C do

3: Lt← 2π − x · C + D
4: if −2θ2 ≤ Lt ≤ 2an − 2θ2 then

5: Compute M and N, Compute RT and RR
6: M← M + RT, N ← N + RR
7: break
8: end if
9: end for

10: Cost = CT ·M + CR · N
11: return Cost

5.1.2. Experimental Result of the Equal Circle Width Division Strategy

In the simulation experiments, we set up the parameters of BR sensor network, as show in Table 2.
l2
max denotes the detectability threshold of BR sensors, and h denotes the width range of sub-barrier.

q denotes the number of sub-barriers, which is determined by the perimeter barrier width H and the
maximum coverage width of the single pair BR sensor. Rm denotes the minimum inner radius of the
perimeter barrier. Then CT denotes the unit price of the transmitter and CR denotes the price of the
receiver. And λ denotes the SNR threshold of the perimeter barrier. The simulation experiments are
performed on 64-bit Windows 10 system; Programming language is C++ and Python. The algorithms
are realized in C++ language. And the deployment visualization of deployment results is realized in
Python language.
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Table 2. Parameter setting.

Parameter Value

l2
max 3
h (0 , 2.4)
q [ H√

2lmax
, H

0.5 ]

Rm 3
H [1 , 20]
CT 50
CR 1 , 5 , 25
λ [1 , 50]

Firstly, we consider the influence of the annulus barrier width H on the optimal number of circles
q∗, the optimal circle width h, and the minimum coverage cost Cost. We find that with the increase of
H, the larger the λ, the greater the q∗ will be. The bigger the λ, the smaller the Cost will be. Then the
bigger the λ, the smaller the h will be.

We enumerate the width of the annulus barrier from 1 to 20, increasing the width of one unit at
a time, to observe the impact process respectively. As shown in Figure 8, we can find that the number
of optimal circles q∗ increases with width H. In the Figure 8, we give three different unit costs of
a sensor, where λ = CT

CR
, we set λ = 2, 10, 50, respectively. It is observed that when H ≤ 12, the curve

of λ = 2.0 is almost the same as the curve of λ = 10.0. But when λ = 50.0, the value of q∗ is more than
or equal to the other two. When 13 ≤ H ≤ 18, the curve of λ = 10.0 is almost the same as the curve of
λ = 50.0. But when λ = 2.0, the value of q∗ is less than or equal to the other two. This explains that
under the same width H, when ratio λ increases, the number of optimal circles also increases. This
is because the increase of unit cost λ means that receiver becomes cheaper, resulting the number of
sensors increases and the circle’s width becomes smaller.

Figure 8. The influence of width H on the number of optimal circles q∗.

We now evaluate the impact of the annulus barrier width H on the minimum cover cost.
As shown in Figure 9. We observe that when H ≤ 4, for the unit price ratio of different sensors,

there is little difference in the cost required to cover. But when H ≥ 5, with the increase of the unit
price ratio, the difference of coverage cost is becoming more and more obvious. We observe that when
the width of annulus barrier is determined, a larger unit cost ratio λ of a sensor implies a cheaper
coverage cost. This can be explained by the fact that the larger λ is used, the smaller the unit cost of
receiver is required. As a result, we have more number of receivers and less number of transmitters
required, and hence the overall coverage cost is reduced. From this result, we conclude that under
certain conditions, choosing a larger cost ratio λ to cover the barrier can save the coverage cost.
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Figure 9. The influence of width H on the minimum coverage cost.

We also evaluate the impact of the annulus barrier width H on the width h of the circle. As shown
in Figure 10, we observe that for a single function curve which the value of λ is detemined, the value
of h appears to fluctuate up and down, for example, when λ = 50.0, as shown in the green curve
in the picture, h fluctuates between [1.0,2.0], but with the increase of the annulus barrier width H,
the function value tends to converge to a fixed value and stables near 1.7. At the same time, we found
that with different values of λ, the three function curves are similar, and h gradually stabilizes in the
range of [1.7,1.9]. We also observe that the larger the λ is used, the smaller the h is obtained. Because
the receiver is cheap, the amount of the receiver is much more, which makes the width h of the circle
smaller, which is consistent with the performance in Figure 8.

Figure 10. The influence of width H on the optimal width h of circle.

Secondly, we evaluate the impact of the unit cost ratio λ on other parameters. The results are
shown in Figures 11–13. In Figure 11, we observe that the speed of the minimum coverage cost
decreases the fastest with the unit cost ratio λ between 0 and 10. The greater the annulus barrier width
results in less effective coverage costs. From Figure 12, we observe that when the annulus barrier
width is different, the number of optimal circles q∗ increases gradually and tends to be stable as the
unit cost ratio λ increases. In addition, the greater the width H of the barrier, the greater the value q∗.
In Figure 13, we find that as the unit price ratio λ increases, the value h decreases gradually, and also
tends to a stable value. At the same time, the larger the width H of the barrier, the greater the width of
the corresponding optimal circle.
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Figure 11. The relationship between the unit price ratio λ and the minimum coverage cost.

Figure 12. The relationship between the unit price ratio λ and the number of optimal circle q∗.

Figure 13. The relationship between the unit price ratio λ and the optimal width h of circle.

5.1.3. Algorithm Analysis of the Equal Circle Width Division Strategy

In order to determine the approximate degree of the algorithm, we need to determine the lower
bound of the theoretical optimal solution N∗ and the upper bound of the algorithm’s solution N.
But through specific analysis, we find it difficult to prove.

When the unit price ratio λ and the barrier width H are determined, we need to find the cheapest
set of sensors that meet the coverage conditions. In order to find the lower bounds of the theoretical
optimal solution, we assume that the sensors’ coverage area does not overlap, but because of the
following problems, it is difficult to determine the lower bounds. First, the coverage area of the BR
sensor is determined by the transmitter and receiver. Secondly, the size of the coverage area is affected



Sensors 2019, 19, 225 19 of 29

by the distance between the sensors. When the distance between the sensors is different, the size of the
coverage area is different. Therefore, it is difficult for us to determine the distance between sensors and
how many transmitters and receivers are needed, so it is difficult to calculate the price and determine
the lower bound of N∗.

For the upper bound of the algorithm’s solution, we need to consider the worst case. But in this
paper, when the unit price ratio λ and the barrier width H are determined, the only minimum cost can
be obtained according to the algorithm proposed by us. Therefore, there is no worst-case statement.

At the same time, we have given other barrier coverage strategies in the following section,
and have carried out detailed experiments to compare, proving that there is a better solution.

5.2. Adaptive Circle Width Division Strategy and BR Sensors Placement Algorithm

By observing the experimental results in the width equalization strategy, we find that given the
sensor parameters and SNR thresholds, with the increase in the width H of the annulus barrier, the
optimal width h of the circle will gradually stabilize in the range of [1.7,1.9] for different cost ratio λ.
Therefore, we choose the width of the circle in this interval, then define a new barrier coverage strategy:
For an annulus barrier with width H, the barrier can be segmented with hx(1.7 ≤ hx ≤ 1.9) as the
division unit. If H is a multiplier of hx, it is exactly divided; Otherwise, a circle with the width less
than hx is left. We also follow the same experimental environment and calculation methods.

5.3. Experiment Result Comparison of Equal Division vs. Adaptive Division Strategy

The experimental results of the two strategies mentioned above are shown in Figure 14. At this
time, the unit price ratio is λ = CT/CR

= 50 .
We know that the adaptive placement strategy is from the analysis of experimental results on the

equipartition placement strategy. In the simulation experiment of the equipartition placement strategy,
we find that when the sensor parameters and the SNR threshold are determined, the optimal width h
of circle is in the interval [1.7,1.9]. In the adaptive placement strategy, we use hx(1.7 ≤ hx ≤ 1.9) as
a division unit. In order to explore the effects of hx on the results of the experiment, we have also done
a comparative experiment.

We take different values of hx to experiment in the interval [1.7,1.9], and compare with the result
of the equipartition placement strategy. As shown in Figure 14, We find that when the annulus barrier
width H ≤ 5, for different hx, the experimental results are generally similar, and it is also similar to the
equipartition placement strategy. However, as shown in Figure 15, with the increase of the annulus
barrier width H, the influence of the hx on the effect of the experiment is good and bad, and there is no
obvious rule. But it is better than the equipartition placement strategy.

Figure 14. Comparison when 1 ≤ H ≤ 10.



Sensors 2019, 19, 225 20 of 29

Figure 15. Comparison when 10 ≤ H ≤ 20.

6. Conclusions

In this paper, we studied the minimum cost BR sensor placement algorithm to construct a circular
BR coverage with a predefined breadth and detection threshold. First, we investigate the Cassini
oval sensing models and discuss a variety of barrier coverage cases. We discovered and proved the
optimized BR placement patterns and sequence on a circular ring. Second, we further studied the
optimal BR placement on a circular barrier with a predefined breadth. We proposed two division
strategies, circular equipartition strategy and an adaptive segmentation strategy, to segment an annulus
ring to several adjacent sub-rings with appropriate width so as to ensure the minimum cost annulus
BR barrier coverage with required detection threshold. Finally, we proposed optimal placement
algorithms for minimum cost placement of BR sensor for annulus barrier coverage with required width
and detection threshold. We validated the effectiveness of the proposed algorithms through extensive
simulation experiments.

In our paper, we proposed an approximate optimal solution that mainly adopts the circular
transverse sensor deployment method. In the future works, we will further study more complex
longitudinal sensor placement method to optimize the bistatic radar sensors deployment. Second,
we will consider to investigating the deployment problems in the heterogeneous bistatic radar sensor
network. Third, the fault-tolerant problem in perimeter barrier deployment is also worth to study for
high reliable coverage.
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Appendix A

Proof of Theorem 1. As shown in Figure A1, the coverage area of the BR sensor is surrounded by the
Cassini oval line, and it is symmetrical. The perpendicular bisector of the line segment TR cross the
regional boundary in point X and point X′. We know that if a point A can be detected by sensors, it is
necessary to satisfy the condition ‖TA‖ · ‖RA‖ ≤ l2

max. The point X is on the border of the covering
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area, so there has ‖TX‖ · ‖RX‖ = l2
max, equivalenting to K

‖TX‖2·‖RX‖2 = ε. In the same way, the point

X′ also satisfies this condition.

Figure A1. The schematic diagram of the Theorem 1.

Proof of Theorem 2. For the sequence Pn
i , we are used (2θ1, 2θ2, ..., 2θn+1) to represent the combination

of its center angle, where θ1 = 1
2∠TiOR1, θ2 = 1

2∠R1OR2, ... , θn = 1
2∠Rn−1ORn, θn+1 = 1

2∠RnOTi+1.

Here we define the angle sum of a single covering sequence as Sum =
n+1∑
i=1

2θi. In the worst case, we

only need to use a single covering sequence to cover the circle, so Sum = 2π, but normally, Sum < 2π.

Therefore,
n+1∑
i=1

2θi ≤ 2π. Due to the particularity of circle and the Cassini oval, the sensors sequence Pn
i

is symmetrical, on the axis symmetry of the center line of the circular arc ṪiTi+1. As a result, there has
the following properties: (1) if n is odd, then θ1 = θn+1, θ2 = θn, ... , θ n+1

2
= θ n+1

2 +1; (2) if n is even, then
θ1 = θn+1, θ2 = θn, ... , θ n

2
= θ n

2 +2, θ n
2 +1 = θ n

2 +1. Next, we give the specific calculation of the angle θi.
For θ1, as shown in Figure A2, we have proved that the covering model of waist shape can

best meet our coverage requirements. Next, we will determine the angle θ1. We have got the
detectability of the point X1, it is l2

max. We know ‖T1X1‖ = ‖R1X1‖, ∠T1OX1 = ∠R1OX1 = θ1,
∆T1OX1

∼= ∆R1OX1(SSS), the signal-to-noise ratio of the point X1 is ε, then we can list the equation
K

‖T1X1‖2·‖R1X1‖2 = ε. Introducing the concept of the detectability, it can be reduced to:

‖T1X1‖ · ‖R1X1‖ = ‖T1X1‖2 = l2
max (A1)

then using the cosine equation we can obtain the following equation:

‖T1X1‖2 = ‖T1O‖2 + ‖X1O‖2 − 2 ‖T1O‖ · ‖X1O‖ cos θ1 (A2)

Jointing Equations (6) and (7), we can get: θ1 = arccos r2+R2
max−l2

max
2rRmax

. We guarantee that

0 ≤ r2+R2
max−l2

max
2rRmax

< 1, otherwise, the coverage will be meaningless.
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Figure A2. The schematic diagram of θ1 in Theorem 2.

For θ2, as shown in Figure A3, we found that the cover model which constituted by the second
receiver R2 and the transmitter T1 can be the waist shaped or two separate parts, as shown in Figure 1a,c
in the paper. In order not to lose the generality, we assume that the model T1 − R2 is two separate
parts. Then let’s give the location of the receiver R2.

Figure A3. The schematic diagram of θ2 in Theorem 2.

As shown in Figure A3, the coverage area of the sensor T1 − R1 intersects with the circle at point
X2. In order to meet the coverage, the coverage area of the sensor T1 − R2 should intersect with the
former at the point X2. At this point, we can get the signal-to-noise ratio of X2 is ε, the detectability
is l2

max, so we have the equation ‖T1X2‖ · ‖R1X2‖ = l2
max, ‖T1X2‖ · ‖R2X2‖ = l2

max, and we can get
‖R1X2‖ = ‖R2X2‖. At the same time, we get ∆R1OX2 ∼= ∆R2OX2(SSS), ∠R1OX2 = ∠R2OX2 = θ2.
We know that the detectability at the point X2 is l2

max, then get ‖T1X2‖ · ‖R1X2‖ = l2
max, using the cosine

theorem can get ‖T1X2‖2 = r2 + R2
max− 2rRmax · cos(2θ1 + θ2), ‖R1X2‖2 = r2 + R2

max− 2rRmax · cos θ2.
Then taking the two equation into the upper, it can be reduced to:

4r2R2
maxcos2(θ1 + θ2)− 4rR · (r2 + R2

max) · cos θ1 · cos(θ1 + θ2)+

4r2R2
max(cos2θ1 − 1) + (r2 + R2

max)
2 − l4

max = 0 (A3)

For solving this equation, at first, we assume that the left of the equation is two polynomial

functions f , the independent variable is cos(θ1 + θ2). In the previous paper, we have got
n+1∑
i=1

2θi ≤ 2π,

then
n+1∑
i=1

θi ≤ π. Because cos(θ1 + θ2) monotonous decreasing in the interval [0, π], the independent

variable decreases monotonously in the interval [0, π]. We can get the symmetric axis of function f
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is xm = (r2+R2
max) cos θ1

2rRmax
, and we can get xm > cos θ1, so there has xm > cos θ1 > cos(θ1 + θ2), it is that

in the solution of the equation f = 0, the solution we need is on the left of the symmetric axis. Then
combined with the Equation (8), we can get:

∆ = (Rmax + r)2(Rmax − r)2(cos2θ1 − 1) + l4 (A4)

x1=
(R2

max+r2) cos θ1+
»
(Rmax+r)2(Rmax−r)2(cos2θ1−1)+l4

2rRmax
(A5)

x2=
(R2

max+r2) cos θ1−
»
(Rmax+r)2(Rmax−r)2(cos2θ1−1)+l4

2rRmax
(A6)

We take x2 = cos(θ1 + θ2). We ensure ∆ > 0, it is l4
max > (Rmax + r)2 · (Rmax − r)2 · (1− cos2θ1), at the

same time, we ensure −1 < x2 < 1. In summary, we get:

θ2 = arccos

Ñ
(R2

max + r2) cos θ1 −
»
(Rmax + r)2(Rmax − r)2(cos2θ1 − 1) + l4

max

2rRmax

é
− θ1 (A7)

For θ3, at the same as θ2. We can get ‖R2X3‖ = ‖R3X3‖, ∆R2OX3 = ∆R3OX3(SSS),
∠R2OX3 = ∠R3OX3 = θ3, the detectability of X3 is l2

max, ‖T1X3‖ · ‖R2X3‖ = l2
max, joints all, we

can get:
∆ = (Rmax + r)2(Rmax − r)2[cos2(θ1 + θ2)− 1] + l4

max (A8)

x3 =
(R2

max + r2) cos(θ1 + θ2)−
»
(Rmax + r)2(Rmax − r)2[cos2(θ1 + θ2)− 1] + l4

max

2rRmax
(A9)

We ensure ∆ > 0, −1 < x3 < 1, so we get:

θ3 = arccos

Ç
(R2

max+r2) cos(θ1+θ2)−
√

(Rmax+r)2(Rmax−r)2[cos2(θ1+θ2)−1]+l4
max

2rR

å
−(θ1 + θ2)

(A10)

In the same way, analogous, we can get from θ4 to θn.
By observing, we can draw the rule, so we get θi, i > 1, it is:

θi = arccos

á
(R2

max+r2) cos
x−1∑
i=1

θi−

 
(Rmax+r)2(Rmax−r)2(cos2

x−1∑
i=1

θi−1)+l4
max

2rRmax

ë
−

x−1∑
i=1

θi, i > 1

(A11)

To sum up, we give the calculation equation of the center angle θ.

Proof of Theorem 3. Figure A4 gives a partial schematic diagram of the sequence Pn
i . We assume

point X as the intersection of the sensors’ coverage area and the circle boundary. We found that with
the increase of the number of receivers, the coverage area of single sensor decreases continuously,
and the point X is more and more close to the outside boundary of the circle. When n is taken to the
maximum value nmax, the coverage area of the sensors is tangent to the outer boundary of the circle at
the point X, and the connection between the point O and the point X is over the point Rn at this time.
Assume that ∠T1OX = θmax, it is obvious that the maximum center angle of the sequence Pn

i is 2θmax.
At the same time, the detectability of the point X is l2

max, so there has ‖T1X‖ · ‖RnX‖ = l2
max. Using

the cosine theorem, we can get ‖T1X‖2 = ‖T1O‖2 + ‖XO‖2 − 2 ‖T1O‖ · ‖XO‖ · cos θmax. Jointing all,
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we can get θmax = arccos
Å

(R2
max+r2)·(Rmax−r)2−l4

max
2rRmax·(Rmax−r)2

ã
. Theorem 2 gives the concept of the center angle

of the circle, so we get
nmax+1∑

i=1
2θi = 2θmax. We can calculate the angle θi in turn, until the sum is equal

to 2θmax, then the n at this moment is the largest number of receivers nmax.

Figure A4. The schematic diagram of nmax in Theorem 3.

Proof of Theorem 4. In the paper, we use 2 ‖X3K3‖ as the approximation length of the line segment
X3X3

′ and as the effective coverage width. Here we extend the value n to nmax, and give the calculation
equation of effective coverage width.

For the sensor pair T1 − R1, as shown in Figure A5, we connect the point T1 and the point
R1. We have obtained ∠T1OX1 = ∠R1OX1 = θ1, so ∆T1OK1

∼= ∆R1OK1(SAS). Therefore, there
has ∠R1K1O = ∠T1K1O = 90◦, ‖R1K1‖ = ‖T1K1‖, so we can know that the line X1O is the
perpendicular bisector of the line segment T1R1, and can get ‖X1K1‖ = Rmax − r · cos θ1 further.
At the same time, we have ‖T1X1‖ · ‖R1X1‖ = l2

max,
∥∥T1X1

′∥∥ · ∥∥R1X1
′∥∥ = l2

max, ‖T1X1‖ = ‖R1X1‖,∥∥T1X1
′∥∥ = ‖R1X1

′‖, so we can get ‖T1X1‖ =
∥∥T1X1

′∥∥, and the quadrilateral T1X1R1X1
′ is a diamond,

so
∥∥X1X1

′∥∥ = 2 ‖X1K1‖ = d1 = 2(Rmax − r · cos θ1). Here, the two times value just equal to the
actual coverage width, because there has

∥∥XnXn
′∥∥ ≥ 2 ‖XnKn‖.

For the sensor pair T1 − R2, as shown in Figure A6, similarly, we can get that the line X2O
is the perpendicular bisector of the line segment R1R2, then we prove the point X2

′ is on the line
X2O, that is X2, X2

′, O, three points are collinear. We know that the detectability of the point X′2
is l2

max, so
∥∥T1X2

′∥∥ · ∥∥R1X2
′∥∥ = l2

max,
∥∥T1X2

′∥∥ · ∥∥R2X2
′∥∥ = l2

max. We get
∥∥R1X2

′∥∥ =
∥∥R2X2

′∥∥, it is
that the point X2

′ is on the perpendicular bisector of the line segment R1R2. Because the line X2O
is the perpendicular bisector of the line segment R1R2, the point X2

′ is on the line X2O, the point
X2, X2

′, O are collinear. At the same time, we can get ‖T1X2‖ >
∥∥T1X2

′∥∥, also because of ‖T1X2‖ ·
‖R1X2‖ = l2

max,
∥∥T1X2

′∥∥ · ∥∥R1X2
′∥∥ = l2

max, we can get ‖R1X2‖ <
∥∥R1X2

′∥∥,
∥∥K2X2

′∥∥ > ‖K2X2‖,∥∥X2X2
′∥∥ > 2 ‖X2K2‖ = d2 = 2(Rmax − r · cos θ2).

In the same way, Calculating the di in turn, we can get the induction dn = 2(R− r · cos θ n
2 +1),

1 ≤ n ≤ nmax.
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Figure A5. The width of T1 − R1 in Theorem 4.

Figure A6. The width of T1 − R2 in Theorem 4.

Proof of Theorem 5. In Theorem 4, we have given the effective coverage width of the sequence Pn
i

and get the actual coverage width
∥∥XnXn

′∥∥ ≥ 2 ‖XnKn‖ = dn. To prove the reliability of the coverage,
we only need to prove dn > h, where h is the width of the circle.

We found that the expression of the two times value is dn = 2(Rmax − r · cos θ n
2 +1), the width of

the circle is h = 2(Rmax − r), then there has dn − h = 2r · (1− cos θ n
2 +1) > 0, so we can get the two

times value meets the requirements.

Proof of Theorem 6. As shown in Figure A7, we connect the point O and the point X0, intersects the
inner boundary of the circle at the point P. It is visible that the line segment X0P is in the circle, and we
use this line segment as the starting position of the sum of the center angle.

For the sequence P1
i , first of all, due to the symmetry of the covering area, we can get

∠X0OT1 = ∠X2OR1 = θ2, and the center angle ∠X0OX2=2(2θ1 + θ2), it is that the coverage length
is L1 = 2r · (2θ1 + θ2).

For the sequence P2
i , we can also get the coverage length L2 = 2r · (2θ1 + θ2 + θ2).

For the sequence P3
i , the coverage length is L3 = 2r · (2θ1 + 2θ2 + θ2).

For the sequence P4
i , the coverage length is L4 = 2r · (2θ1 + 2θ2 + θ3 + θ2).

Calculate in turn .
For the sequence Pn

i , the coverage length can becalculated as Equation 9.
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Figure A7. The schematic diagram of the effective coverage length in Theorem 6.

Proof of Theorem 7. For the sequence S = (T1, Rn1 , T2, Rn2 , T3) in the paper, n1 is odd, n2 is even, and
we can calculate the center angle of its coverage is

ψ1 = 2

Ñ
2

n1+1
2∑

i=1
θi + 2

n2
2∑

i=1
θi + θ n2

2 +1 + θ2

é
=


2

Ñ
4

n2
2∑

i=1
θi + θ n2

2 +1 + θ2

é
, n2 − n1 = 1

2

Ñ
4

n1+1
2∑

i=1
θi + 2

n2
2∑

i= n1+1
2 +1

θi + θ n2
2 +1 + θ2

é
, n2 − n1 > 1

. (A12)

For the sequence S′ = (T1, R
n1+n2−1

2 , T2, R
n1+n2+1

2 , T3), we categorize:

(1) When n2 − n1 = 1, n1+n2−1
2 is odd, n1+n2+1

2 is even, we can get:

ψ2 = 2

Ñ
2

n1+n2+1
4∑

i=1
θi + 2

n1+n2+1
4∑

i=1
θi + θ n1+n2+1

4 +1
+ θ2

é
= 2

Ñ
4

n1+n2+1
4∑

i=1
θi + θ n1+n2+1

4 +1
+ θ2

é
= 2

Ñ
4

n2
2∑

i=1
θi + θ n2

2 +1 + θ2

é (A13)

At this point, ψ1 = ψ2.
(2) When n2 − n1 > 1, n1+n2−1

2 may be odd or even, so we continue to categorize.

a. If n1+n2−1
2 is odd, n1+n2+1

2 is even, then we can get

ψ2 = 2

Ö
4

n1+n2+1
4∑

i=1

θi + θ n1+n2+5
4

+ θ2

è
. (A14)

And then we compare ψ1 and ψ2:
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ψ2 − ψ1 = 2

Ñ
4

n1+n2+1
4∑

i=1
θi + θ n1+n2+5

4
+ θ2

é
−

2

Ñ
4

n1+1
2∑

i=1
θi + 2

n2
2∑

i= n1+1
2 +1

θi + θ n2
2 +1 + θ2

é
= 2

Ñ
4

n1+n2+1
4∑

i= n1+1
2 +1

θi − 2

n2
2∑

i= n1+1
2 +1

θi + θ n1+n2+5
4
− θ n2

2 +1

é
= 2

2

n1+n2+1
4∑

i= n1+1
2 +1

θi

︸ ︷︷ ︸
A

− 2

n2
2∑

i= n1+n2+5
4

θi

︸ ︷︷ ︸
B

+ θ n1+n2+5
4︸ ︷︷ ︸

C

− θ n2
2 +1︸ ︷︷ ︸
D
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Because n1+1
2 < n1+n2+1

4 , so we get the second step, at the same time, n1+n2+1
4 < n2

2 , so, we get
the last step. We see that in the last step, it contains A, B, C, D, four parts, only need to compare
the size of the four parts can judge the size of ψ1 and ψ2. We get n1+n2+1

4 −
Ä

n1+1
2 + 1

ä
= n2−n1−5

4 ,
n2
2 −

n1+n2+5
4 = n2−n1−5

4 . Therefore, the A and B contain the same number of angles. At the
same time, Theorem 2 gets the value of the angle θi, and we can find that θi decreases with i
increase. Compared to the first angle of A and B, we get n1+1

2 + 1− n1+n2+5
4 = n1−n2

4 < 0, that is
θ n1+1

2 +1
> θ n1+n2+5

4
. Compared to the last angle of A and B, we get n1+n2+1

4 − n2
2 = n1−n2+1

4 < 0,

so A > B. We can also get n1+n2+5
4 −

( n2
2 + 1

)
= n1−n2+1

4 < 0, so C > D. In summary, ψ2 > ψ1.

b. When n1+n2−1
2 is even, n1+n2+1

2 is odd, then we get

ψ2 = 2

Ñ
2

n1+n2+3
4∑

i=1
θi + 2

n1+n2−1
4∑

i=1
θi + θ n1+n2−1

4 +1
+ θ2

é
= 2

Ñ
4

n1+n2+3
4∑

i=1
θi − θ n1+n2+3

4
+ θ2

é (A16)

We also compare ψ1 and ψ2:

ψ2 − ψ1 = 2

Ñ
4

n1+n2+3
4∑

i=1
θi − θ n1+n2+3

4
+ θ2

é
−

2

Ñ
4

n1+1
2∑

i=1
θi + 2

n2
2∑

i= n1+1
2 +1

θi + θ n2
2 +1 + θ2

é
= 2

Ñ
4

n1+n2+3
4∑

i= n1+1
2 +1

θi − θ n1+n2+3
4
− 2

n2
2∑

i= n1+1
2 +1

θi − θ n2
2 +1

é
= 2

Ñ
4

n1+n2−1
4∑

i= n1+1
2 +1

θi + 3θ n1+n2+3
4
− 2

n2
2∑

i= n1+1
2 +1

θi − θ n2
2 +1

é
= 2

Ñ
2

n1+n2−1
4∑

i= n1+1
2 +1

θi + 3θ n1+n2+3
4
− 2

n2
2∑

i= n1+n2+3
4

θi − θ n2
2 +1

é
= 2

2

n1+n2−1
4∑

i= n1+1
2 +1

θi

︸ ︷︷ ︸
A

− 2

n2
2∑

i= n1+n2+3
4 +1

θi

︸ ︷︷ ︸
B

+ θ n1+n2+3
4︸ ︷︷ ︸

C

− θ n2
2 +1︸ ︷︷ ︸
D



(A17)
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Similarly, because of n1+n2+3
4 − n1+1

2 = n1−n1+1
4 > 0, we get the second step, at the same time,

because of n1+n2−1
4 − n2

2 = n1−n2−1
4 < 0, we get the fourth step. Also because of n1+n2−1

4 −Ä
n1+1

2 + 1
ä
= n2

2 −
Ä

n1+n2+3
4 + 1

ä
, so A and B contain the same number of angles. Because of

n1+1
2 + 1 < n1+n2+3

4 + 1, n1+n2−1
4 < n2

2 , so A > B. Also because of n1+n2+3
4 < n2

2 + 1, so C > D.
In summary, ψ2 > ψ1.

In summary, when n2 − n1 > 1, ψ2 > ψ1.

Proof of Theorem 8. We consider the boundary problem, and we need to determine how many
receivers are needed to assist the remainder of the circle. First, we need to calculate the size of the
circle region which the sequence Ti − Rk − Ti+1 can cover. In theorem 6, we give the related calculation
methods and formulae. Here we consider the overlap case of the coverage area, and give the results
after simple calculation.

When k = 0, a0 = 0;
When k = 1, a1 = 2θ1;
When k = 2, a2 = 2θ1 + θ2;
In turn, it can be concluded that the induction is as Equation (10).
Assume that the radian of the reminder arc is Lt, we consider the case of overlapping and calculate

the size of the circle region which the sequence Ti − Rk − Ti+1 can cover, it is ak. Then by comparison,
the number of the receivers which are used to the boundary problems can be determined, that is (1) if
−2θ2 ≤ Lt ≤ 0, it does not need the extra receiver; (2) if 0 < Lt ≤ 2an − 2θ2, then the x sequences
can not meet the coverage requirements, the remaining number of receivers are determined by the
following equation: if 2ak−1 < Lt + 2θ2 ≤ 2ak, it needs k receivers.
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