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Abstract: This paper presents a beehive-inspired multi-agent drone system for autonomous
information collection to support the needs of first responders and emergency teams. The proposed
system is designed to be simple, cost-efficient, yet robust and scalable at the same time. It includes
several unmanned aerial vehicles (UAVs) that can be tasked with data collection, and a single
control station that acts as a data accumulation and visualization unit. The system also provides a
local communication access point for the UAVs to exchange information and coordinate the data
collection routes. By avoiding peer-to-peer communication and using proactive collision avoidance
and path-planning, the payload weight and per-drone costs can be significantly reduced; the whole
concept can be implemented using inexpensive off-the-shelf components. Moreover, the proposed
concept can be used with different sensors and types of UAVs. As such, it is suited for local-area
operations, but also for large-scale information-gathering scenarios. The paper outlines the details of
the system hardware and software design, and discusses experimental results for collecting image
information with a set of 4 multirotor UAVs at a small experimental area. The obtained results
validate the concept and demonstrate robustness and scalability of the system.
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1. Introduction

In response to natural or technological disasters, UAVs are becoming an increasingly valuable
asset for experts and first-responder teams [1]. UAVs provide them with up-to-date surveillance
data, enable communication, act as sensor-carrier platforms, and support decision-making in different
respects. The use of UAVs, and in particular of a swarm of UAVs, to address the needs of emergency
responders, is the main focus of this work.

In general, there are two classes of UAVs that can be deployed for emergency response. The
first type are fixed-wing UAVs that use wings to generate a lift. Fixed-wing UAVs are well suited for
wide-area operational environments: they can stay airborne over prolonged periods of time ranging in
hours. This permits extending the response operational area from hundreds to thousands of square
kilometers, depending on the particular UAV model. Such large distances are characteristic for large
geological, manmade, or environmental incidents, e.g., earthquakes, large forest fires, flooding, etc.
Even relatively small fixed-wing UAVs demonstrate a significant endurance in this respect. However,
due to the dynamical constraints of such systems—a fixed-wing UAV typically has to execute a specific
flight trajectory—they are typically deployed at heights that are obstacle free, which is typically in the
range from 50 m to 100 m, depending on the local regulations.

The second type are rotary-wing UAVs, which have multiple rotors, can fly and maneuver at low
altitudes, and can hover near structures. These features make such UAVs appropriate for so-called
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local-area operational environments [1,2]. Typically, rotary-wing UAVs missions include structural
inspections, damage assessments, reconnaissance missions, and mapping applications. In addition,
rotary-wing UAVs operate at heights ranging from 3 m to 45 m to give a more detailed coverage of the
area of interest, and they travel several kilometers in distance [1]. Thus, rotary-wing UAVs can be used
to provide a responder team with a “close-up shot” of the incident scenario. Clearly, a proximity to
collapsed structures or debris poses a risk of both the UAV, as well as for the infrastructure or people
on the scene, which often requires a dedicated safety officer during operations [3]. As it has been
pointed out in [1], the typical human-to-robot-ratio is approx. 3 : 1, i.e., per one UAV, a single pilot,
a safety officer, and a mission specialist (responsible for collecting the data and advising the pilot)
are required. To increase the efficiency, usability, and acceptance of UAVs for emergency response, a
system is required that on the one hand, provides increased robustness and efficiency with respect to
mission goals, while on the other hand, reduces the human-to-robot ratio to a minimum.

A solution to the aforementioned challenges advocated in this work is based on using an
autonomous swarm of UAVs, which we understand as a multi-agent system. A swarm consisting
of multiple agents can offer a higher efficiency, as tasks can now be shared among members of the
swarm. In particular, multiple agents can complete inspection tasks faster compared to a single agent.
Also, a higher robustness of the whole system can be achieved since the failure of individual units
does not lead to the total system collapse. Moreover, the cost of an individual drone in a swarm can be
reduced, as one can trade-off (within certain limits) sensor quality/price and the number of sensing
platforms (sensing aperture). Consequently, a potential accidental loss of a drone will come at a lower
price. Furthermore, a high level of autonomy makes the system less dependent of the supervision of a
human operator. Hence, the human-to-robot ratio can be significantly reduced.

The use of a swarm of robots for monitoring and data collection tasks is not entirely new, though.
Previous works also tackle the coverage problem considered in this paper, i.e., reaching certain
point of interests (POIs), and taking some action at those points, such as take an image or take a
measurement. The coordination of swarms can be solved using biologically inspired approaches [4–7].
Alternatively, other criteria for path-planning and coordination can be used, as in e.g., [8], where the
state-of-health of Lithium Polymer (LiPo) battery is proposed, or more classical task allocation problems
for multiple agents using distributed constraint optimization [9] or bounty-based methods [10], to
name a few. However, most classical multi-agent approaches for monitoring and data collection imply
that individual agents are able to coordinate their actions or even cooperatively solve some underlying
optimization problem via communication links. In the literature, this problem is typically addressed in
the context of Flying Ad Hoc Networks (FANETs) [11]. FANET algorithms focus on how to exchange
data within a network composed by multiple drones via drone-to-drone communication links. From
a practical perspective an availability of such communication links might pose a problem. Indeed,
cost-efficient WiFi links lack coverage, which reduces maximum separation between neighboring
agents. Mobile data networks, such as 2G/3G/4G, might introduce significant delays; also, network
coverage can be insufficient in some remote operation areas. Dedicated communication links (See, for
instance, solutions offered by Mobilicom: https://www.mobilicom.com/) do present a viable solution,
yet are rather costly, and require drones with high payload capacity. The latter additionally increases
the per-drone price tag of the resulting system.

Alternatively, the coordination can be solved using pre-planned path-planning strategies (see [12]
for a good overview). This often results in splitting of an area into several sub-regions or cells, which
do not intersect and are obstacle free. Given such split structure of the area of interest, drones’ routes
can then be optimally pre-planned to avoid collisions. This alleviates the need for active collision
avoidance or peer-to-peer communications, and, consequently, simplifies the whole system design.
Likewise, in this paper, we apply the path-planning before flying.

Therefore, the contribution of this paper is (i) to design a swarm-based concept for surveillance and
information gathering and (ii) to study the performance of the resulting system in a field experiment.
Our intention is to design a simple, cost-efficient, yet robust swarm system that can perform data
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collection autonomously in (approximately) time-invariant tasks. The proposed swarm concept inherits
some of its features from nature, in particular from swarms of bees. In our setting individual UAVs
mimic the roles of bees: they collect sensor data—the “nectar”—and bring it to a computational
center—the “beehive”. The computational center implements the central data storage and the UAV
coordination center, from which the operation of the swarm is controlled and monitored. The flight,
data collection, and drone coordination is done in autonomous fashion such that almost no human
interaction is required.

The key advantage of our system is the fact that the minimum requirements of a drone’s hardware
can be significantly reduced. In particular, the “beehive” can be implemented with a simple Raspberry
Pi (https://www.raspberrypi.org/) computer and off-the-shelf WiFi access points, through which the
drones exchange data and receive tasks. Similarly, the individual drones do not require an expensive
computer or a long-range communication device. They only need the capability to download flight
routes and upload the collected data to the “beehive”. The drones merely need to enter the range of
the “hive’s” WiFi access point. Additionally, our system does not require an active collision avoidance
mechanism consisting of perception sensors and corresponding data processing units. This further
simplifies the design of the whole system, and allows for lighter, smaller, and cheaper drones. Of
course, the price of this solution is that drones can only communicate in the vicinity of the central
station. As a consequence, scenarios where an immediate response to an event is needed the absence
of the direct communication is a disadvantage and other solutions might be considered. Yet in
no-so-time-critical cases, such as inspection, monitoring, or package delivery, the proposed solution
remains a sensible trade-off. To address absence of direct drone-to-drone communication we developed
a swarm proactive collision avoidance mechanism. It is important to remark that this mechanism only
avoids collisions provided the following assumptions: (i) drones localization accuracy is sufficient
to guarantee no inter-drones collisions, (ii) the map of the region of interest (ROI) contains all static
obstacles present in the area, and (iii) there exist no dynamic obstacles in the ROI. This assumption
actually holds for many applications of interest. Of course, we could enhance our system by including
situational awareness mechanisms by means of additional sensors, such as e.g., light detection and
ranging (LIDAR), stereo cameras, etc., together with additional reactive collision avoidance algorithms.
This is however out of the scope of this work.

We tested our system in field experiments with 4 UAVs and a single human operator to explore
an area of approx. 200× 200 m. The collected results show high robustness and efficiency of the
whole system. Please note that although the development and experimental validation of the whole
system is done with a focus on UAVs, extensions to fixed-wing systems are quite straightforward.
Moreover, although the proposed concept avoids using long-range drone-to-drone links, in some
time-critical scenarios, such as search and rescue, a long-range low data-rate sensor (e.g., LoRa
(https://lora-alliance.org/)) can be used on drones to send a geo-referenced alarm signal to the
“beehive”; this LoRa signal then plays the role of a “nectar” the rescue team is interested in. Such an
alarm signal can trigger other, more appropriate systems, such as automated package delivery drone
to the recipient or dispatch of a rescue team to the alarm location. The proposed concept, however,
remains largely unmodified.

The rest of the paper is organized as follows. In Section 2, we provide an overview of our system
design as well as a summary of the system’s workflow. This is followed in Sections 3 and 4 by a detailed
description of the key modules that constitute the base station and drones’ system, respectively. Then
we provide in Section 6 details about the system implementation from both software and hardware
perspective. To finalize, Section 7 describes and analyzes the results of several outdoor experiments
that we carried out to evaluate the system proposed in this paper.

https://www.raspberrypi.org/
https://lora-alliance.org/
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2. System Overview and Workflow

The proposed system is designed to support first responders during emergency response
situations by gathering information with multiple autonomous drones. We take inspiration in nature
to design a system that is composed of two main components: a base station that serves as a central
“beehive”, and a set of drones that play the role of “bees”. In Figure 1, we depict a block diagram that
summarizes the main elements of our system. In the following, we give a general overview of the key
system sub-components and implemented workflow, while providing references to individual sections
with more detailed descriptions.

Base station. The base station consists of three elements: a laptop/tablet computer (Section 3.1),
a database (DB) (Section 3.3), and a communication system (Section 3.2).

The computer serves as an interface with a human operator through a graphical user interface
(GUI), which we term “Drones Monitoring and Data Visualization” module (Section 3.1.3). In particular,
the GUI permits a human operator to select a ROI where to gather information. In addition, it displays
the status of the drones and their gathered information, e.g., pictures captured at specific POIs. The
computer also runs two additional modules that constitute the “brain” of the base station. These are
the “Map Discretization” (Section 3.1.1) and “Routes Computation” (Section 3.1.2) modules. They
take a ROI defined by an operator to calculate collision-free flying routes that cover the whole ROI.
To this end the ROI is split into smaller regions. Because each of the smaller regions is only assigned
to a single drone and drones always stay in their own region, they do not require a reactive collision
avoidance. This allows the drones to fly autonomously without relying on a constant communication
with the base station or with the other drones. In fact, our system only relies on communication in the
vicinity of the “beehive”—base station.

The base station also stores a DB. The DB has two crucial functionalities. First, it stores the
information gathered by drones, e.g., pictures or sensor measurements taken at specific POIs. Second,
it coordinates the assignment of drones’ flying routes. This avoids that two drones select an identical
flying route, which could lead to a collision during flight.

The third element of the base station is a communication system. The communication system
works as an interface between the DB and drones. The system design does not require a permanent
connection between the base station and the drones, which allows for an off-the-shelf WiFi access point
as communication system, instead of costly long-range communication links.

Drones. In the used setting, drones play the roles of bees: they collect sensor data—the “nectar”—and
bring it back to the central “beehive”. In this respect, our system is specifically designed to be flexible
such as to allow using any drone on the market that is equipped with the following components: (i)
an onboard computer that incorporates an autopilot functionality to fly to a POI without the need
for a human pilot, together with a global positioning system (GPS) module to accurately localize the
drone (Section 4.3), (ii) a communication system to transfer information between drones and the DB
(Section 4.2), and (iii) an appropriate sensor stack (Section 4.1). Depending on the application, different
sensors can be used, such as gas concentration sensors for environmental monitoring, hyperspectral
cameras for smart agriculture, visual cameras for inspection and surveillance, or LIDAR sensors for
terrain mapping, to name only a few.

The base station and drones constitute the two main elements of our system. Next, we describe
the system workflow for both, base station and drones, which includes the following steps.
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Figure 1. System block diagram.

System workflow—Base station

1. An operator opens the system’s GUI, which automatically displays a world map. Given the map,
the operator introduces: the coordinates that specify the ROI in which to gather information, and
the drones starting position.

2. With the information about the ROI provided, the "Map Discretization" module loads a digital
elevation map (DEM) of the region to identify the areas within the ROI that do not incur a
collision with obstacles. Please note that DEM of a region can be downloaded from Google or
Open Street Maps, or can be obtained from satellite radar measurements [13] or aircraft LIDAR
measurements [14].

3. Next, after the DEM is provided, the "Map Discretization" module executes a map grid-less
discretization algorithm that optimally calculates POIs. The POIs are clustered into regions to
guarantee a collision-free flight. At this stage, the operator can tune some basic parameters to
modify the generation of POIs, e.g., to modify the separation between neighboring POIs, obstacles
and other agents.

4. The set of POIs, calculated by the "Map Discretization" module, is the input to our "Routes
Computation" module. This takes the POIs and calculates flying routes for the drones that
achieve an efficient area coverage.

5. Finally, the flying routes are stored in the DB. At later stages, the routes are accessed by drones
through the communication system.

Once the base station workflow (see Figure 2) is terminated, the operator proceeds to activating
the drones. This is the only operation that needs to be performed by the operator to control the drones.
Once active, each of the drones automatically executes the following workflow:

System workflow—Drones

1. A drone registers itself in the base station, and, then, requests a route from the DB.
2. An unassigned route will be assigned to the drone. If there is no route available, the drone

declares itself as "spare" and waits until a route becomes available.
3. For drones that were assigned to a route, the following actions are performed: (i) take-off;

(ii) follow the assigned route, while gathering information until a time threshold is exceeded
(calculated according to the drone’s battery life); (iii) return to “hive” following a shortest path
route calculated from the drone’s assigned POIs.

4. Upon return to “hive”, the drone lands at its take-off position and uploads the information
gathered during flight to the DB.
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5. Once these steps are finalized the drone automatically disconnects from the system. At this point
the operator has the possibility to replace the drone’s battery and activate the drone once more.
This will re-trigger the drone’s workflow.

Graphical user 
interface

Map grid-less 
discretization 

algorithm
ROI

Routes 
computation

DatabaseFlying routes
System 

operator

DEM

POIs

World map

Figure 2. Base station workflow.

3. System Components—Base Station

In this section, we introduce the key modules that constitute the base station. First, we summarize
in Section 3.1 the modules that are part of the computer. This is followed by a description of the
communication system and the DB in Sections 3.2 and 3.3, respectively. We summarize in Figure 2 the
base station workflow.

3.1. Portable Computer

The main modules of the portable computer are the “Grid-Less Map Discretization for
Collision-Free Flights” to compute the set of POIs and corresponding regions (Section 3.1.1), “Routes
Computation for Efficient Area Coverage” to compute optimal trajectories for drones within the
generated regions (Section 3.1.2), and “Graphical User Interface for Swarm Control and Data
Visualization”, which is an operator interface to the system (Section 3.1.3). Next, we summarize
these three modules in more details.

3.1.1. Grid-Less Map Discretization for Collision-Free Flights

The "Map Discretization" module calculates the POIs within the ROI in which the UAVs shall
gather information. In our setup, we assume that UAVs fly at constant predefined heights. Therefore,
the problem can be reduced to finding I two-dimensional points ~pi ∈ R2, i = 1, . . . , I, containing
coordinates x, y of the POIs. Given a ROI with a total area AROI , and a sensor that has a footprint
Asensor, we can calculate the number of POIs I as follows:

I = η
AROI

Asensor
, (1)

where parameter η > 0 specifies the desired overlap of sensor footprints.
Our system relies on a proactive collision avoidance. This implies that POIs should be calculated

to avoid inter-drone collisions during flight. We solve this by grouping the generated POIs in K sets
Rk, k = 1, . . . , K, to which we will refer to as coherently connected regions in the following. Within a
region, any two POIs must be reachable without leaving the region. Therefore, as long as each UAV
stays in a particular single region, inter-drone collisions are prevented.

To obtain such regions and to avoid collisions with obstacles, while at the same time getting a
good coverage of the ROI, the generated POIs must fulfill the following objectives:

1. POIs within a region should stay grouped together in a coherent fashion.
2. POIs should spread out to cover the whole ROI.
3. POIs should keep distance from obstacles to avoid collisions.
4. POIs should keep distance from POIs that belong to other regions to prevent inter-drone collisions.
5. Drones predefined starting point~ck, k = 1, . . . , K must be part of the region.

To model these objectives formally, we define a potential function φi for each point ~pi. This is
defined as follows.
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Let us assume that the DEM is a grid-based representation of the environment. The center ~oi
of all grid cells with an elevation higher than some threshold hthresh forms the obstacle set O. The
combination of all region sets Rk, k = 1, . . . , K, such that

⋂K
k Rk = �, builds the set R =

⋃K
k Rk.

Furthermore, all points ~x ∈ R ∪ O within radius rthresh around ~pi are used to define a set Ni ={
~x ∈ R2; ‖~x− ~pi‖ < rthresh

}
\ {~pi}. Now we define the potential function φi for each POI ~pi as:

φi =w1 ∑
~pj∈Ri∩N(i)

∥∥~pi − ~pj
∥∥+ w2 ∑

~pj∈Ri∩N(i)

1∥∥~pi − ~pj
∥∥

+ w3 ∑
~oj∈O∩N(i)

1∥∥~pi −~oj
∥∥ + w4 ∑

~pj∈(R\Ri)∩N(i)

1∥∥~pi − ~pj
∥∥ + w5 ‖~pi −~ck‖ ,

(2)

where ~ck is the starting point of the region Rk such that ~pi ∈ Rk. Each summand in Equation (2)
corresponds to one of the five objectives listed above. The parameters wi > 0, i = 1, . . . , 5, are
introduced to allow an operator to weight the five objectives as desired. The cost in Equation (2) is
constructed such that the derivative of the potential can be interpreted as a force acting on ~pi. The terms
weighted by w2, w3, w4 cause a repulsive force away from the corresponding points ~pj ands~oj, while
the terms weighted by w1, w5 cause an attractive force towards the corresponding points ~pj and~ck.

Based on the potential function Equation (2), we designed an iterative algorithm to calculate the
POIs. Initially, the starting point ~ck is added to each of the regions. Then, in each iteration we add
a new POI to each region until the total number of POIs reaches the predefined limit I computed in
Equation (1). POIs are inserted at random locations within the corresponding region. Furthermore, we
add a small random noise to POIs locations, which prevents numerical instabilities when two points
are too close to each other. Then, for each POI in R we calculate the derivative of the potential function
with respect to the point’s x and y coordinates. Based on the derivatives we update the location of
each POI in a greedy fashion as follows:

~pi ← ~pi + α

[
dφi
dx

,
dφi
dy

]T
, i = 1...I, (3)

where α is a parameter that specifies the step size of the algorithm. By iterating Equation (3) for
each point, the POIs "move" in the potential field created by φi and arrange themselves such as to
minimize Equation (2) to fulfill optimization objectives. Once the sum of changes of the positions of
POIs in two consecutive steps drops below a certain threshold the algorithm terminates. To illustrate
how the algorithm works, we depict in Figure 3 three snapshots of the POIs spread.

Given a coherently connected region computed in this way, the next step is to build a graph
over the points in the region. To this end, we apply a triangulation algorithm to all points in R ∪O
after some number of iterations of Equation (3) (in our implementation this is done after each 100th
iteration). Therefore, for each region, we obtain a mesh or graph, which is specified by the POIs in the
region and corresponding adjacency matrix Ak, k = 1, . . . , K that describes connectivity between the
points.

Let us point out that the definition of Equation (2) as a potential function has the disadvantage
that there are no guarantees on the fulfillment of objectives 1–5. In fact, we observed that single POIs
or small parts of a region’s graph getting disconnected from the rest of a region. Nevertheless, this
issue can be easily identified by looking at the singular value decomposition of the Laplacian of the
region’s graph. If we detect that a POI or part of the graph is disconnected from the starting point~ck
after executing the triangulation algorithm, we delete this part of the graph. The algorithm will then
add new POIs until I POIs are generated.
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Figure 3. Three snapshots of the map discretization algorithm for partitioning the ROI into three
regions (red, blue, green). The green circumference delimits the drones starting position. Obstacles are
marked in gray.

3.1.2. Routes Computation for Efficient Area Coverage

Here we summarize how the order in which POIs are visited by the UAVs is computed. Essentially,
UAVs should visit POIs efficiently such as to minimize the total traveled distance. This problem can
be recognized as a traveling salesman problem (TSP). Classical TSP solvers require a weighting
matrix holding the traveling costs—the traveled distance in our case—between all nodes of the graph.
Unfortunately, our graphs of POIs are not fully connected. Because regions might be concavely shaped,
in a fully connected graph edges might intersect with another region, which might cause possible
collisions between routes. Furthermore, obstacles might prevent a direct link between two POIs within
a region. Therefore, we must require that UAVs only travel along the edges of the graph provided by
the "Map Discretization" module. Thus, if there is not a direct link between any two POIs in the graph,
we assume that the UAVs must travel along other edges available in the graph and use other POIs as
intermediate stops. This may imply that some POIs will be visited multiple times.

To apply a standard TSP solver, we must calculate the weighting matrix holding the traveling
costs, which result from direct and non-direct links between all combinations of POIs in a region.
For POIs that are directly linked, it is straight forward and we can use the Euclidean distance. In
contrast, for POIs that are not directly linked in the graph, we calculate the distance of the shortest
route following the edges of the graph. For the latter, we apply the Floyd–Warshall algorithm [15]. As
output of the "Routes Computation" module, we obtain lists of POIs that are optimal traveling routes.
These lists are then stored in the DB to be later accessed by drones.

3.1.3. Graphical User Interface for Swarm Control and Data Visualization

The GUI we developed for our system has two key roles. On the one hand, it permits an operator
to control the swarm of drones. On the other hand, it visualizes data gathered by drones. We can
distinguish between two phases in the GUI workflow: a setup and an online phase.

During setup phase the GUI is used to set input parameter of the "Map Discretization" module
(Section 3.1.1). Essentially, the operator can set the ROI, specify the number of POIs and regions, as
well as the height threshold hthresh parameter to map obstacles. In addition, the operator can tune the
weighting parameters w1-w5 in (2) in order to obtain a desired safety distance of POIs to obstacles and
other regions, and to obtain a desired POIs density. Furthermore, trajectories output by the "Routes
Computation" module (Section 3.1.2) are displayed in different colors (see left-hand side of Figure 4).

During the online phase, our GUI (Figure 4) displays status information provided by drones from
their last visit to the “beehive”. The GUI is organized into two main parts: on the left-hand side, it
displays a map with trajectories and POIs for each region (differentiable by colors), and the status of
POIs represented by a color shade. Light shade means that a POI is unvisited, and dark shade depicts a
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visited POI. On the right-hand side, the GUI displays the system status on the top part. In particular, it
allows an operator to track the following: system run time, percentage of total visited POIs, percentage
of visited POIs per region, drone assigned to each specific region, and drones’ connectivity to base
station. Furthermore, the GUI displays an overview of (i) drones that are currently active and are
gathering information, (ii) spare drones, if any available, which are in the “beehive” waiting to obtain
an available route, and (iii) drones that are temporary inoperative; e.g., drones whose battery is being
replaced after successfully completing a route.

Additionally, during the online phase, the GUI allows an operator to interact with the system.
Specifically, an operator can manually trigger a shutdown procedure for active drones. This is
particularly useful if e.g., an emergency landing is required. Moreover, the GUI allows us to retrieve
data stored in the DB of a specific POI by simply clicking on it. For example, on the bottom right part
of Figure 4, we depict a picture taking by a drone from one of the POIs.

Figure 4. GUI for swarm control and data visualization.

3.2. Communication System

Next, we describe the used communication system and the communication concept. Our system
relies on a communication link that permits drones to exchange information with the DB at the base
station. Information exchange has two key functionalities. First, it allows the base station to assign
drones to routes. Second, it permits drones to send collected sensor information to the base station. In
particular, drones upload the gathered data (e.g., pictures) in the DB, which is then later visualized in
the GUI.

The two aforementioned functionalities specify the communication system requirements, which
we summarize next:

• The communication range must be in the order of 100 m. Essentially, this range corresponds to the
vicinity of the "hive", which is the area in which drones and base station exchange information.

• The throughput of the communication system shall be sufficient to permit drones to upload
gathered information to the DB. Particularly, the exact throughput of the communication system
depends on the type of data and the amount of data acquired during the mission.

• The communication system shall be able to deal with a high package loss and an intermittent
communication. As drones fly in and out of the communication range, the system shall be able to
deal with these challenges.
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• The communication system physical device shall be light and easily deployable, so that a single
operator can transport and rapidly set up the system.

Additionally, for us it is particularly important that the communication system is cost-effective.
For a fixed budget, a cost-effective solution allows an operator to increase the number of drones in the
system. A higher number of drones speeds up the information-gathering task, as well as it increases
the system robustness to eventual single-drone failures.

Based on the aforementioned communication system requirements, we decided to use WiFi
technology. The main drawback of using WiFi is the communication range, which is in the order of
100 m. Nevertheless, this is not an issue as our system does not require a larger communication range.

3.3. Database System for Multi-Robot Coordination and Information Exchange

The functioning of a multi-agent system heavily depends on the coordination mechanism between
different agents. The concept advocated in this work is largely inspired by behavior of bees. In a
beehive, the hive itself is the main location where the communication takes place. The implemented
DB concept plays a similar role in the proposed system: the coordination of drones, data accumulation
and task assignments are all realized through a DB interface, which will be described in the following.
Let us point out that although we aim at a system design that is scalable with respect to the number of
drones, from a practical perspective the swarm size can consist of 3–10 drones and not 100 of units,
as one would expect for an analogy with the bees. There are three main constraints that limit the
number of units in the system. First, the communication system has a limited data rate. This is a
bottleneck that prohibits e.g., hundreds of drones arriving at the base station simultaneously to upload
the collected data. Second, drones require a dedicated landing spot for each drone so that in worst case,
all drones can land at the same time. If we had a swarm of hundreds of drones the landing dedicated
area shall be prohibitively large. Finally, the logistics and management of large swarms is challenging.
Our proposed system can be handled by a single operator who exchanges the batteries of drones that
land at the "hive". As soon as the number of units gets too high a single operator cannot deal with it
anymore. This would require more operators, which would increase the cost of the system.

The system’s DB consists of three tables that store: (i) information about the drones in the
swarm (table “Quads”), (ii) predefined partitioning of the ROI to be explored into sub-regions (table
“Regions”), and (iii) the POIs to be visited by the drones (table “Points”). These tables are summarized
in Tables 1–3. Next we describe in detail the fields that specify the three tables.

Table 1. Definition of the table “Quads”.

Table Field Field Description
Quad_ID (key) ID of the quad.
QUAD_NAME Human-readable name of the quad.
Xcoord_HOME X coordinate of the quad home position.
Ycoord_HOME Y coordinate of the quad home position.
Zcoord_HOME Z coordinate of the quad home position.
Status Status of the drone. This field can take only 3 possible values: active , broken , or spare.

Table 1 stores the information related to the drones in the swarm: their unique ID and name,
home coordinates of the “beehive” to which the drone is assigned, and a “health” status—a descriptor
of a drone’s ability to operate. Home coordinates are unique for each drone; they indicate coordinates
where the drone communicates with the database, as well as its take-off and landing position. The
Status of the drone identifies the function of the drone within the swarm. Active drones are in the
process of gathering information. Drones marked as spare are set in a stand-by modus and wait for
new assignments. Drones that are marked as broken are either broken or are currently not registered
within the system due to, e.g., a change of batteries.
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Table 2. Definition of the table “Regions”.

Table Field Field Description
Region_ID (key) ID of the region for inspection.
Region_NAME Human-readable name of the region.
Xcoord_START X coordinate of the drone starting position.
Ycoord_START Y coordinate of the drone starting position.
Zcoord_START Z coordinate of the drone starting position.
Status Status of the region. This field can take only 3 possible values: finished, active (currently

being explored), and spare (waiting to be assigned).
PathPlanInfo Binary object that stores the graph generated by the "Routes Computation" module.

In Table 2 the information about the regions generated by the "Map Discretization" module
(Section 3.1.1) is stored. Apart from the Region_ID and some human-readable naming of the
corresponding areal patch, the table also stores information about the location from where exploration
of the region should start, and the status of the region. The status of the region can be active, i.e., being
currently processed, finished, or spare. The latter is used to designate regions not yet assigned to any
drones. The path to traverse each region, generated by the "Routes Computation" module as described
in Section 3.1.2, is stored in the designated field PathPlanInfo. It is this last field that is used at later
steps to generate entries in Table 3.

Table 3. Definition of the table “Points”.

Table Field Field Description
Point_ID (key) ID of a POI for inspection.
Region_ID ID of a region to which the POI is assigned.
Quad_ID ID of a quad to which the POI is assigned.
Point_Rank Rank of a POI defined by the "Routes Computation" solution.
Xcoord X coordinate of the POI.
Ycoord Y coordinate of the POI.
Zcoord Z coordinate of the POI.
Xcoord_Actual Actual X coordinate of the drone when it visited the POI.
Ycoord_Actual Actual Y coordinate of the drone when it visited the POI.
Zcoord_Actual Actual Z coordinate of the drone when it visited the POI.
Roll_Actual Roll of a drone at the POI when it was visited.
Pitch_Actual Pitch of a drone at the POI when it was visited.
Yaw_Actual Yaw of a drone at the POI when it was visited.
Status Status of the POI. This field can take only two possible values: visited, and unvisited.
Image Actual image taken at the POI.
Image_TIME Date and time stamp of an image taken at the POI.

Finally, in Table 3 the information about all POIs is stored. Each entry in the table—a POI where
to gather information—has specific coordinates, and is associated with a region and a drone. This
association takes place as soon as a drone registers itself with the system and changes its status to
active. The generated POIs are ordered. This ordering encodes a trajectory, as given by the "Routes
Computation" module, which a drone needs to follow: the POIs are visited starting with points with
low rank and proceeding to points with a higher rank. Besides the POIs rank, we save the commanded
and the actual pose of the drone (coordinates and orientation) at which the measurement was taken, as
the latter might slightly deviate from the “commanded” pose. In addition, Table 3 also indicates which
POIs were visited by drones using the status field. When drones request assignments from the DB,
only the unvisited POIs from the region are assigned to the drone. Finally, for each region the “Points”
table also stores the time-stamped information collected at visited POIs such as e.g., imagery data.

4. System Components—Drones

Drones play the role of sensor-carrying platforms that collect information and “physically” bring
the data to the base station. Naturally, drones require sensors to collect the information of interest, a
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communication system to transfer the collected information, and some onboard computer that allows
for autonomous waypoint-based flight. Next we summarize how we realize these components in our
system.

4.1. Sensors for Information Gathering and Drones Positioning

Drones typically build on multiple sensors to fly autonomously. In particular, here we focus on
the two sensors that are the most relevant for our system realization: sensors for information gathering,
and sensors for positioning. For information gathering, we designed our system so that it permits an
operator to use a wide range of sensors, depending on the application of interest. In this sense, we
designed the system and, in particular, the DB so that measurements output from a wide variety of
sensors can be stored.

In addition to gathering information, drones heavily rely on a positioning sensor to fly
autonomously and to geo-reference the gathered data. In our system, we require drones to be equipped
with a GPS receiver to continuously position the drone. In this respect, a standard GPS receiver (approx.
5m of accuracy), is sufficient to position the drone.

4.2. Communication System

The communication system is a fundamental module in our system design. Essentially, it is the
mean that drones must communicate with the base station. In terms of the requirements needed for
the communication system, these are equal as the ones that we specified for its base station counterpart
(see Section 3.2).

4.3. Onboard Computer for Autonomous Information Gathering

The onboard computer is the drone’s “brain”. It is responsible for running the algorithm that
allows a drone to gather information autonomously, and to transmit the information to the base station.
In Figure 5, we summarize in a block diagram the information-gathering algorithm, which we explain
next in detail.

Get mission data 
(planned paths, 
measurement 

locations)

Database Take off
All POI 
visited?

Out of 
battery?

No Take pictureFly to POINo

Fly to home Land UAV

Yes

Transmit data Database

Yes

Figure 5. Algorithm for autonomous information gathering. Orange boxes indicate algorithm steps
in which the UAV is gathering information and is, therefore, not connected to the base station. White
boxes indicate steps in which the UAV shall be connected to the base station.

Once a UAV is activated, it requests mission data from the base station. Please note that this block
is colored white in Figure 5 to symbolize the algorithm steps that require a connection between drone
and base station. Mission data is stored in the DB. It contains: a unique region, a flying trajectory,
and the information of the already visited POIs in this region. We remind that regions are output
from the "Map Discretization" module (Section 3.1.1), while the trajectory is the output of the "Routes
Computation" module (Section 3.1.2). Trajectories are generated such that collisions with obstacles are
prevented, and flight in other regions is prohibited.

After receiving the mission data, the UAV sends the take-off signal to the DB and soars vertically
to a predefined height, which is set individually for each mission. Once the drone reaches the desired
flying height, the autonomous information-gathering workflow starts. This is highlighted in orange
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color in Figure 5. Following the beehive analogy, the UAV follows commands from the hive. Hence, if
there are still unvisited POIs and if the battery voltage is sufficient, the UAV approaches the next POI
to take measurements. At this stage, it is very likely that the UAV disconnects from the DB due to the
potential large distance between the UAV and the base station. In this situation the UAV only relies on
the obtained mission data and its onboard sensors.

Once all POIs are visited or the battery voltage is too low to continue the mission, the UAV returns
to its home position following the shortest route. To calculate this route to the home position the
UAV uses A* algorithm [16]. As input, A* takes the graph that corresponds to the drone’s assigned
region. After reaching the home position, the UAV establishes a connection to the DB and transmits
the gathered measurements.

5. System Analysis

We analyze here the system’s performance in simulations as we increase the number of UAVs. In
particular, we measure the time that the system requires to complete its mission: covering all POIs
within a predefined ROI. For all simulations, we assumed a ROI of a fixed size. The ROI size is given
by the area that can be covered by 8 UAV flights, where the duration of a single flight is 12 min. Please
note that we choose this value because it is the one that we later use for the experimental evaluation.

Here we compare two different scenarios. In the first scenario, we divide the ROI in 8 regions,
and increase the number of UAVs from 1 up to 8. In addition, we analyze the effect in the system
performance of the time required to exchange drones batteries and to re-launch the system. We
call this setup time. For simplicity, we assume that the setup time is constant during an experiment
and independent of the number of drones. In Figure 6a, we depict the simulation results for this
first scenario. We can observe that the total mission time remains constant for 4–7 drones systems.
This results from the fact that 4 UAVs can cover the ROI in two rounds with four simultaneously
flying UAVs. Instead, 6 UAVs would require one round with six simultaneously flying UAVs, and an
additional round with two simultaneously flying UAVs. This sums up two flying rounds, which is the
same as for the 4 UAVs system.
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Figure 6. Simulation results that evaluate the total mission time in terms of the number of UAVs in the
system, and of the system’s setup time. For all simulations we assume a ROI that has a constant size.
(a) We divide the ROI in 8 regions. (b) We divide the ROI in 3 regions.

In a second scenario we divide the ROI into three regions. The first two regions have equal size
and can be covered with 3 flights, while the third one can be covered with 2 flights. Figure 6b depicts
the simulation results for the second scenario. We can see that in the absence of setup time, the system’s
performance does not increase for several UAVs larger than 3. In contrast, as we increase the setup
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time we can observe that the performance increases for a system with up to 5 drones until it remains
constant.

Simulations results allows us to understand the effect of the setup time and of the number of
UAVs in the system’s performance. Based on these results, and taking into account the system’s
performance and cost, we decided to use 4 drones for the experimental evaluation.

6. System Implementation

We described in the previous sections our algorithm workflow, and the different components that
are part of our system design. Here we specify the specific software and hardware components that we
used to implement and evaluate our system. Please note that these components are merely an example
of possible components, but different ones could be used to realize our proposed system.

6.1. Software

The code developed for the system is written in Python. We used multiple libraries to program
the modules of our system. Specifically,

• Drones Monitoring and Data Visualization : this module is implemented using PyQT libraries to
develop the GUI.

• Map Discretization : this module requires a DEM of the terrain to prevent drones’ collisions with
obstacles. Here we used a DEM that was computed following the methodology described in [17].

• Routes Computation : routes are computed from the POIs graph by solving a TSP. For that,
we use the Floyd–Warshall algorithm [15] contained in the open source OR-Tools [18] library.
The OR-Tools library is developed and maintained by Google, and provides heuristics and
metaheuristics solutions to solve optimization problems.

• Database : the DB is implemented using a MySQL server architecture that is accessed by the
drones directly through a classical TCP/IP protocol. This setting also permits accessing the server
from a remote location. For instance, if the base station communication system is connected
to internet, e.g., using 4G interface, the data collected on the field can be accessed from a
remote control/coordination center by directly connecting to the DB. We used the Python library
mysql-connector to connect, read and write from the DB.

• Onboard Computer Algorithm. The onboard computer runs the algorithm for autonomous
information gathering. This algorithm must interact with the drone’s GPS sensor and flight
controller to command waypoints to which the drone shall fly. To facilitate the interaction of the
information-gathering algorithm with the drone’s sensors and flight controller, we use the robot
operating system (ROS).

6.2. Hardware

Our system is composed by multiple hardware modules, which cover a large range of
functionalities. Instead of specifying the implementation details of every single module, we focus
on the ones that from our perspective, are the most relevant for the reader to understand our system.
These are the following:

• Communication System. Based on the communication system requirements, specified in
Sections 3.2 and 4.2, we decided to use WiFi technology. On the base station side, this permits
us to use a standard WiFi router, which is lightweight and cost-efficient. On the drones side, we
decided to use a WiFi dongle for the same reasons.

• Database. The required performance of the DB is essentially determined by the number of used
swarm elements and amount of data collected by drones. For instance, in our experiments we used
a small swarm size (<5 units) and collected imagery data. For these purposes, a low-performance
server running on a small Raspberry Pi (RPi) computer was completely adequate. Higher
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performance systems can be deployed when more drones are used or when large amounts
of data (e.g., saved video stream) are stored and accessed by the system.

• Drone platform. We used Astec Hummingbird quadcopters. These are light UAVs that have
a maximum take-off weight of 710 g. Taking into account the platform’s weight, this leaves us
200 g to include additional payload. In particular, we include the following payload: an onboard
computer, a WiFi dongle, and an information-gathering sensor. We would like to remark that our
drone platform could easily be exchanged for any custom-built or off-the-shell drone that satisfies
the minimal hardware requirements specified in Section 4.

• Onboard Computer. We use a RPi 2 as onboard computer. A RPi is a light computer that can
be easily carried by an Astec Hummingbird. The RPi is connected to the UAV flight controller
through a serial communication interface. This is used by the information-gathering algorithm
to send waypoints to which the drone shall fly to. Additionally, the flight controller reads
information from the GPS receiver and an inertial measurement unit (IMU). This information is
then forwarded to the RPi to compute drone’s pose.

• Sensor. Here we use an imaging sensor—visual camera—to gather information. In particular,
we use a RPi Camera Module V1. This is a consumer level camera that weights only 3 g. This
low weight is a very desirable characteristic, as it impacts directly the flight time of the UAV. The
sensor of the camera is an OmniVision OV5647 and has a resolution of 2592× 1944 pixels. We
placed the camera below the UAV pointing down. The main drawback of the camera is the use of
a rolling shutter. This can cause noise in pictures if the UAV is not stable enough. Nevertheless,
we would like to point out that a global shutter camera can likewise be used. Moreover, we could
also use any other sensor by introducing only minor modifications in our system.

7. Experimental Evaluation

7.1. Setup

We carried out 4 field experiments (Experiments 1–4 ) to evaluate our system. Experiments
took place in our experimental area, located in the vicinity of Poecking, Bavaria, Germany. The area
measures approx. 200× 200 square meters, and is depicted in Figure 7a.

For all experiments, we divided the ROI in 3 regions, and generated 300 POIs. Drones flew at a
height of 10 m. The drones used for the experiments were the Astec Hummingbirds (see Figure 7c).
We used systems consisting of several drones ranging between 1 and 4. We can see in Figure 7b an
example of three drones flying while they take images of a ROI. In the following sections, we refer to
each of the drones by its name, which is the following: Hans, Orville, Charles, and Otto. Next, we
present the experimental results of our tests.

(a) (b) (c)
Figure 7. Experimental setup to evaluate our system design. (a) Aerial image of the area in which we
carried out the experiments. (b) Three drones flying while they take images of a ROI. (c) One of the
Astec Hummingbird quadcopters that we used for the experiments.



Sensors 2019, 19, 4349 16 of 20

7.2. Results

The main objective of our system is to gather information in all POIs that are part of the ROI.
POIs are organized in different regions, and for each region a flying route is computed and stored in
the DB. Essentially, we want drones to fly autonomously to complete routes without missing any POI.

To verify whether drones gathered information at all POIs, we plot in Figure 8 the nominal
and actual trajectories of the drones. In particular, Figure 8 depicts trajectories that correspond to
Experiment 3, in which three regions and three drones were used. In Figure 8a we show the trajectories
as they were saved in the DB, while in Figure 8b we depict the trajectories as they were recorded
by each drone’s GPS receiver. First thing that we can observe is that all POIs were measured, which
indicates that drones were able to complete the information-gathering task. Second, we note that
each region was assigned multiple times to different drones. As the regions are large, they cannot be
covered by a single-drone flight. Our system design deals with this limitation, and assigns the region
to a spare drone while the battery of the previous one is being replaced.

We can also see in Figure 8 that drones nominal and actual positions do not match perfectly.
Essentially, this is because we assume a UAV reaches a POI once it is within 1 m radius from it. Let
us also highlight how the routes for returning to home are constructed. In most of the cases, we can
observe that these routes are shorter than the routes computed to gather information. This is because
these routes are computed using A* algorithm with the goal to return to home following the optimal
(in terms of traveled distance) path.

In addition, to achieving a full coverage of the ROI, we design our system (i) to be scalable with
respect to the number of UAVs in the system; and (ii) to be robust against potential drones failures. In
the following, we analyze these two aspects in more detail.
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Figure 8. Nominal and actual trajectories of a system composed by 3 drones and 3 regions. (a)
Trajectories as stored in the DB. (b) Trajectories recorded by each drone’s GPS receiver. In (a) we plot
trajectories in a local coordinate frame, while in (b) we plot them in a global coordinate frame.

7.2.1. Scalability with Respect to the Number of Drones

We carried out three different experiments (Experiments 1, 2 and 3 ) in which we fixed the number
of regions to 3, and we varied the number of drones between 2 and 4. First, we evaluated the time
required to cover a certain area as we increase the number of drones. Here we compute the covered
area as the number of square meters on the surface observed with the drones cameras. The intended
overlap of the images has been taken into account for calculating the square meters.

In Figure 9a we show the time required to cover a certain area for each of the experiments. Please
note that the gaps in the thick lines correspond to the instants in which drones batteries are being
changed and, therefore, no area is covered. In addition, we draw a regression line for each of the
experiments, together with the regression coefficient. The coefficient represents the speed of the
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experiment, where a smaller coefficient corresponds to a shorter experiment time. This means that
the experiment with two UAVs was completed with a speed of 4 m2

s . The other two experiments have
almost the same coefficient, which corresponds to a speed of approx. 8.3 m2

s . This tells us that having
several drones (4 drones) larger than the number of regions (3 regions), i.e., having a spare drone, does
not bring a higher performance to the system in terms of the covered area.

(a) (b)
Figure 9. Algorithm scalability with respect to the number of drones. We evaluate a system of 2, 3 and
4 drones. (a) Time needed to observe a certain number of square meters. (b) Time required for each
UAV to travel a certain distance.

Second, we analyzed the time that each of the drones in the system needs to travel a certain
distance. Results are depicted in Figure 9b, where the color of the plots refer to different experiments.
In addition, we draw a rectangle that represents the area that is created by taking the maximum value
of the traveled distance and time. A smaller area represents a more effective UAV allocation. In this
case, we can observe that the area of the rectangles is reduced as we have more drones in the system.
We can also see that adding a third UAV brings a high performance increase. In contrast, adding a
fourth UAV only leads to a slight improvement.

7.2.2. System Robustness Against Drones Failures

Our proposed system can cope with a drone failure (e.g., a communication outage or, more
drastically, a drone crash) and can still complete the information-gathering task. We simulated a drone
failure in Experiment 4 by landing the UAV Otto during flight. Figure 10 shows this scenario, where
Otto flies in the middle right part of the ROI (see the red curve in Figure 10b). Its failure is simulated
approximately at the location (160 m, 140 m). Since Otto is not able to return home in a predefined
timeout, the system that runs on the base station declares it as broken. Hence, its trajectory is not
shown in Figure 10a, which shows the trajectories in the DB. Although Otto was not able to complete
its mission, we can observe in Figure 10a that Charles and Hans took over its POIs, and covered
them all.

In addition to the drones trajectories, we plotted in Figure 11 the assignment of the regions.
Figure 11a, which corresponds to Experiment 3, shows the ideal case, where there is no failure. There
we can observe how each of the regions is assigned to different drones, while we change drones
batteries. In Experiment 4 we simulated a drone crash (see Figure 11b). We can see that Otto starts its
mission. Then it crashed and Charles, followed by Hans, took over Otto’s region. Results of this last
experiment exemplify the capability of our system design to cope with drones failures.
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(b)
Figure 10. Nominal and actual trajectories of a system composed by 4 drones. (a) Trajectories as stored
in the DB. (b) Trajectories recorded by each drone’s GPS receiver. In (a) we plot trajectories in a local
coordinate frame, while in (b) we plot them in a global coordinate frame. Here we can observe that
Otto crashed, as it was not able to complete the route. Charles, followed by Hans, took over Otto’s
route, which demonstrates the system’s robustness against a drone crash.

(a) Experiment 3 in which drones did not crash.

(b) Experiment 4 in which a drone crashed.
Figure 11. Assignment of regions for three different experiments. For each of the drones we represent
the instant of time in which they were assigned to a region (R1, R2, or R3). We depict results for one
experiment that was successfully completed (a), and for one experiment in which a drone crashed (b).

8. Conclusions

In this paper, we proposed and experimentally validated the design of a multi-agent system for
autonomous information collection to be used in emergency response scenarios. The designed system
has been tested with multirotor UAVs for information collection, but fixed-wing drones can be used
as well with very little modifications. The system was specifically designed to be cost-efficient and
simple; at the same time to scale with the number of used drones and to tolerate a loss of multiple
drones without causing a total mission failure.

This was achieved by sacrificing the drone-to-drone communication or mesh networking, along
with reactive collision avoidance. Instead, by using analogy with bees, a centralized communication
and planned drones trajectories were centrally generated to avoid collisions with obstacles or other
drones. To this end, we proposed in this work a map discretization algorithm that generates
collision-free trajectories. The generated trajectories were then communicated to drones using simple
WiFi links. As such, the drones can merely traverse the pre-planned trajectories, taking sensor
measurements to physically bring measurement data to a central “beehive”. To plan the trajectories,
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the whole exploration area was partitioned in several non-overlapping regions, where drones can fly
without collision. The number of regions, their size, as well as the number and density of waypoints
within the region are sensor and application specific parameters. The choices made in the paper are to
demonstrate the performance of the whole system in the experiments. They must be selected, however,
depending on the specific sensor, type of the used drone, and type of collected information. However,
experiments have shown that the number of regions should be smaller or equal to the number of
drones used in the system: in this case the exploration speed is higher, and spare drones can be used in
case of drone failures. Additionally, let us stress that the absence of peer-to-peer data communication
links implies significantly reduced payload; this simplifies requirements on the size of the drones.
Furthermore, pre-planned trajectories alleviate the need for an onboard sensor and computer for
reactive collision avoidance. This likewise reduces the payload weight. Altogether, lighter and cheaper
drones can be used. The consequence of using lighter and cheaper drones is the fact that a loss of a
single drone in a system can be tolerated more easily.

The proposed design also proved experimentally to be robust against latter events. In particular,
when a drone does not return to the control station after a predefined timeout, its tasks can be
reassigned either to spare drones (those that are not actively collecting information), or to other drones
used in the system. This ensures that data will be continuously collected, even if only one drone is
used in the system.

Finally, we believe that the proposed design is simple yet effective for autonomous information
gathering in very diverse applications, where real-time data collection or surveillance is not required.
The implemented concept can be extended to different types of drones, sensors and applications with
very limited modifications of the whole systems, making it an attractive basis platform for further
extensions. A promising future extension is the formulation of the information-gathering problem
as a FANET. This formulation would allow us to extend our system to real-time data collection
applications.
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Abbreviations

The following abbreviations are used in this manuscript:

ROS robot operating system
GPS global positioning system
UAV unmanned aerial vehicle
POI point of interest
GUI graphical user interface
ROI region of interest
DEM digital elevation map
TSP traveling salesman problem
VRP vehicle routing problem
RRT rapidly exploring random trees
DB database
LIDAR light detection and ranging
RPi Raspberry Pi
IMU inertial measurement unit
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