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Abstract: This paper presents a complete and detailed description of the fabrication and measurement of
the electromagnetic properties of water-based semi-solid phantoms with emphasis on the analysis of the
time evolution of the complex permittivity of several samples stored in different conditions. A known
recipe for a 2/3 muscle equivalent phantom is used as test material, and the several phantom sample
properties are measured with an in-house developed coaxial probe technique. It is shown that the storing
condition is of paramount importance to extend the lifetime of a given phantom. This behavior stems
from the way the storing condition affects the water evaporation rate of the sample. In particular, while
an unprotected sample can preserve its electromagnetic properties only for a few days, a very well-sealed
one can last at least up to a year.
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1. Introduction

When the performance of an antenna placed near the human body must be measured, it is customary
to use a phantom to mimic the electromagnetic properties of the human body. An excellent survey of
different types of phantoms and how they can be fabricated can be found in [1]. For a phantom to
be realistic it must mimic the electromagnetic properties of the human tissues in the frequency range
of interest. As the main component of most biological tissues is water, the use of water as the main
component of a phantom tends to guarantee a good approximation to the electromagnetic behavior of
the envisaged biological tissue. By adding certain components to the water, according to an appropriated
recipe, the water properties can then be modified to meet those of the intended tissue. One problem with
a water-based phantom is its conservation as some evaporation will necessarily happen. To minimize the
water loss and extend the lifetime span of the phantom it must be properly stored and handled. Therefore,
the goal of this paper is to describe, in a complete and detailed way, the fabrication and measurement of
the electromagnetic properties of water-based semi-solid phantoms and to access their lifetime span for
different storing conditions.

The authors have recently presented a wearable fabric antenna [2,3] to work in the Industrial, Scientific
and Medical (ISM) band at 2.45 GHz. The antenna was tested when placed on a homogeneous phantom
mimicking a human torso with intended properties 2/3 of muscle, i.e., complex permittivity equal to
2/3 of that expected for muscle. At 2.45 GHz the muscle characteristics are ε,

r = 52.73, ε,,
r = 12.77 and
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tan δ = 0.242 [4], where ε,
r and ε,,

r are, respectively, the real and imaginary parts of the relative complex
permittivity and tan δ is the loss tangent. Therefore, the 2/3 muscle equivalent tissue is characterized by
ε,

r = 35.15, ε,,
r = 8.51 and tan δ = 0.242. This model has proven to be a good approximation for a layered

inhomogeneous phantom with skin, fat, muscle and bone [5–8]. The material used in the fabrication of the
torso phantom presented in [2,3] was also used in the samples analyzed in this work.

The organization of the paper is as follows: in Section 2 the recipe and fabrication procedure
are described. Section 3 describes in detail the coaxial open-ended measurement technique used.
The presentation of the experimental results obtained and an analysis of the time degradation of the
dielectric properties are presented in Section 4. Final conclusions are given in Section 5. An uncertainty
analyses is presented in the Appendix A.

2. Homogeneous Phantom Fabrication

The human body is made of many different tissues with unique electromagnetic properties.
The characterization of these tissues has already been thoroughly studied by several researchers and
their characterizations at different frequencies are currently available. A comprehensive study of body
tissue characterization is presented in [9] where the complex permittivity of various human tissues is
measured for frequencies ranging from 10 Hz to 100 GHz and fitted to a 4 term Cole–Cole model. When
performing measurements, the intricate details of the human body are often replaced by a homogeneous
volume representing a part of the human body and with a permittivity of some kind of average behavior
of the real material in the intended frequency range.

In the literature there are several formulas [10–12] than can be used to produce phantoms mimicking
the electromagnetic properties of biological tissues. The ingredients used and the fabrication procedure
follow that described in [12]. This procedure was selected since it is based on cheap and easy to obtain
ingredients, has a fabrication procedure which requires minimal equipment and allows easy adjustment
of the electromagnetic properties of the phantom. Moreover, it leads to phantoms with mechanical
(rheological) properties suitable for the envisaged applications [1,12]. Also, the phantom produced can
take any desired shape since it will conform to the shape of the container where it will be stored. This
was particularly important for the work presented by the authors, where the shape on a human torso was
targeted to mimic the transmission between antennas placed on the torso.

Deionized water (the dominant ingredient), agar, polyethylene powder, sodium chloride (NaCl),
TX-151 and sodium azide (NaN3) are the ingredients used which allow the obtaining of a final material
that simulates the characteristics of the high-water-content human tissues, such as muscle, brain or
internal organs, although not so suitable for low-water-content tissues such as fat and bone. In this
phantom, retention of the shape is made possible with agar which also prevents water from separating.
The polyethylene powder is used to adjust the relative permittivity while the conductivity is mainly
adjusted by the concentration of sodium chloride. Since the agar solution and the polyethylene powder
cannot be mixed directly, TX-151 is used to increase the viscosity. Sodium azide is added as a preservative.
Using different proportions of the ingredients, this recipe has successfully been used to realize different
materials. In [12], muscle and brain equivalent materials for frequencies up to 2.5 GHz are created.
In [13], the same recipe is used to obtain a head-equivalent phantom for the 3–6 GHz frequency range,
a real-shaped phantom of the upper half of the body at 2.6 GHz and an abdomen phantom of a pregnant
women at 150 MHz. In [14,15] a recipe for a material capable of representing muscle for frequencies up to
12 GHz with 2/3 muscle properties is used to represent a real-shaped phantom of the upper half of the
body of an adult male. In [16,17] a skin equivalent realistic hand for 60 GHz is presented. A model for
propagation around a cylinder of 2/3 muscle is proposed and tested in [18].

The fabrication procedure, adapted from [12], is as follows:
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• Deionized water is placed on a kettle and heated on a gas burner. During the heating process, sodium
chloride and sodium azide are added to the water. To prevent evaporation, the heating process must
be performed with the kettle’s lid on.

• Once the water starts to reach the boiling point, agar is slowly added and dissolved.
• When the mixture reaches the boiling point, fire is extinguished immediately.
• Small quantities of TX-151 and polyethylene powder are sprinkled into the liquid several times and

quickly mixed with an electrical mixer at a speed fast enough to assure a uniform mixture but not so
fast that air bubbles are formed.

• After all ingredients are added, the mixture is poured into the container, which must be immediately
closed (with a plastic lid or cling-film) to prevent evaporation.

• Finally, the mixture is allowed to completely cool down to room temperature (for about a day) to
completely solidify. After that period, the phantom can be removed from the container but must be
kept in a hermetical environment to reduce water evaporation.

Photographs of the main steps of the phantom material fabrication are shown in Figure 1.
These photographs detail the fabrication of the torso phantom used by the authors in [2,3], which is
the same process used for the smaller samples.

(a) (b) (c)

Figure 1. Photographs of the several steps of the phantom’s fabrication. (a) Water heating. (b) Ingredient
mixing. (c) Container filling.

Two batches of phantom material were fabricated, on two different occasions, with the quantities
presented in Table 1. The smaller batch is directly obtained from [15] and aims at a material with 2/3 muscle
properties in the range 2–9 GHz. This batch is used to produce several small test samples with different
sizes and preservation conditions with the goal of measuring the degradation rate of the phantom’s
properties with time for different storage conditions. The quantities of the larger batch are scaled from the
smaller one to obtain a total of 12 L to build the torso phantom used in [3]. A small sample of this batch
was also kept for measurements. The small samples and their respective containers/storing conditions are
shown in Figure 2.
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Table 1. Composition of the 2/3 muscle equivalent material.

Ingredient Amount (g) Amount (g)
(Original 4531.3 g) (Scaled 12,000 g)

Deionized water 3375.0 8937.8
Agar 104.6 277.0

Polyethylene powder 1012.6 2681.6
Sodium chloride 7.0 18.5

TX-151 30.1 79.7
Sodium azide 2.0 5.3

Sample 1 is approximately parallelepiped (average side 13.5 cm and average height 5.0 cm) and has
been kept closed inside a plastic box. The air gap between the sample and the box cover is approximately
3.5 cm. Sample 2 and 3 are also approximately parallelepiped (average side 13.5 cm and average height
4.0 cm). Sample 2 has been kept wrapped in cling-film and sample 3 was left open without protection.
Samples 4 and 5 are approximately cylindrical (average diameter 11 cm and average height 5.5 cm) and
have been kept inside a plastic box with an air gap between sample and cover of 5 mm. Sample 6 is
approximately parallelepiped with average side 13.5 cm and average height 6.5 cm and has been kept
closed inside the plastic box for about one year. The air gap between the sample and the box cover is
approximately 10 mm. The characteristics of the samples are summarized in Table 2.

1 2 3

4 5 6

Figure 2. Photograph of the samples inside the containers.

Table 2. Summary of the characteristics of the several samples.

Sample Shape Storage Age Dimensions Air Gap
(cm) (cm)

1 parallelepiped plastic box recent 13.5 × 13.5 × 5 3.5
2 parallelepiped cling-film recent 13.5 × 13.5 × 4 0
3 parallelepiped open recent 13.5 × 13.5 × 4 -
4 cylindrical plastic box recent 11 × 5.5 0.5
5 cylindrical plastic box recent 11 × 5.5 0.5
6 parallelepiped plastic box 1 year 13.5 × 13.5 × 6 1.0

3. Measurement Technique

The open-ended coaxial probe method [19–23] is used to measure the dielectric properties of the
phantom. It is intended to get insight about the frequency ranges where the fabricated coaxial probes
would provide useful results and where the fabricated phantom successfully mimics the human tissues.
The equipment available at the time of the measurements limited the maximum usable frequency to 6 GHz.
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3.1. Method Description

In simple media (linear, isotropic, homogeneous and time invariant) the complex permittivity is
given by

ε = ε0

[
ε,

r − j
(

ε,,
r +

σdc
ωε0

)]
= ε0

(
ε,

r − jε,,
rgen

)
(1)

where ε0 is the vacuum permittivity, ε,
r is the real part of the relative complex permittivity, ε,,

r is the
imaginary part of the relative complex permittivity, accounting for dielectric polarization losses, σdc
is the DC conductivity, ω is the angular frequency and ε,,

rgen is the total imaginary part of the relative
complex permittivity.

The theory behind the open-ended coaxial method for measuring the electrical properties of materials
is very well established [19–23]. It consists of the use of an open-ended coaxial probe immersed in
the material under test (MUT) and to measure the reflection coefficient in a reference plane. Figure 3
shows the coaxial open-ended probe immersed in the MUT and the equivalent circuit of the coaxial-MUT
interface [21]. The reflection coefficient at the open-ended side of the coaxial probe is given by

Γ =
ZL − Z0

ZL + Z0
=

Y0 −YL
Y0 + YL

(2)

where ZL (YL) is the load impedance (admittance) at the probe tip and Z0 (Y0) is the coaxial probe
characteristic impedance (admittance). The load admittance of the equivalent circuit is [19,21]

YL = jωC f + jω
(

εr − j
σdc
ωε0

)
C0

= ωC0

(
ε,,

r +
σdc
ωε0

)
+ jωC0

(
ε,

r +
C f

C0

) (3)

resulting on

Γ =
1−

(
ε,,

r +
σdc
ωε0

)
ωZ0C0 − jωC0Z0

(
ε,

r +
C f
C0

)
1 +

(
ε,,

r +
σdc
ωε0

)
ωZ0C0 + jωC0Z0

(
ε,

r +
C f
C0

) (4)

MUT

Cf

r

G

Figure 3. Equivalent circuit at the coaxial-MUT interface [21], where εr = ε,
r − jε,,

r , C f is the fringing
capacity at the tip of the probe, C0 is the probe terminal capacity when in free space and ρ is the voltage
reflection coefficient measured at the side of the probe connected to the vector network analyzer.
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The coaxial probe can also be modeled as a two-port network, as shown in Figure 4, and therefore it
can be written

ρ =
b1

a1
(5)

Γ =
b2

a2
=

ρ− S11

S22(ρ− S11) + S12S21
(6)

Equating (6) and (4) leads to

ρ =
A2 + A3(ε

,
r − jε,,

rgen)

A1 + (ε,
r − jε,,

rgen)
(7)

where

A1 =
1− S22

jωC0Z0(1 + S22)
+

C f

C0
(8)

A2 =
S11 + S12S21 − S11S22

jωC0Z0(1 + S22)
+

C f

C0

(
S11 − S12S21 + S11S22

1 + S22

)
(9)

A3 =
S11 − S12S21 + S11S22

1 + S22
(10)

two-port

network

Coax.-MUT

interface
VNA

a1

b1

a2

b2

Figure 4. Two-port model of the coaxial probe [21].

The complex coefficients A1, A2 and A3 can be obtained from Equation (7) by terminating the coaxial
probe with 3 standard media with known (ε,

ri, ε,,
rgeni) and measure the corresponding reflection coefficient

ρi (i = 1, 2, 3) at the VNA reference plane. The most common choice for the 3 standards is a short-circuit,
an open-circuit and a well-known reference media. For the short-circuit (i = 1), Γ1 = −1. Substituting
in (6) gives

− 1 =
ρ1 − S11

S22(ρ1 − S11) + S12S21
(11)

Solving for ρ1 leads to

ρ1 =
S11 − S12S21 + S11S22

1 + S22
= A3 (12)

For the open-circuit (i = 2), ε,
r2 = 1, ε,,

rgen2 = 0. Substituting in (7) yields

ρ2 =
A2 + A3

A1 + 1
(13)

Finally, substituting again in (7) for a reference liquid with (ε,
r3, ε,,

rgen3) results on

ρ3 =
A2 + A3(ε

,
r3 − jε,,

rgen3)

A1 + (ε,
r3 − jε,,

rgen3)
(14)
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Rearranging for the Ai it can finally be obtained

A1 =
(ρ2 − ρ1) + (ρ1 − ρ3)(ε

,
r3 − jε,,

rgen3)

ρ3 − ρ2
(15)

A2 =
ρ3(ρ2 − ρ1) + ρ2(ρ1 − ρ3)(ε

,
r3 − jε,,

rgen3)

ρ3 − ρ2
(16)

A3 = ρ1 (17)

Once the Ai are obtained from measurements with the reference loads, the coaxial probe can be
loaded with the MUT.

ρMUT =
A2 + A3εrMUT

A1 + εrMUT
(18)

Solving for εrMUT

εrMUT =
A2 − A1ρMUT

ρMUT − A3
(19)

3.2. Coaxial Probe Description

A coaxial probe, shown in Figure 5, has been fabricated from the semi-rigid 50 Ω coaxial cable UT141.
The probe has a length of approximately 20 cm and is left open on one end and terminated with an SMA
male connector on the other end to allow for the connection with a VNA. The measured input reflection
coefficient of the open-ended probe is shown in Figure 6. An unexpected high ripple is noticed. The SMA
connector can introduce small reflections and therefore some ripple was expected, but much smaller than
the one obtained since the SMA connector is specified to be used up to 18 GHz. After a detailed analysis
of the fabrication process it was concluded that a discontinuity had been introduced when soldering the
cable section to the SMA connector. The high temperature needed to solder the cable to the connector led
to the expansion of the dielectric insulator. After cooling, the dielectric retracted and an air gap was left
between the dielectrics of the connector and of the cable. This air gap corresponds to a discontinuity in the
cable characteristic impedance.

Figure 5. Photograph of the fabricated coaxial probe.

0 2 4 6 8 10 12 14
−1.5

−1

−0.5

0

f [GHz]

Γ 2
 
[
d
B
]

 

 
Theory (no gap)
Theory (gap)
Measured

Figure 6. Input reflection coefficient of the coaxial probe.

A simple transmission line circuit model can be used to check the effect of the air gap of the coaxial
probe. The circuit model used is shown in Figure 7, where l1 is the length of the probe and l2 is the length of
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the air gap perturbation. As l2 is very small (about 1 mm), and for the sake of simplicity, the corresponding
section is considered lossless. Moreover, for the open-ended coaxial ZL = ∞ will be assumed. Therefore,
the impedance at the input of section 1 is given by

Zin1 = Z01
eγ1l1 + e−γ1l1

eγ1l1 − e−γ1l1
(20)

with
γ1 = α1 + jβ1 (21)

The impedance at the input of the lossless section 2 can be obtained from

Zin2 = Z02
Zin1 + jZ02 tan(β2l2)
Z02 + jZin1 tan(β2l2)

(22)

Finally, the reflection coefficient at the input of section 2 is

Γ2 =
Zin2 − Z01

Zin2 + Z01
(23)

ZL

l1l2

Z02 Z01Z01

(1)(2)

Figure 7. Transmission line model of the probe with air gap.

The amplitude of Γ2 as a function of frequency is shown in Figure 6. The following data values have
been used:

Z01 = 50 Ω

l1 = 200 mm

β1 =
2π

λ1
=

2π f
c
√

εrPTFE

Z02 = Z0Air = Z0PTFE
√

εrPTFE = 71.9 Ω

β2 =
2π

λ0
=

2π f
c

The attenuation coefficient in section 1 of the cable has been obtained from typical UT141 data sheets
and is reproduced in Table 3. The interpolation function indicated in Table 4 has been obtained from the
data shown in Table 3.
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Table 3. UT141 typical attenuation.

Frequency (GHz) Attenuation Coefficient (dB/m)

0.5 0.26
1 0.38
5 0.91

10 1.37
20 2.09

Table 4. UT141 cable interpolated attenuation.

Frequency (GHz) Attenuation Coefficient (dB/m)

≤5 0.047184
√

f − 0.003434
[1, 5] 0.049366

√
f − 0.005616

[5, 10] 0.057179
√

f − 0.023086
≥10 0.063282

√
f − 0.042385

The length of the air gap (l2 = 0.5 mm) has been adjusted to reproduce the amplitude of the
ripple obtained in the open-ended experimental response. The circuit model results are compared with
measurements in Figure 6. Simulation results for the case without air gap (l2 = 0) have also been
introduced for reference. It seems that the attenuation is slightly underestimated above approximately
10 GHz. The adopted model of the air gap allows a proper reproduction of the high ripple obtained in the
amplitude of the input reflection coefficient. The above-mentioned discrepancies are quite limited and, at
least partially, have a physical explanation.

3.3. Coaxial Probe Calibration

For the probe calibration, besides the open-circuit and short-circuit, a third reference well-known
media is needed. The use of at least a fourth reference well-known media is also advisable for the testing
of the probe and calibration procedure. Although the authors worked with several well documented
reference liquids (deionized water, methanol, ethanol, dimethyl sulfoxide (DMSO) and Water saline
solutions) the results provided here were obtained with a calibration with deionized water. As methanol
has permittivity values closed to the target phantom values, the uncertainty of methanol measurement
will be calculated to obtain an estimate of the uncertainty of the measured phantom’s permittivity. An
exchange of the role of these two liquids showed no relevant differences in the permittivity measurements.

The setup used in the measurements is shown in Figure 8a for the short-circuit and in Figure 8b for one
of the reference liquids. A metallic holder was used to control the alignment and depth of the probe inside
the liquids. During the measuring process it was noticed that the penetration depth of the probe was not
a relevant parameter [24]. In fact, water measurements with a penetration of 20 mm, 40 mm and 60 mm
are indistinguishable and only slightly different from the measurements with 0 mm. Methanol and ethanol
provide experimental input reflection coefficient amplitude results that are also almost independent of the
probe depth. However, a type of hysteresis effect was detected, i.e., for the same depth, the results obtained
depended on whether the probe had just been inserted into the liquid or had stayed there for some time. As
methanol and ethanol are less viscous than the other reference liquids used, and as the coaxial probe end is not
sealed, some liquid could go inside the probe between the conductors (inner and outer) and the PTFE dielectric
as was also identified in [20]. From the analysis of the results obtained it was decided to use a probe depth of
20 mm for all the reference liquids. Additionally, for methanol and ethanol measurements, special care was
taken to make sure that the probe stays a short period of time inside the liquids to minimize infiltration into
the probe.



Sensors 2019, 19, 4298 10 of 21

(a) (b)

Figure 8. Experimental setup used for the measurements. The photographs show two examples,
the short-circuit and a reference liquid. (a) Short-circuit. (b) Liquid.

The coaxial open-ended coefficients A1, A2 and A3, defined in Equations (8)–(10), respectively, have
been obtained and are shown in Figure 9a–c. They have been measured in an environment with a stable
temperature of 20.6 ◦C and 48% humidity.
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Figure 9. Cont.
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Figure 9. Ai coefficients using deionized water as reference. (a) A1. (b) A2. (c) A3.

4. Phantom Measurements

4.1. Comparison between Measured and Target Permittivity

The ultimate purpose is to measure the complex permittivity of the phantom material described
previously. However, to test the repeatability of the fabrication process and also the way the permittivity
changes with time with different storing conditions, six small samples of the phantom material, as shown
in Figure 2, have also been fabricated. Samples 1 to 5 have been fabricated recently while sample 6 has been
fabricated about one year before the current measurements. All the samples have been kept on a room
with controlled temperature and humidity. In the first 18 days after fabrication the room temperature was
21± 0.5 ◦C. On day 22 it was necessary to increase the temperature about 2 ◦C. The humidity of the room
was in the range 50%± 7%.

To measure the complex permittivity each sample was placed on the top of a photography tripod and
moved up until the probe was about 9 mm deep inside the sample (Figure 10). It was necessary to move
the sample smoothly, without going back and forth, to make sure that the sample material was in direct
contact with the coaxial probe end. If there is a small gap between probe and sample material, as shown in
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Figure 11, either filled with air or water solution, the complex permittivity results will be substantially
different [24].

The measured complex permittivity superimposed with the expected 2/3 muscle properties [4] are
shown in Figure 12. All the results have been obtained 2 days after fabrication when the temperature of
the samples was almost the same as the room temperature.

For the analysis of the results, it must be kept in mind that the recipe used in the phantom’s fabrication
will produce a material with properties close to 2/3 muscle in the 2–9 GHz range. Therefore, the difference
observed between the measured values and the target ones for frequencies below 2 GHz (specially noted in
the values of ε,,

r) is expected. There is a general very good agreement for the imaginary part of the relative
complex permittivity of the six samples. The ε,,

r value is in the range 7.09–7.41 and tan δ is in the range
0.181–0.190. For the real part of the relative complex permittivity of the six samples the agreement is good
between samples 2, 4, 5 and 6. Samples 1 and 3 have lower values of ε,

r meaning that they have lost water
by evaporation. Sample 1, which is closed in a plastic box, lost some (little) water to the air volume (3.5 cm
height) above the phantom material just until it got saturated. When the box is open, the water-saturated air
is replaced by fresh air that, after the box is closed, becomes saturated again. This is the process by which
the sample loses water. Sample 3, which is in a completely open situation, lost (more) water continuously. It
is amazing that sample 6, despite being one year old, has preserved its macroscopic dielectric characteristics
unchanged. This is because it was kept in a hermetically closed box that was never open in the one-year
time period. The uncertainty analysis of the results obtained is described in Appendix A.

Figure 10. Photographs of the measurement setup used to measure the phantom samples using the sample
left open as an example.

MUT

gap

Figure 11. Accidental gap between the coaxial probe tip and the phantom material.
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Figure 12. Measured and expected relative permittivity of the phantom samples. (a) Sample 1 (Parallelliped,
Plastic). (b) Sample 2 (Parallelliped, Cling-film). (c) Sample 3 (Parallelliped, Open). (d) Sample 4
(Cilindrycal, Plastic). (e) Sample 5 (Cilindrycal, Plastic). (f) Sample 6 (Parallelliped, Plastic, one year).

4.2. Time Evolution of the Phantom’s Characteristics

To evaluate the time evolution of the phantom dielectric characteristics, the several phantom samples
were periodically measured. Regarding all the measurements, it is important to point out that the samples
that are kept inside plastic boxes (1, 4, 5 and 6) are briefly open for the measurements and are closed
hermetically afterwards and sample 2 is unwrapped for the measurements and is carefully wrapped
immediately after.

The time evolution of the experimental (ε,
r, ε,,

r) results are shown in Figure 13. The results shown indicate
clear tendencies that depend on the type of protection of each of the phantom samples. As time goes by, if
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unprotected, the phantom samples rapidly lose water content and the relative permittivity goes down quickly.
This effect can be observed in sample 3 where 11 days after fabrication ε,

r went down from about 40 to about
20 and ε,,

r from about 7 to about 4. However, there are some results that seem to be erroneous and do not
follow any tendency. These results differ from the general tendency far above the uncertainty level of the
measurement method. An example is, for instance, ε,

r of sample 1 on days 7, 9, 11, 18 and 44. Most of the
“erroneous” results are below the tendency lines but there are also a few above. One possible explanation for
the erroneous results is the fact that the coaxial probe tip might not be in direct contact with the sample material
because of a small cylindrical gap, as depicted in Figure 11. This gap can be filled either with air, in which
case the measured relative permittivity is lower than expected, or with water, in which case the measured
relative permittivity is higher than expected. There are other factors contributing to the non-repeatability
errors, such as the holes left by the previous measurements and the proximity of the measurement point to the
phantom borders.

It should be pointed out that during the whole process, despite the water evaporation, the mechanical
properties of the phantom are kept, i.e., the samples kept their shape and did not fall apart. The sample
that was left open rapidly became noticeable dry. However, the remaining samples kept their original
appearance during the whole process, which means that a visual inspection of the phantom is not enough
to evaluate its current electromagnetic condition.

To be able to take some useful conclusions concerning the time evolution of the relative complex
permittivity of the phantoms, the measured relative complex permittivity is fit to exponential tendency
lines of the form

εr(n) = ε,
r0e−c1n − jε,,

r0e−c2n (24)

where n is the number of days since the fabrication. The same values of ε,
r0 and ε,,

r0 are used in samples 1
to 5 and have been chosen as the average of the corresponding permittivity of samples 1, 2, 4 and 5 in day
2. Sample 6, being one year old, has been given a slightly different approach. It is quite natural that (ε,

r, ε,,
r)

have both decreased a little during the one-year lifetime. In this case, ε,
r0 = 36 and ε,,

r0 = 6 have been used
in the data fitting process. The values of ci, obtained using a least-squares error minimization procedure,
are indicated in Table 5.

Table 5. Time constants of the permittivity tendency lines.

Sample c1 c2

1 0.0039 0.0051
2 0.0050 0.0057
3 0.0700 0.0640
4 0.0010 0.0014
5 0.0016 0.0020
6 0.0036 0.0048

The experimental results are compared with the fitted tendency lines of each sample in Figure 13.
The following main conclusions can be drawn:

• Except for sample 3 (unprotected) the time decaying of the permittivity is almost linear.
• The real part ε,

r and the imaginary part ε,,
r of the permittivity have similar time decaying rates although

a slightly faster decay of the imaginary part is noticed.
• The useful lifetime of an unprotected phantom is very small (a few days only).
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• The most effective protection is a hermetic sealing box that can extend a phantom lifetime many
months or even a year. This long extension of the lifetime is only possible if the volume of air is
contact with the phantom is small and is not renewed.

• Wrapping a phantom in plastic film can also extend the useful lifetime of a phantom, not as much as
a hermetic box, but it can reach up to a month.

Although these conclusions are obtained from the measurements of small samples of phantom
material, we strongly believe that they can be qualitatively extrapolated to larger volumes such as the
fabricated torso phantom.
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Figure 13. Time evolution of the phantom samples measured relative permittivity. (a) Sample 1
(Parallelliped, Plastic). (b) Sample 2 (Parallelliped, Cling-film). (c) Sample 3 (Parallelliped, Open).
(d) Sample 4 (Cilindrycal, Plastic). (e) Sample 5 (Cilindrycal, Plastic). (f) Sample 6 (Parallelliped, Plastic,
one year).
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5. Conclusions

A complete and detailed description of the fabrication and measurement of the electromagnetic
properties of water-based semi-solid phantoms with emphasis on the analysis of the time evolution of the
complex permittivity of several samples stored in different conditions is presented. It is shown that the
storing conditions of a water-based phantom can largely influence the lifetime of the sample. If a sample is
kept unprotected, its electromagnetic properties will last only for a few days. However, if hermetically
stored, they will be preserved for at least a year. A sample that is kept hermetically closed and open
regularly (in a daily basis) for a quick measurement can last up to a month. The phantom material is very
lossy. Consequently, only the part near its surface has influence on the propagation over the phantom.
Therefore, since the water evaporation rate is the main effect driving the time change of the permittivity
and it is almost independent of the sample size, the conclusions obtained from the measurements of the
small samples can be extrapolated to larger ones.
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Appendix A. Coaxial Probe Uncertainty Analysis

Depending on the frequency behavior of the permittivity, several models can be used to represent
the liquids. A very common model is the Debye (or single-Debye) model [25–27], according to which the
relative permittivity is given by

εr = ε∞ +
εs − ε∞

1 + jωτ
= ε∞ +

εs − ε∞

1 + j f
fr

(A1)

where εs is the static ( f = 0) value of relative permittivity, ε∞ is the high frequency limit of the relative
permittivity ( f >> fr), τ is the relaxation time, i.e., the time period needed for dipoles to revert to random
orientation when the applied electric field is removed, ω is the angular frequency of the applied electric
field, f is the linear frequency of the applied electric field and fr is the relaxation frequency fr = 1/2πτ.

The relevant parameters needed to characterize methanol are contained in Table A1 [26] and they can
be used for frequencies up to 10 GHz. For temperatures other than those in Table A1, all the Debye model
parameters can be estimated from linear interpolation. For methanol, in the 20–25 ◦C range (where all the
measurements were made) the interpolation process results on

εs = 37.56− 0.1967T (A2)

ε∞ = 6.018− 0.0182T (A3)

fr = 1.546 + 0.0638T (A4)
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Table A1. εs, ε∞ and τ values and uncertainty for methanol [26].

T (◦C) εs ± ∆εs ε∞ ± ∆ε∞ τ ± ∆τ (ps)

10 35.74± 0.06 5.818± 0.104 2.262± 0.019
15 34.68± 0.06 5.698± 0.131 2.532± 0.023
20 33.64± 0.06 5.654± 0.104 2.822± 0.019
25 32.66± 0.06 5.563± 0.176 3.141± 0.033
30 31.69± 0.06 5.450± 0.204 3.490± 0.204

The theoretical Debye model has been obtained by curve fitting experimental data to the model and
therefore have associated levels of uncertainty. Knowing the uncertainty of the several model parameters
and using the concept of propagation of uncertainties [28] the uncertainty of the measured permittivity
can them be estimated.

Separating the real and imaginary parts of the single-Debye model results on

ε,
r = ε∞

εs − ε∞

1 + ( f / fr)2 (A5)

ε,,
r =

(εs − ε∞)( f / fr)

1 + ( f / fr)2 (A6)

The loss tangent is given by

tan δ =
ε,,

r
ε,

r
(A7)

The uncertainty of the previous quantities is related to the uncertainty on the model parameters by

∆ε
′
r =

√(
∂ε,

r
∂ε∞

∆ε∞

)2
+

(
∂ε,

r
∂εs

∆εs

)2
+

(
∂ε,

r
∂ fr

∆ fr

)2
(A8)

∆ε
′′
r =

√(
∂ε,,

r
∂ε∞

∆ε∞

)2
+

(
∂ε,,

r
∂εs

∆εs

)2
+

(
∂ε,,

r
∂ fr

∆ fr

)2
(A9)

∆ tan δ =

√(
∂ tan δ

∂ε,
r

∆ε,
r

)2
+

(
∂ tan δ

∂ε,,
r

∆ε,,
r

)2
(A10)

The values of uncertainty of the model parameters are given for a discrete set of temperatures (for
methanol they are given in Table A1). For temperatures in the range 20 ◦C to 25 ◦C the values of εs, ε∞ and
fr are obtained from Equations (A2)–(A4), respectively. Therefore, ∆εs, ∆ε∞ and ∆ fr can be obtained from

∆ε∞ =

√(
∂ε∞

∂ε∞(25)
∆ε∞(25)

)2
+

(
∂ε∞

∂ε∞(20)
∆ε∞(20)

)2
+

(
∂ε∞

∂T
∆T
)2

(A11)

∆ε∞ =

√(
∂εs

∂εs(25)
∆εs(25)

)2
+

(
∂εs

∂εs(20)
∆εs(20)

)2
+

(
∂εs

∂T
∆T
)2

(A12)

∆ fr =

√(
∂ fr

∂ fr(25)
∆ fr(25)

)2
+

(
∂ fr

∂ fr(20)
∆ fr(20)

)2
+

(
∂ fr

∂T
∆T
)2

(A13)
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Performing the partial derivatives using the values contained in Table A1 and assuming a temperature
variation ∆T = 0.5 ◦C results on

∆ε∞ =
√
[0.0352(T − 20)]2 + [0.0208(25− T)]2 + 0.00912 (A14)

∆ε∞ =
√
[0.012(T − 20)]2 + [0.012(25− T)]2 + 0.0982 (A15)

∆ fr =
√
[0.0066(T − 20)]2 + [0.0038(25− T)]2 + 0.03192 (A16)

The theoretical uncertainty (in percentage) of the methanol single-Debye permittivity values, ∆ε,
r and

∆ε,,
r , at 20.6 ◦C is shown in Figure A1 (these results agree with [28]).

An estimation of the uncertainty of the measured results can now be obtained as the difference
between the measured result and the worst case of (εr + ∆εr or εr − ∆εr). The results (in percentage) for
∆ε,

r, ∆ε,,
r and ∆ tan δ are shown in Figure A2. The lower frequency intense ripple is caused by the air gap

accidentally created between the PTFE insulation of the cable and the SMA connector (see Section 3.2).
The higher frequency ripple is caused by other small multiple reflections (connector, cable connecting to
the VNA, etc.). An exponential tendency line of the form

∆F( f ) = AeB f (A17)

has been added to the results were A and B, as indicated in Table A2, were obtained by a least square fit
algorithm. As expected, the uncertainty increases as the frequency increases. At 2.45 GHz the uncertainties
are approximately ∆ε,

r = 2.3%, ∆ε,,
r = 6.6% and ∆ tan δ = 7.6%
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Figure A1. Uncertainty of methanol permittivity (T = 20.6 ◦C).
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Table A2. Parameters of the uncertainty tendency lines.

Parameter ∆ε,
r ∆ε,,

r ∆ tan δ

A 1.0250 3.4302 3.717
B 0.3398 0.2701 0.293

The measured permittivity superimposed with the expected values are shown in Figure A3.
The measurements have been performed in stable conditions of temperature and humidity. As it can be
seen there is a general good agreement between theoretical and experimental results with a tendency for
the difference to increase as frequency increases. The relative differences in the permittivity at 2.45 GHz
are ∆ε,

r = 0.491(2.3%) and ∆ε,,
r = 0.536(3.9%).
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Figure A3. Theoretical and measured permittivity of methanol.
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