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Abstract: Unmanned aerial vehicles (UAV) are growing in popularity, and recent technological
advances are fostering the development of new applications for these devices. This paper discusses
the use of aerial drones as a platform for deploying a gunshot surveillance system based on an array
of microphones. Notwithstanding the difficulties associated with the inherent additive noise from
the rotating propellers, this application brings an important advantage: the possibility of estimating
the shooter position solely based on the muzzle blast sound, with the support of a digital map of the
terrain. This work focuses on direction-of-arrival (DoA) estimation methods applied to audio signals
obtained from a microphone array aboard a flying drone. We investigate preprocessing and different
DoA estimation techniques in order to obtain the setup that performs better for the application at
hand. We use a combination of simulated and actual gunshot signals recorded using a microphone
array mounted on a UAV. One of the key insights resulting from the field recordings is the importance
of drone positioning, whereby all gunshots recorded in a region outside a cone open from the gun
muzzle presented a hit rate close to 96%. Based on experimental results, we claim that reliable bearing
estimates can be achieved using a microphone array mounted on a drone.

Keywords: unmanned aerial vehicles (UAV); rotary wing drones; direction of arrival (DoA)
estimation; microphone array; gunshot audio surveillance; shooter localization

1. Introduction

The interest in automatic sniper localization systems traces back to the early 1990s, pioneered
by countries such as the United States of America, Russia, Canada, France, and more recently,
Israel, among others. Such surveillance systems for shooter detection and localization can be useful to
the police and military forces [1,2]. The shooter detection and localization problem can be approached in
different ways, depending on the kind of signatures from a gunshot event, acoustic or electromagnetic,
that one decides to process [3]. For instance, cameras can be used to detect the muzzle flash [4], whereas
microphone arrays can be used to detect the muzzle blast and the shockwave acoustic signatures.
If these two acoustic signatures are detected in the same gunshot event, one can estimate the location
of the shooter using a two-step procedure [3].

The successful use of microphone arrays to tackle the direction-of-arrival (DoA) estimation
problem even with low signal-to-noise ratio (SNR) can be seen in Reference [5]. In this paper, median
filtering is used to enhance the collected acoustic gunshot signals. In Reference [6], an algorithm that
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optimizes DoA estimation using exhausive search through consistent fundamental loops is introduced.
This method, in an attempt to have the best approach for the level of noise of audio signals, is a
combination of standard DoA estimation, Exhaustive Search (ES) [7], and consistent fundamental
loop [6].

Microphone arrays can be deployed in different platforms, e.g., stand-alone systems mounted
on vehicles [8], on light posts in urban areas or on trees in a forest [9]. All these systems are currently
subjects of great interest in academia and are recently associated with the internet of things (IoT)
industry [10] as well. However, one such system based on a microphone array mounted on an aerial
drone brings additional advantages owing to its flexibility to cover wider areas relatively quicker and
at a lower cost. It also opens the opportunity for new important applications, such as search-and-rescue
missions [11,12] and environmental monitoring [9]. In Reference [11], a microphone array mounted on
a drone is used to detect a narrowband signal generated by a whistle, which can be very effective in
search-and-rescue missions in areas of difficult access.

An application example for environmental monitoring is presented in Reference [9], suggesting
the use of an open hardware to be deployed in the forest to record audio signals and using a Secure
Digital (SD) card to store the data. These signals vary from bat ultrasounds to gunshot signals. For
instance, in the case of detecting gunshot events in protected areas, people responsible for monitoring
those areas could be triggered to carry out necessary actions against poaching. Hoshiba et al. presented
detailed design and implementation of a quadcopter-embedded microphone array system for outdoor
environments [12].

In order to enable new drone applications, the scientific community has developed an interest for
new techniques capable of tackling the strong ego-noise presented in audio recordings from unmanned
aerial vehicle (UAV)-embedded microphone arrays, especially when the target sound is a whistle or
human speech. Methods based on Multiple Signal Classification (MUSIC), known to be very robust
against noise, are presented in Reference [13]. The Generalized Eigenvalue Decomposition-MUSIC
(GEVD-MUSIC) [14,15] is reported to have high performance even for low-SNR signals. The incremental
Generalized Eigenvalue Decomposition-MUSIC (iGEVD-MUSIC) introduced in Reference [16] estimates
the noise correlation matrix incrementally to cope with the high non-stationarity of the ego-noise.
A supervised approach that uses UAV sensors data and motor rotation speeds to estimate the noise
correlation matrix was proposed in Reference [17]. Aiming at reducing computational complexity and
errors associated with inaccuracies in noise correlation matrix estimation, Reference [18] proposes the
Multiple Signal Classification based on incremental Generalized Singular Value Decomposition-MUSIC
(iGSVD-MUSIC) with Correlation Matrix Scaling (CMS).

A novel algorithm to sound source location with UAV-embedded microphone arrays based on
time-frequency bins was proposed in Reference [19]. This method takes advantage of the fact that
ego-noise and target sound (e.g., speech or emergency whistle) mainly consist of harmonic components
that usually occupy different time-frequency bins. In Reference [20], the time-frequency technique
is associated with a time-frequency spatial filter to enhance the signal of interest. Other interesting
researches related to sound processing with drones include the following: a study about the ego-noise
of multirotors micro aerial vehicles [21], that also proposes the use of Blind Source Separation (BSS)
algorithm to suppress it; the use of ego-noise to measure the relative directions between multirotors in
a swarm [22]; and the ability to track moving sound sources [23].

Focusing on gunshot airborne surveillance, the deployment of acoustic sensors in elevated
platforms could enable advantages for shooter-position estimation, according to Reference [24]. The use
of an aerial drone as a mobile elevated platform was investigated in Reference [25], using only
simulations. Different noise levels were synthesized using drone noise recordings in a silent room
and real gunshot signals recorded with a high-quality microphone mounted on a tripod in an open
field. Also in this work, signal enhancement techniques were employed along with DoA estimation
algorithms and target motion analysis was used to estimate the shooter’s position. In Reference [26],
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the geometry deployment of the microphone array is discussed, taking into account the wind produced
by the propellers, the electromagnetic interference, and the scarce space available on the drone.

In this paper, we focus on the details of DoA estimation of gunshot signals obtained from a
microphone array aboard a flying drone. We used simulations to investigate the performance of
preprocessing and DoA estimation techniques, also tuning theirs parameters. The most appropriated
methods were evaluated with actual field recordings, given the position and attitude of the drone
obtained from its GPS and inertial unit.

The rest of this paper is organized as follows. Section 2 starts with a brief overview on gunshot
acoustics, followed by a discussion on the techniques used in a UAV-based gunshot surveillance
system, namely signal preprocessing, gunshot detection, DoA estimation, and shooter localization.
Section 3 describes the hardware used and the shooting site as well as how telemetry data is recovered
and used, while Section 4 discusses experimental results from simulations and from actual gunshot
signals collected using an array of sensors mounted on a flying drone. The discussion and conclusion
are addressed in Section 5.

2. DoA Estimation and Shooter Localization

The acoustic signatures generated by a gunshot event can be divided into three parts, namely the
muzzle blast, the shockwave, and sounds related to mechanical actions, which include the trigger and
hammer mechanisms, ejection of spent cartridges, and the loading system. The mechanical action-related
sounds can be useful in forensics analysis [27,28]. However, they are of no interest in the design of sniper
localization systems, since they can only be recorded using sensors placed close to the gun.

The muzzle blast is generated by the expansion of gases in the gun barrel and is louder in the
direction the barrel is pointing toward [29,30]. It propagates at the speed of sound and lasts typically
from 3 to 5 ms [31]. The energy of the muzzle blast depends on the firearm used, and it is almost
always audible in a given range, provided that silencers or suppressors are not used [31,32].

A shockwave will be generated for as long as a projectile is travelling faster than the speed of
sound and propagates outwards from the bullet trajectory at an angle known as the Mach angle [33].
The shockwave generated by a typical supersonic bullet lasts for approximately 200 µs, and its
frequency spectrum has a wider frequency band than that of the muzzle blast, as exemplified in Figure 1.
Since the shockwave propagates in a cone shape following the bullet trajectory, it cannot be detected
if the bullet is moving away from the position where the sensors are located [34]. This constitutes a
problem for shooter localization systems that rely on the detection of both shockwave and muzzle
blast signals.

The shooter’s localization problem may be divided in four steps, namely preprocessing, gunshot
detection and muzzle blast identification, DoA estimation, and shooter-position estimation.
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Figure 1. Components of a gunshot signal: shockwave (left) and muzzle blast (right) of a caliber
7.62 mm rifle and the corresponding spectrogram.

2.1. Preprocessing

Localization of a shooter based on the audio acquired from a drone is especially challenging
due to the presence of strong ego-noise, mainly generated by the propellers [35]. This becomes an
even greater challenge under long-range shootings, whereby the detection and the direction-of-arrival
estimation of the muzzle blast signal is compromised.

When signals of interest are approximately stationary, such as tiny voice snippets, whistles, or
white noise, methods based on noise correlation matrix estimation, such as Wiener Filtering [36],
are used. For impulsive signals, as in the case of gunshot signals, median filtering is an alternative
option [5]. In this work, we evaluate the performance of these methods in the task of DoA estimation.

During steady parts of a flight, where stationarity can be assumed [36], we may use Wiener
filtering to attenuate the influence of the ego-noise. We used in this work the implementation developed
by Liu Ming and Pascal Scalart [37,38]. This Wiener filter, referred to as Two-Step Noise Reduction
(TSNR), uses the decision-directed approach [39] to track a priori SNR and refines the SNR estimation
to avoid reverberation effects.

Median filtering was employed in Reference [40] as a technique to separate percussive and
harmonic components of a signal. The proposed scheme uses the concept that percussive components
can be seen as outliers in the time domain while harmonic sounds can be seen as outliers in the
frequency domain. Median filtering, described next, is capable of removing these outliers and of
separating these different acoustic signatures to some extent. Given the input x(k), the output y(k)
is the median value of the window with length ∆ centered in x(k). The parameter should be chosen
accordingly, in such a way that the expected duration of the artifacts is removed but without significant
impact on the signal of interest. The median filtering can be expressed according to the following:

y(k) = median{x(k− l : k + l)}, l = (∆− 1)/2, if ∆ is odd; (1)

if ∆ is even, the median is defined as the mean of the two central median values.
The use of median filtering to estimate background noise embedded in gunshot signals was

introduced in Reference [5], which computes the enhanced signal as s(k) = x(k)− y(k). To preserve
the muzzle blast’s shape, ∆ should not represent less than half of its duration, which is approximately
3 ms [31].
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2.2. Gunshot Detection

As previously noted, a gunshot surveillance system must be able to detect an impulsive signal
and to identify if it is a muzzle blast component, a shockwave component, or none of them. There is a
vast literature available about this matter [41–46].

The method in Reference [41] uses a transient detection, introduced in Reference [42], that looks for
significant changes in the signal energy. For muzzle blast and shockwave classification, Reference [41]
uses two tests: the first one is based on the spectral information of the signal, and the second one uses
time difference of arrival between neighboring peaks.

A detection scheme based on correlation against a template is proposed in Reference [43],
where the authors claim that the method could be implemented by a low power consuming hardware.
Correlation against a template is also addressed in Reference [44], where it is compared against classical
algorithms usually used in speech processing; their results conclude that correlation matches the
performance of those algorithms, especially in noisy environments. In Reference [45], linear predictive
coding (LPC) coefficients are combined with template matching to increase the performance of gunshot
detection systems, especially regarding false-positive errors.

A wavelet-based approach [46] can be used to distinguish three acoustic events: muzzle blast,
shockwave, and reflections. Furthermore, according to the authors, this method can classify the caliber
based on the muzzle blast or on the shockwave signals.

The strong ego-noise of a drone is not white and is highly nonstationary [36]. Furthermore, it is
strongly dependent on the drone used and on the positioning of the sensors. These are additional
challenges to detection and muzzle blast–shockwave classification. These tasks were carried out
manually in this work.

2.3. DoA Estimation Methods

In this section, we first define DoA angles and then present two DoA estimation methods: a data
selection least squares method [7] and an angular spectrum-based method named the Multi-channel
Blind Source Separation (MBSS) Locate [47].

Figure 2 shows the angles (azimuth φ and zenith θ) that define the DoA. It is noteworthy that the
azimuth herein is taken counterclockwise, as in Reference [48]. Thus, the unit vector in the direction of
sound wave propagation is given as follows:

aDoA = [− cos(φ) sin(θ) − sin(φ) sin(θ) − cos(θ)]T . (2)

Figure 2. Azimuth (φ) and zenith (θ) relative to the center of the array: The x axis is oriented to the
front of the drone, and the z axis points upwards.
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2.3.1. The Data Selection Least Squares DoA Estimation Algorithm

The first step of the least squares (LS) method is the time-delay estimation (TDE) between the
sensor pairs in the array. Next, we use an LS cost function associated with a data-selective algorithm.
The TDEs are obtained from the peak of the cross-correlation rxixj(τ) defined as follows [49]:

rxixj(τ) = E[xi(k)xj(k− τ)], (3)

where E denotes the expectation operator and τ is the lag between two given sensors, xi and
xj. In practice, we do not have statistical knowledge of the signals, and Equation (3) is usually
approximated by its time average given by the following:

r̂xixj(τ) =
∞

∑
k=−∞

xi(k)xj(k− τ) = xi(τ) ∗ xj(−τ), (4)

where ∗ is the convolution operator.
Taking the discrete Fourier transform of r̂xixj(τ) and assuming real-valued signals, we can write

the cross power spectrum density between xi(k) and xj(k) as follows:

R̂xixj(e
jw) = F{r̂xixj(τ)} = F{xi(τ) ∗ xj(−τ)} = Xi(ejw)Xj(e−jw) = Xi(ejw)X∗j (e

jw). (5)

The cross-correlation can then be computed using the following:

r̂xixj(τ) = F
−1{R̂xixj(e

jw)}. (6)

Adding a frequency weighting function in Equation (6), we have the generalized cross-correlation
(GCC) as follows:

r̂xixj(τ) = F
−1{ψ(w)R̂xixj(e

jw)}, (7)

where classical cross-correlation corresponds to ψ(w) = 1, ∀ w. A popular weighting scheme
employed by the GCC is the phase transform (PHAT) [7,36,49–53], known to have good performance
in reverberating scenarios [49]. PHAT also tends to have a sharper peak than classical GCC, increasing
the performance of the TDE [50]. The PHAT weighting function is given by the following [53]:

ψPHAT(w) =
1

|Xi(ejw)Xj(e−jw)|
. (8)

Finally, the TDE is obtained as follows:

τ̂ij = arg max
|τ|≤τmax

|r̂PHAT
xixj

(τ)|, (9)

where τmax is the maximum delay possible (in number of samples) between microphone i and j,
which occurs when the DoA has the same direction of the vector that connects sensors i and j:

τmax =
|pi − pj| fs

vs
, (10)

where pi and pj are the position vectors of sensors i and j, vs is the speed of sound, and fs is the
sampling frequency. The TDEs using inverse Fourier transform (iFFT) provide delays as integer
multiples of the sampling period; this leads to errors that are particularly relevant in small arrays
(small time delays between sensors) and with low sampling frequency. To mitigate this source of
errors, we can interpolate the GCC, allowing more accurate estimations of the time difference of arrival
(TDoA). In this work, we used cubic interpolation [54], calculated at every point in between −τmax
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and τmax, ensuring that all possible values of delay are covered. Figure 3 shows the effect of cubic
interpolation over GCC-PHAT in a small array for a signal with fs = 8 kHz.

Figure 3. Effect of interpolation in generalized cross-correlation (GCC)-phase transform (PHAT):
Note that r̂xi xj (τ) is the GCC-PHAT without interpolation.

Figure 4 illustrates in 2-D the delay between microphones i and j. In a 3-D scenario, we write
dij = ∆pT

i,jaDoA such that the TDE (in samples) is given by the following:

τi,j =
fs(pi − pj)

TaDoA

vs
=

fs∆pT
i,jaDoA

vs
= ∆p̄T

i,jaDoA, (11)

where ∆p̄i,j = fs∆pi,j/vs.

Figure 4. Direction of arrival (DoA) calculation in a 2-D scenario.

Based on the estimated delay, as given in Equation (9), and the delay based on the unknown
vector aDoA, Equation (11), we define the least squares cost function:

ξ = ∑
i,j
(τi,j − ∆p̄T

i,jaDoA)
2, (12)

for all possible pairs, N = M(M− 1)/2 for the case of M microphones.
Minimizing the cost function with respect to aDoA, we find the following:

aDoA = R−1d, (13)

where d = ∆p̄Tτ, τ = [τ1,2 τ1,3 ... τ1,N τ2,3 ... τM−1,M]T and R = ∆p̄T∆p̄, ∆p̄ are assembled as follows:

∆p̄ =
[
∆p̄1,2 ∆p̄1,3 . . . ∆p̄1,M ∆p̄2,3 . . . ∆p̄M−1,M

]T
. (14)
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The solution provided by Equation (13) may not have unit norm, which must be ensured through
normalization. Only then could azimuth and zenith be calculated using trigonometric operations,
according to Equation (2).

Equation (13) provides all three coordinates only when using a spatial array. If a planar array is
used, ambiguity occurs and matrix R is singular. When all sensors are in a plane (xy-plane for instance),
we must adapt the sensor positions (pi) to suppress the coordinate associated with the perpendicular
axis, in our case z. This way R is non-singular and Equation (13) provides âincomplete

DoA = [ax ay]T. As the
aDoA must be unitary and assuming that the source is located above or below the array, it is possible to
estimate the DoA.

The strong ego-noise could compromise the TDEs, generating outliers that would adversely affect
the DoA estimation. As for the cost function defined in Equation (12), the solution can be obtained
without using all available pairs of microphones; it is possible to use a data-selective algorithm to
remove outliers. Using the Exhaustive Search algorithm ES(n) [7], we choose the n combination from
the set of N pairs of microphones that minimizes the cost function ξ in Equation (12). We need to be
cautious when choosing the number of pairs of microphones to be used, parameter “n” in ES(n), once it
can generate ill-conditioned matrices [55]. The appropriate choice for “n” can be obtained according to
a decision tree as done in Reference [6].

2.3.2. The MBSS Locate

The Multi-channel Blind Source Separation (MBSS) Locate [56] is available as a MATLAB® toolbox.
It estimates the direction of arrival of multiple sources from audio signals collected by an acoustic
sensor array. This software implements multichannel versions of four state-of-the-art and three
proposed SNR-based local angular spectra methods for audio signals [47].

The state-of-the-art local angular spectra methods are GCC-PHAT [49] and its version with a
nonlinear function GCC-NONLIN [57], Multiple Signal Classification (MUSIC) [13], and Cumulative
State Coherence Transform (cSCT) [58]. These techniques, except the cSCT method, rely on the
assumption that one source is predominant in each time-frequency bin. The cSCT method assumes
that there are at most two predominant sources.

The SNR-based local angular spectra tackles the multisource TDoA estimation problem. The main
idea is to use the SNR as an unbounded measure to estimate if the information of a time-frequency
bin results from a single source. Blandin et al. [47] proposed three methods to estimate the SNR
using two microphones and the following techniques: Minimum Variance Distortionless Response
(MVDR) [59], Diffuse Noise Model (DNM) [60], and Minimum Variance Distortionless Response
Weighted (MVDRW).

The MBSS full version enables the user to simulate the recording scenario, e.g., room dimensions,
walls absorption coefficient, and number of microphones [56]. Nevertheless, we summarize in the
following only the core of the angular-spectra based method. For detailed information about its
functionalities and implementation, one should refer to the user guide provided with the software.

We describe the use of the MBSS algorithm in three main steps. The first step is to define the
possible angles of azimuth and zenith and to assemble the search grid. The program uses elevation
instead of zenith, but it can be easily converted: zenith = π

2 − elevation. Based on the grid, the set
of possible delays for each pair of microphones is computed, and then, it is resampled to limit the
quantity to points in which angular spectrum is calculated. The software offers some options to
compute angular spectra. For this work, we used the GCC-PHAT local angular spectra defined as
follows [47]:

γPHAT
i,j (l, f , t) = R

(
R̂xixj(l, f )

|R̂xixj(l, f )|
e−2π f t

)
(15)

where R is the real operator, l is the index of the time frame, f is the center frequency of the FFT bin,
and t is the delay in seconds.
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In the second step, the contents of all selected frequency bins are summed up. A linear
interpolation is used in γPHAT

i,j (t, l) to the compute angular spectrum approximation in all possible t in
each pair of microphones. This value is used to calculate the angular spectrum directly, depending
on the direction of arrival, γi,j(l, φ, θ). Then, angular spectrum of all pairs are summed, generating
γ(l, φ, θ). For multiple time frames, there are two strategies: sum all time frames or use the maximum
overall time frames. The last one is recommended when the signal of interest is only active in a few
frames [47]. As the gunshot signals are impulsive, the maximum approach was used and the angular
spectrum is then given by the following:

γmax(φ, θ) = max
l

γPHAT(l, φ, θ). (16)

The last step of the MBSS algorithm is a grid search to find the global maximum in the case of
only one source or the local maxima when there are multiple sources. If there is only one single source,
the DoA angles are obtained from the following:

φ̂, θ̂ = arg max
φ,θ

γ(φ, θ). (17)

2.4. Position Estimation

There are a number of ways to estimate the shooter localization. A simple approach uses DoA
estimations of muzzle blast from different arrays according, for instance, to the total least squares
(TLS) [61] algorithm. Since this method does not use the shockwave component, it can estimate
position even of small caliber weapons of which the projectiles do not reach supersonic speed. Another
advantage of this method is that, with a sufficient number of arrays, it could be combined with a
data-selective algorithm, such as Exhaustive Search, seen in Section 2.3, to remove outliers expected
to happen when some arrays do not have a clean sight to the firearm or are heavily affected by
multipath [31,32]. On the other hand, in order to use the TLS approach, the system would be
more complex and expensive to be deployed, since it requires more than one drone and they need
to communicate with the node responsible for the calculation of the shooter’s position with the
information of all platforms.

A second approach is to combine shockwave and muzzle blast DoA estimations to compute the
probable shooter location [41,62]. As this method uses shockwave components, it is only applicable in
the case of supersonic projectiles and when the array is inside the shockwave field of view. Moreover,
this method assumes (at least its simplest version) that the projectile has a constant speed, which tends
to generate results that overestimate the distance when the shooter is more than 100 m from the array;
adaptations are then required to overcome this limitation as stated in Reference [63] .

A third approach presented in Reference [24] combines muzzle blast DoA estimation from an
elevated array with a digital map containing topographic information to estimate the shooter position.
The main concern of this method is to obtain the appropriate digital model of the terrain. As in the
TLS approach, this method can estimate the position of subsonic firearms. This approach would be
appropriated for our scenario, but focusing on the DoA estimation, we have not carried out a position
estimation evaluation in this work.

3. System Setup and Signal Acquisition

In this section, we describe the hardware, the drone, and the microphone array used in field
recordings. We also provide some information about the shooting site and the environmental conditions
the experiment was performed under. We also provide details regarding the data acquisition process,
including audio recording and drone flight log data.
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3.1. UAV and Avionics

We used a DJI Phantom 4. It weights 1.38 kg (battery and propellers included but without the
extra hardware used for recording the audio signals) and has a 35 cm diagonal, also featuring a 4K
camera, and support for two satellite positioning systems (GPS nad GLONASS). According to the
manufacturer [64], the UAV, without any external hardware, is able to resist to wind gusts up to
36 km/h.

The microphone array was mounted in 41 cm metal rods, aligned with the propeller’s arms.
The size of the rods was engineered to keep the microphones away from the propellers to reduce
the influence of noise caused by air displacement generated by the rotating blades. The four
microphones were placed in the same height in a planar structure to avoid interference with the drone’s
maneuverability, especially during take off and landing. The planar coordinates for the microphones
are given in Table 1, assuming the origin of the coordinate system in the center of the UAV.

Table 1. Planar array coordinates.

Microphone x (cm) y (cm)

1 26.5 −25.5
2 26.5 27.0
3 −25.0 26.0
4 −25.0 −25.5

The gimbal and the camera were removed, allowing the recorder to be placed under the drone
(see Figure 5), aligning it with the center of mass of the multirotor, and minimizing the impact on the
flight capabilities of the UAV. Care was taken in order not to cover the ultrasonic sensors, located on
the underside of the drone’s hull; this would severely affect flight safety and its landing ability.

(a) (b)

Figure 5. Drone used in the experiments: (a) landed; (b) during flight.

3.2. Environmental Conditions and Shooting Site

The gunshot signals were collected in a shooting site located at the Brazilian Army Evaluation
Center (CAEx) on a cloudy day with no strong wind and with a temperature of 24 ◦C. Figure 6 shows
a satellite image of the shooting site. The drone’s flight zone was restricted to the blue rectangle of area
30 × 120 square meters to prevent it from flying over sensitive regions and to ensure a clear line of
sight to the shooter.
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Figure 6. Shooting site: In red (marker) is shooter location, and in blue is the allowed flight zone of the
drone. Adapted from Google Maps [65].

3.3. Data Acquisition: Audio and Drone Position and Attitude

The four microphones were connected to a four-channel recorder, TASCAM DR-40 [66], which
is convenient given its relatively reduced dimensions and light weight of 0.213 kg without batteries.
The TASCAM DR-40 recorder comes with two connectors for external microphones and two built-in
microphones, which were rearranged to a single set with four external channels to accommodate four
small electret microphones.

The recordings were carried out using a sampling frequency of 44.1 kHz and encoded using 24 bits
per sample. The drone flight log data was recorded in a file and recovered using AirData.com [67].
The log data provides the following information: time (in ms), GPS coordinates (latitude and longitude),
altitude, and attitude data (angles yaw, roll, and pitch), as illustrated in Figure 7.

Figure 7. Attitude angles as measured by DJI Phantom 4, adapted from [68].

The digital audio recorder and the drone were initialized manually and simultaneously for each
flight to synchronize the data about the position and the attitude of the drone with the recorded
gunshot signals. As the drone was hovering when the shots were fired, the mismatch due to the
manual process is negligible. Furthermore, there was no considerable drift caused by two different
clocks, since the battery capacity limits the duration of each flight to a maximum of 18 minutes.

3.4. Axis Rotation

The DoA is calculated with respect to the drone’s coordinates of which the axes are not necessarily
aligned with the geographic axes. Therefore, after calculating the DoA with respect to the drone’s
coordinates, we must rotate the DoA vector in order to match the orientation of the geographic axes.
The rotation can be applied by a series of matrix multiplications [69], using the attitude data and the
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magnetic declination of the location. Considering the axes system shown in Figure 2, the matrix that
computes a rotation over axis z (yaw-α) is given by the following:

Rz(α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 , (18)

The rotation matrix over axis y (pitch-β) is given by the following:

Ry(β) =

 cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)

 , (19)

Also, the matrix that performs the rotation over axis x (roll-ψ) is given by the following:

Rx(ψ) =

1 0 0
0 cos(ψ) − sin(ψ)
0 sin(ψ) cos(ψ)

 . (20)

Therefore, the rotated DoA vector in the geographic coordinate system is expressed as follows:

arotated
DoA = Rz(α)Ry(β)Rx(ψ)adrone

DoA . (21)

Please note that matrix multiplication is not commutative, and therefore, the sequence roll, pitch,
and yaw must be respected. Furthermore, the coordinates systems in Figures 2 and 7 are not the same:
axes y and z point in opposite directions; it is necessary to reverse the rotation directions of pitch
and yaw angles given by DJI Phantom 4. We must also take into account magnetic declination when
rotating over axis z Equation (18), or the DoA vector will be aligned with magnetic north instead of
geographic north.

4. Experimental Results

4.1. Simulated Signals

In this work, we used simulated muzzle blast gunshot signals with different noise levels to
tune parameters and to evaluate the performance of DoA estimation methods. In order to evaluate
the quality of a DoA estimation, we used the angle between the estimated and the actual DoA,
herein named angular error and defined as follows:

Angular Error = cos−1
(

aT
DoAâDoA

)
, (22)

where aDoA is the correct DoA vector and âDoA is the estimated one. Angular error can vary from 0◦,
when there is no error in DoA estimation, up to 180◦, when DoA estimation points towards the opposite
direction of actual DoA. This metric allows us to compare objectively two different estimations while
avoiding distortions in azimuth error when zenith is close to 0◦ or 180◦. We used three performance
measures based on angular error to evaluate the DoA estimation methods: mean, standard deviation,
and percentage of estimations with angular error less than 3◦. An error of 3◦ is expected to cause an
error of approximately 6.28 m at the 120 m range.

The simulation of the muzzle blast signal used 7 real gunshot recordings from a rifle Fz 7.62 M964
(FAL) manufactured by Indústria de Material Bélico do Brasil (IMBEL) [70]. Signals were collected with
a high-quality microphone in an open and quiet environment, avoiding distortions such as additive
noise and multipath propagation effect. These clean gunshot signals were clipped to be 10 ms in
length. The selected muzzle blast was considered as the signal of a virtual microphone in the center of
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the array. Then, we inserted fractional delays to generate each one of the microphone’s target signal,
simulating the spatial position of the sound source with respect to the array. Noise was simulated
based on eighteen recordings made during flights of the drone with the setup described in Section 3.1.
During these recordings, the drone was hovering at different altitude levels, ranging from 10 m to 50
m. At each iteration of the simulation, a random muzzle blast signal and a random noise file were
selected. Next, the noise file was clipped at a random point with the size of the desired window.

As the noise may have different magnitudes for each microphone, we define SNRmean as the
mean SNR across all the sensors:

SNRmean = 10 log10

(
1
M

(
σ2

s1
σ2

n1
+

σ2
s2

σ2
n2

+ ... +
σ2

sM
σ2

nM

))
, (23)

where M is number of sensors in the array, σ2
ni is the variance of the noise in the ith sensor, and σ2

si is
the variance of the muzzle blast component in the ith sensor defined from a 10-ms window.

We divided the results of simulations in two groups: LS method and MBSS, each one having
its own parameters to be optimized. In both cases, we studied the effectiveness of preprocessing
techniques. In this experiment, we ran 3000 iterations for each SNR value. In each iteration, the DoA
was drawn according to a uniform distribution over a semisphere (as already mentioned, we consider
that the shooter is in a lower position when compared to the drone).

For the LS method, simulations aimed at the best values of window size (from 20 ms up to 50 ms)
and n in ES(n). As the array is composed of 4 sensors, N = M(M− 1)/2 = 6 pairs of microphones are
available, so we tested from n = 6 to n = 3. Analyzing Table 2, we note that the best estimation was
usually obtained using the smallest window. This was expected, since the muzzle blast signal lasts
10 ms and a smaller window would contain less noise without losing information about the muzzle
blast signal. As stated in Reference [6], an optimal n depends on the SNR: when there is less noise,
we should consider more pairs; conversely, when the SNR value gets lower, more pairs have their
TDEs compromised and should be discarded. As for the preprocessing techniques, we note that the
median filter improves the quality of DoA estimation. However, the Wiener filter implementation used
herein did not fit well to the application at hand when combined with the GCC-PHAT. An in-depth
analysis using the complete results of the LS simulation in Table A1, would indicate that the median
filter has better performance among all estimates with angular errors less than 3◦.

In our simulations, we defined two basic MBSS parameters: grid resolution, which was set to 1◦,
and alpha resolution, which was set to 0.5◦. The first one is the minimum increment considered in DoA
angles, while the second one is related to the resample of possible delays for each pair of microphones,
as mentioned in Section 2.3.2. These parameters do not have a considerable influence on performance
with low SNR. Assuming that a muzzle blast would come from below the drone, the search boundaries
for azimuth and zenith were set to 0◦ to 359◦ and 90◦ to 180◦, respectively. We explored the most
suitable values for window and frame sizes; the former varied from 25 ms up to 50 ms, and the latter
varied from 10 ms up to 20 ms.

A summary of the MBSS simulation results containing the best parameters per SNR in relation to
the rate of estimations with angular error less than 3◦ are shown in Table 3. We noted that frame-based
processing, together with the overall maximum strategy, led to the best performance with a 50-ms
window size and a frame size of 12 ms or greater. We also notice that the MBSS method does not work
well with the preprocessing techniques previously mentioned. Nevertheless, MBSS proved to be more
robust to ego-noise, achieving high hit rates even for SNRs as low as −5 dB. The complete results of
MBSS simulation can be seen in Table A2.

Based on the simulation results, we chose 2 schemes to process the real gunshots: MBSS with
window size of 50 ms and frame size of 15 ms and LS-method using n = 4 and frame size of 20 ms
preprocessed with median filtering.
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Table 2. Least squares (LS) method simulation: The best parameters per signal-to-noise ratio (SNR).

Without Preprocessing Median Filter Wiener Filter

SNRdB
n/Window
Size (ms) Error < 3◦ (%) n/Window

Size (ms) Error < 3◦ (%) n/Window
Size (ms) Error < 3◦ (%)

10 4/35 99.6000 6/50 99.8000 4/50 88.4333
5 4/20 85.9333 4/20 98.9000 4/50 39.6333
2 4/20 56.9667 4/20 96.7667 4/50 13.7667
0 4/35 35.3667 3/20 89.8000 4/50 6.8000
−2 3/20 19.2000 3/20 74.0333 4/50 2.4667
−3 3/35 13.0667 3/20 59.5333 3/50 1.4333

Table 3. Multi-channel Blind Source Separation (MBSS) Simulation: The best parameters per SNR.

Without Preprocessing Median Filter Wiener Filter

SNRdB
Window Size/

Frame Size (ms) Error < 3◦ [%] Window Size/
Frame Size (ms) Error < 3◦ [%]

Window Size/
Frame Size (ms) Error < 3◦ [%]

10
50/12
50/15
50/20

99.4000
50/12
50/15
50/20

98.7333 35/12 92.9667

5
50/12
50/15
50/20

99.1667
50/12
50/15
50/20

98.6667 35/12 63.3667

2
50/12
50/15
50/20

98.7000
50/12
50/15
50/20

98.3000 35/12 29.8000

0
50/12
50/15
50/20

97.6667
50/12
50/15
50/20

96.5667 35/12 15.4000

−2
50/12
50/15
50/20

96.7333
50/12
50/15
50/20

94.6667 35/12 7.5333

−3
50/12
50/15
50/20

95.9333
50/12
50/15
50/20

92.3667 35/12 5.8333

−5
50/12
50/15
50/20

90.7333
50/12
50/15
50/20

78.9333 35/12 3.2667

−8
50/12
50/15
50/20

61.9000
50/12
50/15
50/20

40.2000 35/12 2.1667

4.2. Field Recordings

The recordings were carried out in 5 sets. In the first one, 3 shoots were recorded only to make
sure that the system was fully operational and were not used to evaluate its performance. The next
four sets contain, respectively, 50, 50, 60, and 87 gunshot recordings. Summing up, we have a total
of 250 gunshots, all from a Carbine IMBEL 7.62 IA2 [70]. In each series, the drone’s flight height
varied from 8.8 m up to 60.5 m. The upper limit of flight height was set to ensure safety since the
additional payload in the drone compromises its ability to withstand wind gusts. In some recordings,
both muzzle blast and shockwave components are present, while in cases where the drone was not
positioned in the propagation path of the shockwave, only the muzzle blast is present. In this work,
we address DoA estimation of the muzzle blast only.

In order to avoid issues related to automatic detection, the system recorded continuously for the
duration of the flight, and signals were clipped, manually preserving the muzzle blast only. These two
acoustic signatures overlapped in a few recordings. When analysing the results, we found out that
azimuth estimations were biased. The bias was similar in the third, fourth, and fifth sets but clearly
different for the second run. This, combined with the fact that the UAV required a calibration of its
magnetic sensor between the second and the third runs, indicates that this bias can be credited to
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electromagnetic interference in electronic compassed caused by other circuits aboard. As this bias
was spotted only when processing the signals in the laboratory, the value of the compensation had to
be estimated directly from the gunshots. To estimate the bias, we computed the mean azimuth error,
but in order to mitigate the deleterious effects of possible outliers, we used only DoA estimations with
zenith errors less than 3◦. Finally, we obtained bias correction values of −8.6743◦ for the second set
and −16.7746◦ for the third, fourth, and fifth sets.

The experiments were designed to evaluate the performed of the algorithms under different
controlled values of SNR for the gunshot signals. However, other important measurements from GPS
and attitude sensors are assumed to be inherently noisy. Table 4 presents the results obtained for the
247 muzzle blast gunshot signals under test. Although for the simulated signals we used as the hit rate
the percentage of shots with angular errors lower than 3◦, for the real gunshot signals, we increased
this threshold to 10◦. The results in Table 4 represent an average of the different recording conditions,
depending on the position of the drone as shall be seen in the following.

Table 4. Experimental data of muzzle blast DoA estimation.

Mean Error (◦) Standard Deviaton (◦) Error < 10◦ (%)

LS + MF 8.3823 7.2215 70.4453
MBSS 9.6451 12.2113 72.8745

Figure 8 illustrates the relationship between the position of the drone and the DoA estimation
error. Notice that, as the distances between drone and shooter are not substantially large, 120 m at most,
the error observed in this experiment is not strongly related to the distance but is rather correlated
to relative position: when the drone is within a cone in front of the weapon, the results are poorer.
We analyzed the recordings from positions within this cone and observed distorted signals in most of
them. These positions are in the field of view of the shockwave but also in the direction of and in a
small distance from the gun barrel. This suggests that the causes of the distortions are twofold: overlap
of shockwave and muzzle blast components and a great signal intensity saturating the sensor. In an
attempt to measure the system performance in better positioning, we took all gunshots recorded in a
region outside a 35◦ cone open from the weapon muzzle and the error dropped considerably. The hit
rate increased to 92.86% for the MBSS technique and to 95.54% for the LS + MF method instead of the
former 72.87% and 70.45%, respectively.
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Figure 8. Positions of the drone and respective DoA angular errors: Note that the greater errors
(warmer colors) correspond to a region in front of the muzzle. (a) Results of the Least Squares method
with median filtering. (b) Results of the MBSS method without preprocessing.

5. Discussion and Conclusions

In this work, we analyze the problem of determining the position of a shooter based on gunshot
signals acquired using a microphone array mounted on a multirotor UAV. We have conducted a
comprehensive literature review on essential topics characterizing the state-of-the-art for this kind
of application. We narrow down the focus on the main task, which is to determine the direction of
arrival for the muzzle blast and to evaluate the performance of two well-established DoA estimation
techniques as well as two important preprocessing methods.

We carry out extensive simulations to evaluate the performance of DoA algorithms and to tune
their parameters before finally testing the methods with actual gunshot dates recorded in a firing
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range. Based on our experimental results, we claim that an aerial microphone array mounted on a
drone can be used to obtain good estimates of gunshot direction of arrival using different techniques.
The experiments also highlight the fact that the accuracy of the estimates are sensitive to the drone
position relative to the shooter and emphasize that better results can be achieved with a system that can
fly at higher altitudes, in which case it would be possible to estimate the position of the shooter as well.

Nevertheless, issues like detection, classification, and noise cancellation algorithms require further
investigation, testing, and validation to achieve a fully functional, reliable, and autonomous system.
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Appendix A. Complete Simulation Results

Table A1. LS method simulation: complete results.

Without Preprocessing Median Filter Wiener Filter

SNRdB
n/Window
Size (ms)

Mean
Error (◦)

Standard
Deviation (◦)

Error < 3◦

(%)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)

10

3/20 0.5105 3.9269 99.1000 0.3259 0.5110 99.3000 19.4174 29.2600 63.9667
3/35 0.4113 2.9569 99.3333 0.3166 0.4897 99.2333 7.5168 19.8348 85.4667
3/50 0.5498 4.3178 98.8000 0.3137 0.4720 99.3333 6.7859 18.8759 86.3667
4/20 0.3577 2.5648 99.4333 0.2956 0.4566 99.4667 14.2784 25.6210 67.2667
4/35 0.3456 2.5860 99.6000 0.2937 0.4598 99.3333 5.7116 17.1664 86.8000
4/50 0.4492 3.7859 99.5333 0.2983 0.4652 99.4333 4.9097 15.8202 88.4333
5/20 0.7266 4.2655 97.3333 0.2570 0.4065 99.6000 17.3627 23.8314 49.3333
5/35 0.6415 4.0465 97.9000 0.2588 0.4150 99.6000 7.2962 17.0812 77.1333
5/50 0.6343 4.1611 98.0333 0.2599 0.4206 99.6000 6.2528 15.9602 80.3000
6/20 3.8631 9.2623 79.7000 0.2155 0.4113 99.7667 20.9030 21.0006 31.3000
6/35 3.6364 8.7809 80.5667 0.2111 0.3641 99.8000 11.4076 17.0442 55.8333
6/50 3.6197 8.7423 80.3000 0.2081 0.3555 99.8000 10.1562 16.0946 59.5667

5

3/20 8.9438 21.7721 83.0333 0.4509 1.8724 98.7667 47.8794 27.9550 13.4000
3 /35 9.0399 21.9193 82.9333 0.3980 0.6057 98.7667 35.8857 31.7066 33.7000
3/50 9.2772 21.9742 82.3000 0.4750 1.9644 98.1333 33.3909 31.6343 37.4333
4/20 6.3045 18.2118 85.9333 0.3558 0.5525 98.9000 43.6409 28.9848 15.2333
4/35 6.7532 18.9762 85.2667 0.3634 0.5474 98.8667 32.8974 31.2853 34.8000
4/50 6.6992 18.5737 84.9667 0.3960 1.0150 98.5000 30.4495 31.4588 39.6333
5/20 9.0486 18.0645 68.8333 0.3576 1.0901 98.8867 43.5887 26.2580 7.9333
5/35 8.9707 18.5345 69.1333 0.3306 0.7038 98.9000 33.1160 28.5151 23.4333
5/50 8.7433 17.7275 69.2333 0.3717 1.4043 98.8333 31.2879 28.8127 26.4667
6/20 16.3355 17.7956 34.0000 0.9664 4.5181 96.1667 42.2534 22.5981 3.1000
6/35 16.1672 17.6804 33.6667 0.6625 2.9858 96.9667 33.7279 23.5199 11.7333
6/50 15.8325 17.4014 34.9000 0.9330 4.5631 96.5667 32.1584 23.7626 13.8333
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Table A1. Cont.

Without Preprocessing Median Filter Wiener Filter

SNRdB
n/Window
Size (ms)

Mean
Error (◦)

Standard
Deviation (◦)

Error < 3◦

(%)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)

2

3/20 25.0002 31.2690 54.2333 1.2066 6.5015 95.9667 54.8700 23.4266 2.7333
3/35 25.1071 31.2757 53.8667 1.2067 6.0516 96.0333 49.7629 27.4016 11.4333
3/50 25.4807 31.2001 52.8667 1.3870 7.5824 95.3667 48.9076 27.9989 13.2667
4/20 20.1555 28.8475 56.9667 0.8764 4.7645 96.7667 52.9217 23.9341 2.6333
4/35 20.3873 29.0892 56.7333 0.8803 4.9494 96.7333 48.3238 28.1558 11.7333
4/50 20.6283 29.0486 56.1000 0.9061 4.2183 96.2333 47.3459 28.5305 13.7667
5/20 22.8296 25.8081 35.7667 1.4367 6.0686 93.6667 52.3569 22.8973 0.9667
5/35 22.7192 26.2225 37.6000 1.4992 6.1723 93.4667 47.8062 26.4787 6.6000
5/50 22.3695 25.7163 36.5000 1.8749 7.2668 92.2000 46.6417 27.0857 8.6667
6/20 27.9808 20.9985 12.4000 4.6952 11.2968 80.1000 50.6875 21.5335 0.3667
6/35 27.5228 21.0906 13.3000 4.4991 10.7498 79.8000 46.0894 23.3974 2.3000
6/50 27.2111 20.6884 13.0667 5.6061 12.5749 77.4667 44.6994 23.9338 3.7000

0

3/20 36.5372 31.9770 33.4000 3.8697 13.9666 89.8000 56.0114 22.1168 0.7667
3/35 36.5306 31.8651 33.2333 3.7284 13.1700 88.2333 54.1507 24.3032 4.6333
3/50 36.6136 31.9203 33.6000 5.7540 17.5398 84.9667 52.7311 25.0567 6.1333
4/20 31.5958 31.2282 35.3000 3.6497 13.9061 89.2000 54.8209 22.3306 0.9000
4/35 32.0653 31.4251 35.3667 3.5862 12.6191 87.9667 53.1904 24.8787 5.0667
4/50 32.1481 31.5255 35.2333 5.3396 16.2826 83.9333 51.8262 25.7706 6.8000
5/20 32.7753 27.8043 20.3333 5.8269 14.5143 77.2333 54.4921 21.7418 0.1333
5/35 32.9843 27.8264 18.7000 6.1626 14.3733 75.2000 52.8643 23.9831 2.4000
5/50 33.8521 28.1587 19.3333 7.4859 16.4049 72.5333 51.4714 24.8103 3.5667
6/20 34.9195 22.2685 6.1000 11.6739 17.7235 56.8000 53.4600 21.1648 0.2333
6/35 35.2111 22.2109 5.6667 12.7202 18.1043 52.5667 50.6964 22.5240 0.7000
6/50 35.5790 22.4075 5.9000 13.9468 19.1898 50.1667 49.6944 22.5882 0.9333

−2

3/20 45.1413 30.2568 19.2000 12.3675 26.0754 74.0333 56.6258 21.7486 0.1333
3/35 45.9091 29.6356 17.7333 14.7830 28.4758 68.8333 56.1857 22.8085 1.6667
3/50 45.6604 29.8254 18.3667 17.2721 30.4772 63.3667 55.8175 23.0173 2.2333
4/20 42.2719 30.5784 19.1667 12.4940 25.0592 67.9333 55.8804 21.4336 0.1000
4/35 42.7540 30.2762 17.7667 14.9671 27.4779 63.3000 55.6017 23.0552 1.9667
4/50 42.7118 30.1571 17.6000 17.0383 28.8422 58.1333 55.0972 23.3792 2.4667
5/20 42.4860 27.6801 8.8667 15.7599 23.6227 51.5667 55.5419 21.4417 0.0667
5/35 42.6461 27.3037 8.3667 17.8564 25.1710 46.1000 54.9616 22.8000 0.9000
5/50 43.1371 27.2214 8.2000 19.7907 25.9766 41.5667 54.7407 23.0773 1.0667
6/20 42.3165 23.0314 2.5333 22.9013 23.6372 30.6000 54.8717 21.0324 0.1333
6/35 42.6043 23.0215 2.1333 24.5213 23.9388 26.7333 53.4221 22.0551 0.2333
6/50 42.6747 23.0524 2.4333 26.4869 24.3458 24.3000 53.2176 22.3257 0.3000
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Table A1. Cont.

Without Preprocessing Median Filter Wiener Filter

SNRdB
n/Window
Size (ms)

Mean
Error (◦)

Standard
Deviation (◦)

Error < 3◦

(%)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)

−3

3/20 48.9503 28.0092 12.4667 20.0767 32.1463 59.5333 56.5733 21.7665 0.1667
3/35 49.2837 28.3516 13.0667 23.4632 34.2915 55.1000 56.6267 22.1172 1.0000
3/50 49.3290 28.3126 12.6000 26.5068 35.6843 49.1000 56.1966 22.5202 1.4333
4/20 47.1451 28.5781 11.9000 19.7724 31.0025 53.9333 56.2928 21.4432 0.1333
4/35 46.7880 28.8198 12.6000 22.9690 32.6417 49.7000 56.4386 22.3254 1.1000
4/50 47.4005 28.4842 11.5000 26.2416 33.8312 43.3667 55.9051 22.7439 1.3333
5/20 46.7269 26.2793 5.2000 22.2956 27.3511 38.3000 56.0073 21.2151 0.1333
5/35 46.3936 26.5745 5.7667 25.1084 29.1954 34.5667 56.1497 22.0678 0.5667
5/50 46.9904 26.5622 5.7000 28.2202 30.0659 30.0667 55.4949 22.4393 0.6000
6/20 45.9073 22.8674 1.1333 28.5282 24.7190 21.0667 55.4752 21.0532 0.1333
6/35 45.7383 22.9903 1.3000 31.0702 25.8381 18.2333 54.8112 22.0272 0.2333
6/50 46.3164 23.2109 1.1667 32.9346 25.6870 15.7667 54.2830 21.9627 0.2667

Table A2. MBSS simulation: complete results.

Without Preprocessing Median Filter Wiener Filter

SNRdB
Window Size /

Frame Size (ms)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)

10

25/ 10 0.4531 0.4468 99.3000 0.5275 0.6029 98.4333 3.1767 10.7447 90.8000
35/10 0.4501 0.4328 99.3000 0.5220 0.5896 98.5333 8.9461 20.3771 80.2000
35/12 0.4473 0.4259 99.3667 0.5094 0.5563 98.6667 2.2018 8.0205 92.9667
50/10 0.4524 0.4338 99.3333 0.5354 0.6172 98.2333 11.4535 23.4741 77.0000
50/12 0.4415 0.4084 99.4000 0.4956 0.5301 98.7333 3.3781 11.6631 91.3000
50/15 0.4415 0.4084 99.4000 0.4956 0.5301 98.7333 3.3781 11.6631 91.3000
50/20 0.4415 0.4084 99.4000 0.4956 0.5301 98.7333 3.3781 11.6631 91.3000

5

25/ 10 0.5108 0.5392 98.9333 0.6013 0.7111 97.7333 20.9350 28.6107 55.7333
35/10 0.5069 0.5393 98.8667 0.6015 0.7019 97.8667 31.9753 31.9459 39.9667
35/12 0.4865 0.4934 99.0667 0.5574 0.6240 98.2333 16.8103 26.6503 63.3667
50/10 0.4985 0.5100 99.0333 0.5943 0.6907 97.7667 36.2389 31.7327 33.5667
50/12 0.4608 0.4506 99.1667 0.5167 0.5624 98.6667 23.5154 29.7455 52.9000
50/15 0.4608 0.4506 99.1667 0.5167 0.5624 98.6667 23.5154 29.7455 52.9000
50/20 0.4608 0.4506 99.1667 0.5167 0.5624 98.6667 23.5154 29.7455 52.9000
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Table A2. Cont.

Without Preprocessing Median Filter Wiener Filter

SNRdB
Window Size /

Frame Size (ms)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)

2

25/ 10 0.6587 1.0051 97.1000 0.7438 0.9689 96.1000 40.4421 31.5617 23.8333
35/10 0.6760 2.3588 97.2667 0.8466 3.2702 96.1333 46.9396 30.9384 16.6333
35/12 0.5897 0.7246 97.9667 0.6831 0.8328 97.0333 36.6388 32.2888 29.8000
50/10 0.6511 1.5885 97.5667 0.8426 3.2499 96.6000 50.0315 28.4052 11.7667
50/12 0.5097 0.5408 98.7000 0.5769 0.6563 98.3000 42.3877 31.8309 22.3000
50/15 0.5097 0.5408 98.7000 0.5769 0.6563 98.3000 42.3877 31.8309 22.3000
50/20 0.5097 0.5408 98.7000 0.5769 0.6563 98.3000 42.3877 31.8309 22.3000

0

25/ 10 0.8122 1.9544 95.9000 1.2682 5.4158 93.7333 48.3123 29.8138 12.0667
35/10 1.1827 5.8337 95.4000 1.6328 8.0185 93.4667 52.3492 27.8695 7.3000
35/12 0.7021 0.8468 96.5000 0.8722 1.5264 95.1667 45.6052 30.6252 15.4000
50/10 0.8504 2.5126 95.7667 1.1790 4.3650 93.7667 53.1432 26.8928 6.5000
50/12 0.5871 0.7072 97.6667 0.8010 3.4158 96.5667 48.8692 30.1058 12.2333
50/15 0.5871 0.7072 97.6667 0.8010 3.4158 96.5667 48.8692 30.1058 12.2333
50/20 0.5871 0.7072 97.6667 0.8010 3.4158 96.5667 48.8692 30.1058 12.2333

−2

25/ 10 1.9049 9.1781 92.1000 3.6309 14.1082 88.3333 53.3834 27.6259 5.0333
35/10 2.2230 10.1234 91.9667 4.6370 16.5701 86.6667 55.5020 26.4814 3.5000
35/12 0.9577 2.8586 94.5333 1.7432 7.3635 91.4000 51.7095 29.1208 7.5333
50/10 1.8668 9.2858 93.4000 3.4592 14.0692 89.3000 55.2182 25.2605 2.9333
50/12 0.6788 0.8690 96.7333 1.2045 5.6296 94.6667 53.4769 27.6794 5.8000
50/15 0.6788 0.8690 96.7333 1.2045 5.6296 94.6667 53.4769 27.6794 5.8000
50/20 0.6788 0.8690 96.7333 1.2045 5.6296 94.6667 53.4769 27.6794 5.8000

−3

25/ 10 2.7857 12.1656 90.6667 6.7664 20.3681 82.9667 54.2794 27.4513 4.6667
35/10 3.4863 13.8784 89.6667 8.3755 22.4228 80.2000 56.0700 25.9085 2.4000
35/12 1.3376 5.6843 92.8667 3.5085 14.0162 87.4667 52.8001 28.5094 5.8333
50/10 2.6344 11.6972 91.8000 6.2836 20.0453 84.7333 56.5674 24.8849 2.2333
50/12 0.9751 4.4240 95.9333 2.0194 9.4220 92.3667 54.9000 27.0754 4.2667
50/15 0.9751 4.4240 95.9333 2.0194 9.4220 92.3667 54.9000 27.0754 4.2667
50/20 0.9751 4.4240 95.9333 2.0194 9.4220 92.3667 54.9000 27.0754 4.2667

−5

25/ 10 8.9995 23.7791 78.3000 17.8985 32.5969 62.9000 55.5686 26.8271 2.1333
35/10 12.1111 27.9742 74.6333 22.2779 35.4841 59.0333 57.1703 26.1266 1.1000
35/12 4.4998 15.6668 84.3000 12.6640 28.4453 69.9000 54.9973 27.9755 3.2667
50/10 8.5302 23.3745 80.3000 19.0307 33.8287 64.8667 56.8281 24.4191 0.9000
50/12 3.0576 13.0383 90.7333 9.1981 24.1209 78.9333 56.3419 27.0353 1.8667
50/15 3.0576 13.0383 90.7333 9.1981 24.1209 78.9333 56.3419 27.0353 1.8667
50/20 3.0576 13.0383 90.7333 9.1981 24.1209 78.9333 56.3419 27.0353 1.8667
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Table A2. Cont.

Without Preprocessing Median Filter Wiener Filter

SNRdB
Window Size /

Frame Size (ms)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)
Mean

Error (◦)
Standard

Deviation (◦)
Error < 3◦

(%)

−8

25/ 10 33.5311 39.8177 41.2333 44.3035 40.9917 26.6333 57.2012 26.8990 1.8000
35/10 36.3345 39.9724 38.0667 46.8466 41.0956 26.0000 57.5182 25.5922 0.8667
35/12 21.7416 34.7735 53.6667 35.2805 40.2148 35.5667 56.5289 27.8457 2.1667
50/10 34.0082 39.6064 43.4000 46.5912 40.8337 25.9333 57.7520 24.7207 0.6667
50/12 18.8424 33.5860 61.9000 34.4365 40.5661 40.2000 57.2580 26.3992 1.7000
50/15 18.8424 33.5860 61.9000 34.4365 40.5661 40.2000 57.2580 26.3992 1.7000
50/20 18.8424 33.5860 61.9000 34.4365 40.5661 40.2000 57.2580 26.3992 1.7000
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