
sensors

Article

Toward Dynamically Adaptive Simulation:
Multimodal Classification of User Expertise Using
Wearable Devices

Kyle Ross 1,*, Pritam Sarkar 1, Dirk Rodenburg 2, Aaron Ruberto 3 , Paul Hungler 4,
Adam Szulewski 3, Daniel Howes 5 and Ali Etemad 1

1 Department of Electrical and Computer Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada;
pritam.sarkar@queensu.ca (P.S.); ali.etemad@queensu.ca (A.E.)

2 Faculty of Engineering and Applied Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
djr08@queensu.ca

3 Department of Emergency Medicine, Kingston Health Sciences Centre, Kingston, ON K7L 2V7, Canada;
a.ruberto@queensu.ca (A.R.); aszulewski@qmed.ca (A.S.)

4 Department of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada;
paul.hungler@queensu.ca

5 Department of Critical Care Medicine, Queen’s University, Kingston, ON K7L 2V7, Canada;
howesdw@queensu.ca

* Correspondence: 12kjr1@queensu.ca

Received: 22 August 2019; Accepted: 28 September 2019; Published: 1 October 2019

Abstract: Simulation-based training has been proven to be a highly effective pedagogical strategy.
However, misalignment between the participant’s level of expertise and the difficulty of the simulation
has been shown to have significant negative impact on learning outcomes. To ensure that learning
outcomes are achieved, we propose a novel framework for adaptive simulation with the goal
of identifying the level of expertise of the learner, and dynamically modulating the simulation
complexity to match the learner’s capability. To facilitate the development of this framework, we
investigate the classification of expertise using biological signals monitored through wearable sensors.
Trauma simulations were developed in which electrocardiogram (ECG) and galvanic skin response
(GSR) signals of both novice and expert trauma responders were collected. These signals were then
utilized to classify the responders’ expertise, successive to feature extraction and selection, using a
number of machine learning methods. The results show the feasibility of utilizing these bio-signals
for multimodal expertise classification to be used in adaptive simulation applications.

Keywords: adaptive simulation; machine learning; wearable device; affective computing

1. Introduction

Simulations have been shown to be an important and effective tool for training that allow for
experience to be gained through mimicking real world experiences in a risk-free interactive setting [1,2].
For instance, simulations are particularly useful for aiding trauma responders in becoming experts, or
increasing their level of expertise, without any risk to patient safety [3–6]. By doing so, responders are
able to learn how to make time-constrained life-and-death decisions, by applying knowledge learned
in simulations to real world scenarios.

When designing simulations, it is essential for the learner’s initial level of expertise to be
considered. If there is a discrepancy between their level of expertise, and that which the simulation is
designed for, the learning outcomes will not be achieved, and there can even be negative implications on
the learning objectives [7,8]. Such simulations can be designed to dynamically adapt to the participant’s
expertise with respect to the task, enhancing the interactivity of the simulation and tailoring the learning
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experience to specific learners. This approach can allow for more complex scenarios to be introduced
to novice learners gradually and based on learning progress, where eventually they can be exposed to
simulations designed for challenging and cognitively demanding situations.

To ensure that the learning outcomes for simulations are better achieved, we propose an adaptive
simulation paradigm in which the level of expertise of the participant is autonomously classified
using their biometric signals with machine learning. This classification can then be used to adapt the
simulation to the cognitive load of participants by altering the simulation difficulty. This classification
can then be used to adapt the simulation to the cognitive load of participants by altering the simulation
difficulty. The architecture for the proposed pipeline is shown in Figure 1. To support the proposed
framework, the capability of wearable sensors to act as a meaningful input for machine learning
classification of expertise and cognitive load must first be investigated. We chose to tackle this problem
in the context of trauma medicine as a proof of concept. We specifically picked trauma medicine for
investigating our proposed framework because it is possible to objectively distinguish between novice
and expert trauma responders. Additionally, it has been shown that learner’s cognitive load, which
itself is known to be directly impacted by the learner’s level of expertise, can significantly impact
medical performance [9–13].

In this study, we investigate the applicability of electrocardiogram (ECG) and galvanic skin
response (GSR) data for classification of expertise in the proposed adaptive simulation. This paper
describes two trauma medicine simulations developed for the purpose of distinguishing between
novice and expert trauma responders. ECG and GSR signals were collected using wearable sensors
and used for expertise level analysis. In the following sections, we describe the materials and methods
used in this study, followed by a detailed exploration of the ECG and GSR data for applications in
classification of expertise. t-Distributed Stochastic Neighbor Embedding (t-SNE) is used to visually
observe the separability of the feature space between experts and novices. Least absolute shrinkage
and selection operator (LASSO) is then utilized to evaluate feature importance for use in expertise
classification. Finally, classifiers are developed to differentiate expert and novice trauma responders
using ECG and GSR features, both together and separately. These classifiers included support vector
machine (SVM), decision tree (DT), random forest (RF), and K-nearest neighbour (KNN) models.

Figure 1. Proposed system architecture.

2. Related Work

In order to adapt a simulation to a user’s level of expertise, their expertise must first be detected
and quantified. To the best of our knowledge, no research has been done on detecting learners’ level of
expertise through biological signals. However, there has been found to be an inverse correlation
between level of expertise and cognitive load [14]. Biometric measures, particularly heart rate
variability (HRV) and Galvanic Skin Response (GSR), have been shown to be indicative of cognitive
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load [15]. Additionally, electroencephalogram (EEG) and electrooculogram (EOG) have been found to
have a strong correlation with cognitive load [16]. These biological signals could also be indicative of
level of expertise [17]. Machine learning classifiers using these bio-signals, could therefore, be used to
facilitate dynamic classification of expertise for adaptive simulation.

Machine learning methods with which to identify cognitive load states have been investigated
in [18,19]. In [18] ECG, electromyogram (EMG), respiration rate, GSR, and body temperature were
utilized for the classification of overload, underload and normal cognitive load states. The performance
of 3 different machine learning classifiers, namely KNN, naive Bayes, and random forest (RF), was
then compared. The RF classifier was shown to perform the best, with a reported accuracy of 57.84%.
In [19], a real time framework for classification of cognitive load was proposed. EEG and GSR signals
were recorded from 10 participants with varying degrees of visual impairment as they navigated
unfamiliar environments. An RF classifier was developed to classify low, medium, and high levels of
cognitive load, using 5-fold cross-validation to achieve prediction rates of 83%–97%. These studies
demonstrate the viability of real-time classification for cognitive load, and thus, most likely learner’s
level of expertise.

When attempting to classify the level of expertise of a learner, it is important to take into account
the stress that the individual is under. A person’s physiology can change when under high levels
of stress [20] which may confound the assessment of cognitive load since it can elicit the same
physiological responses [21]. As cognitive load has been found to be linked with expertise, the
physiological changes from stress could also impact the ability of a classifier to elicit the participant’s
level of expertise. However, some biological signals have been shown to be able to distinguish between
the cognitive load of an individual and their level of stress. In [21], features extracted from peaks in
GSR signals were able to identify high and low levels of cognitive load in both low stress and high
stress conditions. This is important for our study as trauma responders are likely to face stressful
situations in both simulation, and real world environments.

3. Materials and Methods

3.1. Simulation Design

As discussed in Section 1, the goal of this work is to utilize biological signals acquired through
wearables to determine the users’ level of expertise. To this end, two separate trauma simulations were
developed for the collection of biometric data from novice and expert trauma responders. A SimMan
patient simulator (mannequin) [22] was used as the patient and was outfitted with artificial injuries.
In one simulation, referred to as the Penetrating Trauma Simulation, the simulated patient had suffered
a gunshot wound to the abdomen. In the second simulation, referred to as the Blunt Force Trauma
Simulation, the simulated patient had been involved in an automobile roll-over resulting in blunt
force trauma. Both simulations were designed to last 10 min. The vital signs of the simulated patient
were controlled by a simulation technician throughout the simulation. First person videos of the
simulations were recorded with a Microsoft HoloLens [23] worn by the participants. Shimmer3
wearable sensors were used to collect ECG and GSR data during the simulations [24]. The complete
simulation environment, and instrumentation worn by the participants can be seen in Figure 2.

In the simulation, the participant played the role of a trauma team leader, directing the trauma
team on how to provide care for the patient. The trauma team consisted of 1 registered nurse
and 2 residents, all of which were hired actors. The participant was given a brief description of
the trauma scenario prior to entering the simulation room. The goal of the participant during the
Penetrating Trauma Simulation was early initiation of Massive Transfusion Protocol for resuscitation
and disposition for emergency surgery. The goal of the participant during the Blunt Force
Trauma Simulation was early identification and intervention of left sided tension pneumothorax
(collapsed lung), followed by appropriate consultation and disposition with neurosurgery for further
neuro-imaging, as well as thoracic surgery for consideration of operative intervention of left sided
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chest wall injuries, flail chest (broken rib cage), and pneumothorax. Participants completed both
simulations successively, in random order.

(a) (b)
Figure 2. (a) Simulation environment with trauma team; (b) Instrumentation worn by participants.

Distractors were introduced verbally by the registered nurse to increase the cognitive load of the
participants. These distractors included the introduction of an ECG reading with sinus tachycardia (a
form of elevated heart rate), a high white blood cell count, and Emergency Medical Services (EMS)
calling with a patch alerting the participant that a 60 year-old male with witnessed cardiac arrest is
5 min away from the emergency room. All of the distractors were used for each participant. After
each of these distractors was introduced, the participant was asked by the trauma team what they
would like to do with the information. This was done in order to distinguish differences between how
novices and experts deal with the new information.

3.1.1. Protocol and Subjects

Ethics approval was secured from the Queen’s University Research Ethics Board (QREB).
Participants were recruited from two categories: expert and novice. The expert participants had
completed their specialty training in emergency medicine and were practicing independent emergency
medicine physicians. Moreover, they have had experience managing traumas as attending physicians.
The novice participants were Queen’s University medical students at the end of the 4th year of their
medical studies. They had been rotated through multiple medical specialties (i.e., internal medicine,
surgery, emergency medicine, etc.). The reason the novice group was selected from students with some
background in trauma medicine, was so that they would have the knowledge necessary for being able
to treat the patient successfully. A total of 10 participants were recruited, 5 experts (3 male, 2 female)
and 5 novices (2 male, 3 female). The ages of the expert participants ranged from 31 to 44, while the
novices ranged from 25 to 34. In addition to data collection during the simulation, baseline data were
collected for 2 min prior to the start of the simulation in a quiet room, while participants were in a
relaxed seated position.

3.1.2. Sensors and Data

Shimmer3 ECG and GSR wearable devices [24] were used in this study, as seen in Figure 2, to
collect data during the simulations. The sensors were small and lightweight, with the ECG sensor
weighing 31 grams, while the GSR sensor weighs 28 grams. The Shimmer3 ECG sensor allows for
ECG signals to be measured from four bipolar limb leads in addition to one chest lead. The signals
obtained from the differential ECG channel between Left Arm (LA) and Right Arm (RA) limb leads
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were used in this study. The Shimmer3 GSR sensor collects one channel of GSR data by monitoring
the conductivity between two reusable electrodes that can be attached to two fingers using velcro
straps. The GSR sensor itself was clipped to a strap on the participant’s wrist, while the ECG sensor
was clipped to a strap placed around the waist of the participant. The signals from both sensors were
obtained over Bluetooth connection allowing for full mobility of the participants during the simulation.
Both signals were collected at a sampling rate of 500 Hz.

3.2. Analysis and Classification

3.2.1. Pre-Processing

The Pan-Tompkins (PT) algorithm was utilized to process the ECG signals and detect the QRS
complexes [25,26]. In this algorithm, to reduce the influence of electromyogram (EMG) noise, powerline
noise, baseline wander, and T-wave interference, a Butterworth bandpass filter was applied with a
passband frequency of 5–15 Hz. The signal was then differentiated using a 5-point derivative transfer
function to provide the QRS slope information. The absolute value of the signal was taken and a
moving average filter was used to obtain the wave form features in addition to the R-peaks. Examples
of the raw and filtered ECG signals are shown in Figure 3.

(a)

(d)

(b)

(c)

Figure 3. Examples of: (a) Raw electrocardiogram (ECG) signal; (b) Filtered ECG signal; (ECG) (c) Raw
galvanic skin response (GSR) signal; (d) Filtered GSR signal.

A moving 150 ms window was employed to obtain features from the filtered signal by first
detecting the R-peaks. To detect the R-peaks, two threshold values were selected to distinguish
between the peaks and noise. If no peaks were detected in a time window of two seconds, a search-back
technique was initiated to find the missed R-peaks. The threshold values were set iteratively based on
the most recent detected signal and noise peaks. All features were obtained from the intervals between
two R-peaks (RR interval). An example of an RR interval is shown in Figure 4.

The GSR signals were first filtered following the method used in [27] by first using a low-pass
filter with a cutoff frequency of 1 Hz. Additionally, high-frequency artifacts were removed using a
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moving average filter with a filter size of 1000 samples. An example of the raw and filtered GSR signals
is shown in Figure 3. Next, Skin Conductance Response (SCR) events were identified by detecting the
local peaks in the GSR signal. An example of an SCR event is shown in Figure 4.

(a) (b)

Figure 4. (a) Example of the interval between R peaks (RR interval) from ECG signal; (b) Example of
Skin Conductance Response (SCR) from GSR signal.

3.2.2. Feature Extraction

Next, to identify important changes in the ECG signals, a large number of features are extracted
from the data recorded during the simulation. To this end, we first segmented the data into 10-s
windows with an overlap of 5 s. The window size was selected similar to [28] and successive to
trial and error with the goal of maximizing classifier performance. Similar to [29,30], 11 time domain
features and 8 frequency domain features were calculated. All features were extracted from both
the baseline data and simulation data. The features from the simulation data were normalized with
respect to the baseline data by dividing the values of the features by that of the corresponding baseline
features. For time domain features, statistical features were extracted from the RR intervals of the ECG
data. A Lomb periodogram [31] technique was used for power spectrum density (PSD) analysis to
obtain frequency domain features. The features extracted from the ECG signals are summarized in
Table 1.

Table 1. Time and frequency domain ECG features.

Feature Description

RRmin Minimum value of RR interval
RRmax Maximum value of RR interval
RRdiff Difference between RRmax and RRmin

RRmean Mean value of RR interval
RRSD Standard deviation of RR interval
RRCV Coefficient of Variation of RR intervals
SDSD Standard deviation of successive differences of RR intervals
NN50 Number of RR intervals greater than 50 ms

PNN50 Percentage of RR intervals greater than 50 ms
ULF Ultra low frequency band (<0.003) Hz
VLF Very low frequency band (0.04–0.003) Hz
LF Low frequency band (0.04–0.15) Hz
HF High frequency band (0.15–0.4) Hz
TP Total power (0–0.4) Hz

LFnorm Normalized low frequency
HFnorm Normalized high frequency
LF/HF Ratio of low to high frequency power
LMHF Sympatho vagal balance ratio, (LF+MF)/HF, using mid frequency (MF) range of (0.08–0.15) Hz
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The GSR signals from the simulation were segmented into 30-s windows with 10 s of overlap
following [32] and subsequent to trial and error for maximizing the performance of our system, as
well as ensuring that at least one SCR event is captured in the selected time window. Similar to [27],
8 time domain features, and 2 frequency domain features were extracted from the SCR events of both
the baseline data and simulation data. In cases where multiple SCR events were found in a window,
the mean, minimum, maximum, and standard deviation of each time domain feature was calculated
and subsequently used. Additionally, the Skin Conductance Level (SCL) was determined by taking
the average of the GSR signal in the time window. All of the features extracted from the GSR signals
are summarized in Table 2. The baseline features were used to normalize the features extracted during
the simulation by dividing those features by the corresponding baseline feature.

Table 2. Time and frequency domain GSR features.

Feature Description

RT Rise time from SCR onset to peak response
HRT Half recovery time of the SCR peak
Amp Amplitude of the skin conductance response at its peak
Area Area of the skin conductance response
Prom Prominence of skin conductance response relative to the skin conductance level
SCL Skin conductance level, the average electrodermal response

MAV1Diff SCL First derivative of the mean absolute value of the skin conductance level
MAV2Diff SCL Second derivative of the mean absolute value of the skin conductance level

BP Band power power of the GSR signal
PSD Power spectrum density estimate of the GSR signal

3.2.3. Feature Space Exploration

The usefulness of the extracted ECG and GSR features for expertise classification was examined
by reducing the high dimensionality of the respective feature spaces to 2 dimensions with t-SNE [33].
This allowed for the visualization of the feature space in order to evaluate the separability of the two
classes. t-SNE was performed using 10,000 iterations with a perplexity of 30, and learning rate of 10.
Each 10 s time window of ECG data was treated as a separate sample, while every 30-s time window
of GSR data was treated as a sample. The samples were assigned a class according to the expertise of
the participant.

3.2.4. Feature Selection

To determine which of the features from the ECG, GSR, and multimodal feature sets are important
for the classification of expertise, LASSO [34] was used. LASSO is a regression analysis method where
the absolute size of the regression coefficients are penalized by reducing them. After the process, the
features with non-zero coefficients are suitable for use in models [35]. The larger the magnitude of
the coefficients, the greater the importance of that feature for differentiation of the two classes. In our
study, LASSO was used to calculate the regression coefficients for each feature.

3.2.5. Classification

Several classifiers were utilized to differentiate levels of expertise. The classifiers were trained
separately with the important features from ECG, GSR, and multimodal feature sets. Four different
supervised models were used to develop separate classifiers in order to compare the performance.

Support Vector Machine is a machine learning classification technique in which the features,
or input vectors, are mapped onto a high dimensional feature space. The feature space is then divided
using a hyperplane to separate the features of different classes such that the margin between features of
different classes is maximized [36]. The mapping of the features onto a higher dimension feature space
is determined by a kernel function selected for the SVM. Multiple kernels, namely linear, quadratic,
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and radial basis function (RBF), were experimented with, to compare the performance. The best
performance was obtained using a second degree polynomial kernel.

Decision Tree classifier uses several decision functions successively to classify an unknown sample.
The decision functions take the sample from a root node, through interior nodes to a terminal node
that represents its classification [37]. Random Forest classifier is an ensemble of decision tree classifiers
that each generate a classification decision. The most popular class from the decision trees is returned
as the overall classification outcome [38]. The number of trees in the forest were changed iteratively to
obtain the highest accuracy. It was found that a random forest of 100 trees achieved the best results.

K-Nearest Neighbours classifier determines the class of a sample by determining the most popular
class from the nearest set of training samples [39]. The variable k denotes the number of neighbours in
the training set used for classifying an input test sample. In our experiments, k = 5 provided the best
results when used with a uniform Euclidean distance function.

3.2.6. Evaluation

To evaluate the performance of the model, both accuracy (Acc.) and F1 score were calculated
using leave-one-subject-out (LOSO) validation scheme. True Positive (TP) and True Negative (TN)
measures were the number of correctly classified expert and novice participants, while False Positive
(FP) and False Negative (FN) were defined as the number of incorrect classifications. Accuracy is
defined as the percentage of the total number of correctly classified participants to the total number of
participants, expressed in Equation (1).

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

The F1 score is a metric that combines precision and recall. Precision is the percentage of correct
classifications with respect to the total number of classified participants, as shown in Equation (2).

Precision =
TP

TP + FP
(2)

Recall is the percentage of correct classifications to the sum of correctly classified and incorrectly
classified participants, defined in Equation (3).

Recall =
TP

TP + FN
(3)

F1 score provides the harmonic average between precision and recall as shown in Equation (4).

F1 =
2 × (Precision × Recall)

Precision + Recall
(4)

4. Results and Discussion

4.1. t-SNE Based Projection

The results of applying t-SNE to the features extracted from the ECG signals, both before and after
baseline correction are shown in Figure 5a,d, respectively. The embedded feature space shows that
the ECG features without baseline correction are not readily separable based on experts and novices.
However, with baseline correction, the feature space appears to be separable based on participants
level of expertise.

The feature space projection of the GSR features with and without baseline correction is shown in
Figure 5b,e. Similar to the ECG t-SNE results, it can be seen that the features without baseline correction
are not separable, while the features with baseline correction show better separability. However, there
are still some overlaps between expert and novice groups. In our study only two levels of expertise
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were used: expert and novice. The presence of more granular representation of expertise between
novice and expert (instead of a binary one) could account for this overlap and close clusters between
some participants as some novices could be closer to expert level, while some expert participants may
be closer to novice level. The overlap between the two groups could also stem from the differences in
the participant’s basic ability to perform under different levels of cognitive load. An individual could
innately have a greater or reduced physical response to cognitive stimulation when compared to other
participants of their same class, novice or expert. This could allow for participants to be classified as
having a different level of expertise.

(a) (b) (c)

(d) (e) (f)

Figure 5. t-Distributed Stochastic Neighbor Embedding (t-SNE) of (a) ECG features without baseline
correction; (b) GSR features without baseline correction; (c) Multimodal features without baseline
correction; (d) ECG features with baseline correction; (e) GSR features with baseline correction;
(f) Multimodal features with baseline correction.

t-SNE was performed on the multimodal feature set of ECG and GSR features with and without
baseline correction, as shown in Figures 5c,f. Similarly with the individual feature sets, the features
without baseline correction showed more overlap between classes, while the feature set using baseline
corrected features shows clear separability. The results of combining the two feature sets show less
overlap between classes than the t-SNE on ECG or GSR features individually. This finding suggests that
a multimodal feature set using ECG and GSR signals is capable of differentiating expertise, supporting
the development of the adaptive simulations based on the learner’s level of expertise classified from
multimodal wearable data.

4.2. LASSO Feature Ranking

As discussed in Section 3.2.4, the absolute values of the regression coefficients were calculated for
each feature of the ECG, GSR, and multimodal feature sets. Using the values of the coefficients, the
cutoff value for which features should be used within the classifiers was experimented with. It was
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found that using features with a regression coefficient above 0.01 achieved the best classifier results.
The regression coefficients of those features are shown in Figure 6, where 17 features were found to
have regression coefficients greater than 0.01. The most important features were found to be RRmean

and ULF with regression coefficients of 0.9044 and 0.8979, respectively. SDSD, LF, and HF were found
to be the least important features (non-discriminative), with regression coefficients of 0. Generally the
regression coefficients of the extracted ECG features tended to be high, indicating that ECG features
are likely suitable for the classification of level of expertise.

(a) (b) (c)

Figure 6. Regression coefficients for deterministic features using least absolute shrinkage and selection
operator (LASSO) on: (a) ECG features; (b) GSR features; (c) multimodal (ECG and GSR) features.

From the regression coefficient of GSR features, shown in Figure 6, 9 GSR features were found to
have regression coefficients greater than 0.01. The time domain GSR features were found to be more
important than those from the frequency domain with the most important features being minimum
HRT, standard deviation of RT, mean HRT, and minimum RT with regression coefficients of 0.1922,
0.1864, 0.1599, and 0.1387 respectively. None of the frequency domain features, or the features from
SCR amplitude, or SCR area, were deemed discriminative as their regression coefficients were less
than 0.01. There are fewer GSR features with regression coefficients greater than 0.01 when compared
with the ECG feature set. Additionally the features that were found to be discriminative have lower
values for their regression coefficients.

Our analysis on the LASSO regression coefficient of the multimodal feature set showed that
22 features had regression coefficients above 0.01. The ECG features had larger regression coefficients
when compared to the GSR feature set. This is in line with our finding from using LASSO on the
unimodal feature sets. The highest regression coefficient was from an ECG feature, namely VLF, with a
value of 0.6245. In comparison, the highest regression coefficient for a GSR features was 0.0832, from
mean SCR amplitude. More of the ECG features were found to be discriminative than GSR features.
Our findings suggest that the ECG features are more important for differentiating between expert and
novice classes for the purposes of future adaptive simulations.

4.3. Classification

Table 3 shows the results of using the classifiers to differentiate the level of expertise using LOSO
validation scheme. The classifiers using the multimodal feature set performed better than the classifiers
using either feature set separately with an accuracy and F1 score of 0.8296 and 0.7996 using the KNN
classifier. These results differ from our findings based on LASSO as our earlier analysis showed that
the ECG feature set was likely the most discriminative for level of expertise. It should be noted that
while the results from LASSO can demonstrate which individual features are the most important for
distinguishing between levels of expertise, the results do not indicate how well the features can be
used together in a feature set for classification. Additionally, while LASSO used all of the participant
data, LOSO validation was used during classification to set aside a subset of data for testing while
the classifier was trained on the rest of the set. These differences could account for why the GSR and
multimodal feature sets outperformed the ECG feature contrary to what the LASSO results suggested.
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Table 3. Classification results using different feature sets with leave-one-subject-out validation scheme.

SVM DT RF KNN
Acc. F1 Score Acc. F1 Score Acc. F1 Score Acc. F1 Score

ECG 0.7278 0.7398 0.6332 0.6454 0.7236 0.7270 0.5332 0.5234
GSR 0.7746 0.7712 0.7362 0.7123 0.7852 0.7665 0.7935 0.7889

ECG+GSR 0.7984 0.7815 0.7804 0.7931 0.6666 0.6804 0.8296 0.7996

The high accuracy and F1 score from the LOSO classification results show the ability for the
combined feature set to be used to differentiate between expert and novice classes, supporting our
observations with t-SNE. These results demonstrate the ability of the classifiers to determine the level
of expertise for new participants for which the system has not been trained. The accuracies achieved
using LOSO show the feasibility of utilizing the proposed framework for dynamically adapting the
simulation based on expertise. The multimodal feature set using both ECG and GSR will be used in
further studies to develop more accurate and robust classifiers as it provided the best results when
using LOSO validation.

5. Conclusions and Future Work

In order to classify expertise for an adaptive AR-based trauma simulation, we recorded ECG
and GSR from expert and novice trauma responders. Feature extraction was performed in both time
and frequency domains. The extracted features show a clear distinction between expert and novice
trauma responders, with the combination of ECG and GSR features showing the most capability
in differentiation. LASSO was utilized to identify the most important features for classification of
expertise. Several classifiers were developed utilizing ECG, GSR, and multimodal feature sets that
were found to be discriminative using LASSO regression. The KNN classifier, with k = 5, utilizing a
multimodal feature set of 22 features outperformed the other models with an accuracy of 0.7852 and
an F1 score of 0.7665. The findings show the feasibility of using ECG and GSR from wearable sensors
for the classification of expertise. The results show promise that the classification can be integrated
with our proposed system to allow for an increase in educational efficacy through the development of
adaptive simulations tailored to the learner’s level of expertise.

For future work, the resolution of levels of expertise will be increased to include levels between
expert and novice. This can be achieved through having an external reviewer grade the performance of
each subject thereby allowing for a more accurate representation of the participant’s level of expertise.
With an increase in the levels of expertise, simulations can be better fit to the learner and increase
the efficacy of the learning objectives. Additionally, the differences between the signals recorded
from experts and novices when dealing with the effects of adding visual complexity to the simulation
through AR elements should be investigated. Future visual enhancements will be used to modulate the
symptomology of the patient, to alter the difficulty of the simulation. The efficacy of these AR objects
on successfully increasing cognitive load of the participant is crucial for the development of a dynamic
simulation that can successfully increase the level of expertise of trauma responders. The optimal level
of cognitive load that the participant should be put under to reach the desired learning objectives will
also be investigated to successfully implement our proposed adaptive simulation framework.
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