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Abstract: Frequency-modulated pulse trains can be applied in active sonar systems to improve the
performance of conventional transmitted waveforms. Recently, two pulse trains have been widely
researched as the transmitted waveforms for active sonars. The LEM-Costas pulse train was formed
by modulating the linear frequency-modulated (LFM) waveform via the Costas sequence to remove
the Doppler ambiguity of LEM pulses. The generalized sinusoidal frequency-modulated (GSFM)
waveform, another frequency-modulated pulse train, achieved an ideal ambiguity function shape
with thumbtack mainlobe. In this paper, we focus on constructing an optimization model to optimize
the LFM-Costas and GSFM pulse trains with the genetic algorithm. The pulse trains can be improved
on properties of both ambiguity function and correlations between sub-pulses. The optimized pulse
trains are proven to have better detection performance than those of the initial pulse trains, including
the lower sidelobe levels of ambiguity function, as well as lower cross-correlation property. Moreover,
it is affirmed that the reverberation suppression performance of pulse trains has also been improved
through the optimization model.

Keywords: active sonar; frequency-modulated; ambiguity function; waveform design; genetic algorithm

1. Introduction

Active sonar systems detect targets by transmitting specific signals and analyzing echoes from
targets. Currently, most anti-submarine active sonars are pulsed active sonars. In order to detect remote
targets in noise environments, high-energy pulses are transmitted to gain the required signal-noise
ratio. For example, the source level of long-distance pulsed active sonars applied by the United States
(U.S.) Navy can be as high as 235 dB [1]. Higher source levels promote the requirement on transducers,
resulting in more difficult manufacturing processes and higher costs. In addition, with such a high
source level, a cavitation may be induced close to the transducers in shallow water, which would
cause corrosion and changes in radiation impedance [2]. As a result, long-duration pulse-compression
waveforms are employed in pulsed active sonars to deal with these constraints. The pulse-compression
property can be achieved by modulations of amplitude, phase, or frequency. The most popular
pulse-compression waveform is the linear frequency-modulated (LFM) waveform, which achieves
both long pulse duration and wide bandwidth.

Nowadays, the matched filter is utilized in most active sonar systems. It estimates the range and
velocity of targets through the correlation between replicas and echoes. If there is no relative motion
between the targets and the sonar system, the replicas of the matched filter will have an accurate
match with echoes from the target. Once a relative motion emerges, a mismatch will occur due to the
Doppler effect, which is referred to as the ‘range-Doppler ambiguity’ problem and frequently occurs in
traditional continuous wave (CW) or LFM waveforms of pulse sonar systems. It was indicated that the
CW is appropriate for detecting high-speed targets in a reverberation environment, while the LFM is
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suitable for detecting low-speed or stationary targets [3]. Hence, it was suggested to combine two
different waveforms to improve the detection performance of active sonars. As a result, the continuous
transmission of composite pulse trains was developed [4]. Compared with traditional pulse waveforms,
the continuous pulse trains can effectively reduce the range-Doppler ambiguity of detection and result
in higher resolutions of range and velocity. Higher transmission and signal-noise ratio gains can also be
achieved due to the longer correlation durations. Recently, several modulated pulse train waveforms
have been developed. Costas first found that the specific frequency-modulated signals exhibit high
range and velocity resolutions, as well as high reverberation suppression performance [5]. Pechnold
proposed using the Costas sequence to improve the performance of pulsed active sonars [6]. Hickman
presented the LFM-Costas pulse train, which was the LFM pulses coded by the Costas sequence [7].
It was pointed out that this waveform employed the periodic property of the Costas sequence to
achieve continuous tracking and high detection resolution. DeFerrari proposed a different approach to
design continuous active sonar signals based on the maximal-length sequence [8]. The results showed
that the maximal-length sequence provided the better detecting performance in reverberation and the
reduction of the direct blast. Hague researched a generalized sinusoidal frequency-modulated (GSFM)
waveform [9]. This waveform was designed to have low cross-correlations, which can reduce the
interference from the direct blast and improve the efficiency of echo signal processing. Liang devised a
method of processing multistatic active sonar signals using the improved PeCan phase-modulated
waveform as the transmitted signal [10]. Lourey further studied the hopped frequency-modulated
waveform, which exhibited improved range resolution compared to LFM at the cost of a deteriorative
interference level [11]. Wang proposed a method of estimating range and velocity of targets through a
continuous transmission of composite hyperbolic frequency-modulated signals [3]

For an active sonar system, the performance of transmitted signals can be evaluated by the
ambiguity function (AF). It depicts the response of a match filter with different time delays and Doppler
shifts [12]. Furthermore, the reverberation suppression performance can be estimated directly from the
zero-time-delay cut of AF, which is known as Q-function [6]. Mathematically, the AF expression is
composed of time delays, Doppler shifts, and the characteristic parameters of the waveform, such as
bandwidth, carrier frequency, duration, etc. [5]. Moreover, the AF expression can be visualized as
a three-dimensional shape on the time delay-velocity pedestal. The width of the mainlobe and the
sidelobe levels are the main characteristics of the AF shape. The width of the mainlobe is inversely
proportional to the resolution, distinguishing closely-spaced targets in range or velocity. The sidelobe
levels, which represent the sound intensities of sidelobes, can evaluate the ability to detect targets in
the reverberation environment. The higher sidelobe levels imply that the target detection is interfered
by the reverberation more seriously. In particular, some active sonar waveforms show the AF shape
that features a distinct mainlobe at the origin of the time delay—velocity pedestal and sidelobes at the
rest of the pedestal evenly, which is known as the ‘thumbtack” AF shape [13]. Furthermore, this ideal
‘thumbtack’” AF shape might be reached by optimizing specific parameters in the AF expression.
Several methods have been developed for optimizations of polyphase sequences in radar and sonar
systems. Liu utilized Tabu search to design orthogonal phase-modulated waveforms for active sonar
systems [14]. Sharma optimized four-phase orthogonal sequences for MIMO radar systems by means
of the alternate sequence generation method [15]. However, frequency-modulated signals have lower
degrees of freedom than that of phase-modulated signals. Additionally, the optimization objectives
of these two kinds of signals are totally different. Therefore, the aforementioned methods are not
appropriate for the research on frequency-modulated waveforms. Zhao proposed another approach for
the optimal sidelobe design of the hopped-frequency waveform with the adaptive gradient search [16].
Moreover, Mehany and Wang both used the genetic algorithm (GA) to optimize orthogonal waveforms
for radar systems [17,18].

This paper focuses on the optimal waveform design of several frequency-modulated pulse trains
with GA. The first waveform to be optimized is the LFM-Costas pulse train. Through the modulation
of Costas sequence, the range-Doppler ambiguity problem of LFM is alleviated, but the Doppler
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ambiguity problem still exists, which is what we are concerned about in this paper. The second
pulse train is the generalized sinusoidal frequency-modulated (GSFM) waveform, which features
the thumbtack AF mainlobe. However, there are still relatively high sidelobe levels in the AF under
present parameter settings [9]. Thus, the optimal waveform design of the GSFM pulse train needs to
be further researched.

The rest of this paper is organized as follows. Section 2 describes the quantitative AF expressions
of continuous pulse trains, which are essential for our research. The optimization model of
frequency-modulated pulse trains is given in Section 3, and the optimized objectives include AF shape
and the zero-velocity cut of AF. In addition, the correlations between the sub-pulses of the GSFM pulse
train are also the optimized objective. Evaluation criteria for optimizing the frequency-modulated
pulse trains are then formulated, which can be minimized using GA. The experimental simulations
and analysis are provided in Section 4, and the optimal parameters of the LEM-Costas and GSFM
pulse trains are obtained. The AF properties of two optimized pulse trains are analyzed, and their
reverberation suppression performance is also discussed by means of Q-function. Finally, Section 5
presents the conclusions of this paper.

2. AF Quantitative Expression of Frequency-Modulated Pulse Train

The AF properties of the pulse train are demonstrated by its AF shape, which is related to the AF
quantitative expression. Due to the indeterminacy of the quantitative expressions, the AF shape is
alterable so that some specific AF properties can be obtained. Then, it is possible to improve both the AF
shape and the properties of a specific pulse train through the modulation of its AF expression. In this
paper, an optimization model is formed to improve the required AF properties. The model is primarily
regulated by the AF quantitative expression. For this reason, it is necessary to derive the quantitative
expressions before we construct the model. The AF expressions of the basic Costas sequence, LFM
pulse, and LFM-Costas pulse train have been outlined by [5] and [19], respectively, while the expression
of the GSFM pulse train remains to be derived. Hence, we present an AF expression adaptable to all
kinds of frequency-modulated pulse trains involving the LEM-Costas and GSFM, which are optimized
in the next section.

A continuous pulse train consisting of N pulses can be expressed as follows:

1 N-1

\/N_tpnz‘f) un(t - ntp>

where t, is the duration of sub-pulses, and uy(t) represents the nth sub-pulse of the train, which can be
written as:

u(t) = ey

_ rect(t)

n (1) APt 0 <t <t, )

p
where rect(t) is the rectangular function, f, is the hopped frequency of the nth sub-pulse, and A, (t) is
the complex envelope of u,(t). Assuming that the target velocity is much lower than the sound speed
and the ratio of bandwidth with carrier frequency B/2f is low (< 0.1), which means that the pulse
train can be simplified in the form of narrowband, then the narrowband cross-ambiguity function
(NCAF) of different sub-pulses u, (t) and u,(t) can be expressed as [20]:

Xnm(T, ) = %f_t:o n (£)1t5, (t = )27 Ptdt
= %e_]:Znﬂan_';oo An(t)A*m(t — T)€j2n((p—(fn—fm))tdt 3)
= 5 PR = (fa = f))

where T(|T| < tp) is the time delay and ¢ = 270 fo is the Doppler shift of echoes. x4(t, @) is defined as the
AF of the complex envelopes A, (t). The narrowband auto-ambiguity function (NAAF) x,,. (7, @) can
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be expressed by replacing the subscript m with 7 in Equation (3). According to [5], the AF expression
of continuous pulse train can be written as:

N-1 N-1
1 )
x(1,9) = NZ S (T, 0)+ Y Xum(T = (1= m)ty, ) o)
n=0 m=0
m#n

then, substituting xum(t,¢) and xu.(7,¢@) into Equation (4), the AF expression of the
frequency-modulated pulse train can be rewritten as:

N-1 N-1

_ 1 21t — 21 fuT — 271 fin (T—(n—m)t,
x(me) = g ;f’ O [xa(r@)e Pt N xa(t = (n=m)ty, @ = (fu = fin) Je 2t | )
B m=0
m+n

According to Equation (5), the AF quantitative expressions of all kinds of frequency-modulated
pulse trains are represented by the AF expressions of the complex envelopes A, (t) with different time
delays and frequency shifts. As aforementioned, some AF expressions of pulses’ complex envelopes
have been given out. In particular, the nth sub-pulse of the LEM-Costas pulse train can be written as:

rect(t) €j2n(fot+%ut2)ej2nfnt (6)

up(t) =

N

which has the carrier frequency fy and the linear modulation index p. f;, = a,Af ({a,} is the Costas
sequence and Af is the frequency separation. Here, the complex envelope A, (t) is defined as
An(t) = exp( j271< fot + % ytz)). According to the conclusion in [19], the AF expression of the complex
envelopes A, (t) has been derived as:

sin(m(pt, — B)(1 ~Il/1,))
n(pty = TB)(1 ~Ivl/4,)

xa(t, @) = (b - Il) eI )

Therefore, substituting x4 (7, ) back into Equation (5), we can obtain the AF expression of
LFM-Costas. Figure 1a,b shows the AF shapes of the LFM and LFM-Costas pulse trains, respectively.
In Figure 1a, the LEM pulse train exhibits severe Doppler ambiguity and periodic repetitions of
sidelobes. Figure 1b demonstrates that the Doppler ambiguity problem of the LEM pulse train has been
significantly improved. However, ambiguity along the velocity dimension still exists in LFM-Costas.

Analogously, the closed-form AF of the GSFM pulse train can be achieved as the above derivation
of LEM-Costas. The expression of the GSFM sub-pulse can be written as:

rect(t) j_E gin (2mant)

e’ tpn-1 pn ej277f0t (8)
Vi

where f = B/2f is the modulation index, fjs is the modulation frequency, and B is the bandwidth. p
is a unitless parameter that must be greater than or equal to 1, while «a is a frequency modulation term
with units s7° [9]. This paper focus on the GSFM pulse with even-symmetric instantaneous-frequency,
which replaces # in Equation (8) with [t|’". This kind of GSFM pulse has the same performance as the
normal kind of Equation (8) and can simplify the mathematical processing. According to the research

un(t) =

in [20], the AF expression of an even-symmetric GSFM pulse can be expressed as:
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_ too
xa(lt, ) = (tp . |T|) X Z In{ZjFEm sin(nt—m)} X sin c:[n(f2 + (p)(tp - |T|)] 9)
4 n=—00 4 r

— T : - .
where a,, = mit,, fo fosem(t) cos(’”t—;ﬁ)dt(m =0,1,---) are the Fourier coefficients of instantaneous

frequency fcspm(t), and I, {2 jFan sin(_ t;’” )} is the infinite-dimension generalized Bessel function
(GBF) of the modified form [21].

Velocity 1 (m/s)
Velocity 77 (m/s)
=

a -05 o 05 1 " -05 0 05 1
Time-Delay 7 (s) Time-Delay 7 (s)
(a) (b)
Figure 1. Ambiguity function (AF) shapes of (a) linear frequency-modulated (LFM) pulse train and
(b) LEM-Costas pulse train. They both have N = 30, T = 30t, = 30's, fo = 2 KHz and B = 200 Hz.

The LFM-Costas uses a 30-code Costas sequence and Af = 10 Hz.

Substituting Equation (9) into the expressions of NAAF yx;,, and NCAF x;, , then according to
Equation (5), the AF expression of GSFM pulse train can be expressed as the following;:

N-1 N-1

_ 1 i2mnot —j2 —j2 T—(n—m)t
) = g L () P T ga(e= - m gl P o
"= m=20
m#£n

The quantitative AF expression of the GSFM pulse train is derived through Equation (10). Figure 2
shows the AF shape of the GSFM single pulse and the corresponding pulse train with size N = 8.
It is worth noting that the t, of GSFM is different from LFM and LFM-Costas (f, = 1 s). The reason
is that the longer-duration GSFM pulse (t, > 0.25 s) yields the worst AF performance. Our previous
research in [22] shows that the GSFM pulse with #, = 0.25 s have the best AF and correlation properties.
Compared with Figure 1, the AF shape of GSFM pulse in Figure 2a clearly shows the thumbtack
mainlobe and there is almost no evidence of a range-Doppler ambiguity problem. However, the sidelobe
levels of the single pulse are still high. The AF shape in Figure 2b features a narrower mainlobe and
lower sidelobes than Figure 2a in both time delay and velocity. This demonstrates that the increasing
duration caused by continuous transmission of pulses can sharpen the mainlobe and reduce the
sidelobe levels in AF, which improves the target detection in a reverberation environment. However,
some sidelobes still exist, especially along the velocity —10 m/s.
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Figure 2. The AF shapes of (a) single generalized sinusoidal frequency-modulated (GSFM) pulse
and (b) continuous pulse train (N = 8). The duration of the sub-pulse t, = 0.25 s, carrier frequency
fo =2 KHz, and bandwidth B = 400 Hz. All sub-pulses have the identical characteristic parameters
ay =160,pp =2,n=1,...,N.

3. Optimization Model of Frequency-Modulated Pulse Trains

In Section 2, we found that there still exists Doppler ambiguity of AF in LFM-Costas. Additionally,
the AF of GSFM pulse train has some sidelobe interference along the dimension of velocity. As a result,
it would be useful to construct an optimization model to improve the detection performance of the
frequency-modulated pulse train. There are three objectives to be optimized. Firstly, the optimization
of the Auto-Correlation Function (ACF) sidelobe area aims to generate the ACF curve with a sharper
mainlobe and lower average sidelobe levels, which represents a higher range resolution of the pulse
train. Secondly, the optimization of AF sidelobe levels focuses on the improvement of the ability
to distinguish the true target in reverberation. Thirdly, the optimization of correlation properties
aims to reduce the correlations between sub-pulses, which needs to be considered for GSFM pulse
train to eliminate the direct blast. All of the three objectives are expressed by the following fitness
functions, which are closely connected with parameters of the pulse train expressions. Minimizing
these objectives with GA, key parameters and the corresponding optimal frequency-modulated pulse
train are achieved.

3.1. Optimization of the ACF Sidelobe Area

In this paper, the ACF is defined as the zero-velocity cut of AF. To some extent, it reflects the
correlations between the replicas and echoes. Moreover, as Hague suggested in [13], the ACF is of
great significance to the evaluation of the range resolution. Specifically, the ACF expression can be
derived if we substitute the Doppler shift ¢ = 0 into the AF quantitative expression. As an example,
the ACF expression of LFM-Costas can be written as:

N-1 N-1
1 —inf.T — 127 fou (T—(n—m
R(t) = x(7,0) = N, Y [ (moye iy N gt = (n=m)ty, (fu— fu) e P mmi ] (11
n=0 m=0
m#%n

Here, x,(7,0) is the ACF of the LFM pulse, which can be derived from Equation (7). It is desirable
that the optimal ACF should have the sharper mainlobe and lower sidelobes. The sidelobes are expected
to be as low as possible, particularly in the region near the mainlobe. Meanwhile, the mainlobe shape
should be maintained so that the range resolution does not get worse. Hence, the area enclosed by the
sidelobes is identified as the optimization objective of ACE, which can be represented as the following
fitness function:

F = mcin| fQ 1 |R(T)|d7] (12)
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where ); is the optimized ranges of ACF sidelobes on time delays. The set C represents optimized
parameters of frequency-modulated pulse trains.

3.2. Optimization of AF Sidelobe Levels

As stated previously, the optimization of AF sidelobe levels aims to improve the accuracy of
detecting targets in the reverberation. The AF sidelobe levels should be minimized in the interested
region, while the width of the mainlobe should be maintained in either range or velocity. According
to [5], AF sidelobes are only dependent on the second sum term of expressions in Equation (5), which
can be rewritten as follows:

N-1
Xpar(T,9) = Y, xp(T = (n=m)ty, @ = (fu = fn) e 2RO lrmmt) (13)
m=20
m#n

In order to reduce the computational burden, we can concentrate on Equation (13) for the
optimization of AF sidelobe levels. Since the optimization object focuses on the minimization of AF
sidelobe levels (height) in the interested region (area), we can represent this object with the integral
of height and the area, which is the volume of sidelobes. As a result, the optimization fitness can be
stated as:

F, = In(ijn[J]‘Q”p |Xpart2(77/ (P))de(P (14)
where ()¢ , is the optimized region of AF sidelobes in the time delay-velocity pedestal.

3.3. Optimization of the Correlation Properties

The LFM-Costas sub-pulses already have low cross-correlation properties due to the orthogonality
of the Costas sequence. On the other hand, the correlation properties of the GSFM pulse train remain
to be optimized because of its indeterminate parameters {a,}, {p,}. Hence, the optimization objective
in this sub-section plans to minimize the autocorrelation sidelobe levels of each sub-pulse and the
average cross-correlation levels between sub-pulses in the GSFM pulse train.

Considering a GSFM pulse train with N sub-pulses u, (t), the length of each pulse is L. The aperiodic
correlation can be defined as [17]:

Lk
iy up(Dug(l+k),0<k<L
R(pg k) =3 =} (15)

T X wp(uy(l+k),-L<k<0
I=—k+1

where p,q = 1,2,--- ,N, k is the discrete time index. When p = g, R(p,q,k) is the aperiodic
auto-correlation function of pulse u,; conversely, R(p, q, k) is the cross-correlation function between u,,
and u; when p # g. Taking the conjugate-symmetry into account, the sidelobe of auto-correlation can
be expressed as:

Alp.K) = [R(p,p, 1), R(p,p,2),- ,R(p,p, L=1)]  k=1,2,-- , L -1 (16)

Letus define A(p,0) = R(p, p, 0) as the mainlobe of auto-correlation. Moreover, the cross-correlation
between two sequences is defined as:

Clp.q) = [R(p,q,~L +1),R(p,q,~L +2),---R(p,q,L - 1)]" (17)
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Consequently, the normalized levels of the auto-correlation sidelobe (ACS) peak and cross-correlation
(CC) peak can be expressed as:

_ A(pk)
ACS_peak = pél k:l???fL—ll A(r0) ‘

Clpg) ‘
max|A(p,0)|

(18)

N N
CC_peak = }, )}, max
p=1q=p+1

Both ACS_peak and CC_peak should be minimized so that the auto-correlation and
cross-correlation properties of the GSFM pulse train can be optimized. Since the duration t,, carrier
frequency fy of sub-pulses are assumed to be identical, the difference between each pulse depends
only on {ay}, {pn}. Accordingly, the fitness function to minimize (18) can be expressed as:

F3 = mcin(ACS_peak + CC_peak) (19)

Here, the set C specifically represents {a,} and {p,} of the GSFM pulse train. In order to not only
minimize the sidelobe peak but also keep the average sidelobe levels low, the total auto-correlation
sidelobe energy (ACS_E) and cross-correlation energy (CC_E) should also be taken into consideration.
They are defined as follows:

AGSE= T AR -1A0)
= : 20
CCE= Y |[C(pgh)
k=—(L-1)
Thus, the optimization of sidelobe energy can be expressed as:
Fy = mén(ACS_E +CC_E) (21)

In Equation (21), it is worth noticing that the optimization only considers minimizing the sum
form of ACS_E and CC_E rather that minimizing them respectively. The reason is that this reaches a
compromise between the auto-correlation and the cross-correlation. The same reason is applied for
Equation (19).

3.4. Optimization Model with the Genetic Algorithm

In this paper, we discuss an optimization of multiple objectives under a certain constraint condition.
A robust algorithm with global optimum searching capability is necessary. So we utilize the genetic
algorithm to construct the model in that it is an adaptive and robust method which can evolve
to globally optimal parameters of pulse trains. For the LFM-Costas pulse train, the model should
include optimizations of both ACF and AF sidelobe levels, which are evaluated by fitness functions
Fj and F,. On the contrary, F3 and F, are overlooked in that the Costas sequence determines the
orthogonality between sub-pulses. The parameters to be optimized are the linear modulation index u
and frequency spacing Af. For the GSFM pulse train, fitness functions F; ~ F4 should be totally taken
into account. The parameters to be optimized is the frequency modulation term a;, and p,,. As a result,
the optimization model of two pulse trains can be constructed, respectively, as follows:

FCostas(IJ/Af) =wi-Fi1+wz-Fp (22)

Fasem(@n, pn) = w1 -F1 +wp-Fp +w3-F3+wy-Fy (23)

where W = [wq, wy, w3, wy| are weighting coefficients. Through the GA, optimal pulse trains and the
corresponding parameters can be obtained by minimizing (22) or (23).



Sensors 2019, 19, 4262 9of 15

Moreover, it is worth noticing that the units of the fitness functions are quite different and represent
area (Fp), volume (F;), and energy (F3, F4), respectively. Hence, the traditional weighting coefficient
settings result in immoderate weight between each fitness function. In this model, we implement an
average adaptive weight approach in order to achieve global searching and improve the population
diversity of multi-objective optimization [23].

For an optimization problem with n objectives, we define the initial weighting coefficients

(

as wjo) =1/n,j=1,---,n. The mean value of each fitness function in the pth generation

ng) (x),--- ,F,(f) (x) can be written as follows:

PR 1 m
R = EZ;Fi”)(xi),kzl,z,w,n 29

where {x;},i = 1,--- ,m are chromosomes in the pth generation. According to the approach in [23],
the weighting coefficients vary in each generation:

w,(pﬂ) k=1 (p) (25)

Then the overall objective function in the (p + 1) th generation can be expressed as follows:

Eval P+ = wf“l)eval;p“) (26)

n
=1

Through the above-mentioned approach, the weighting coefficients are adjusted effectively in
each generation of GA. As a result, all of the objectives of the model can be optimized evenly.

4. Optimization Results and Analysis

In this section, several simulations were applied to analyze the performance of the developed
optimization model. The settings of the GA are as follows: Population items are 100, the probability of
crossover is 0.7, and the probability of mutation is 0.1. The algorithm iterates over 200 generations.
All the simulations are performed on a PC with a 3.50 GHz i7-3770K CPU and 4 GB RAM.

4.1. LF-Costas Pulse Train

The simulation in this sub-section uses 30 codes LFM-Costas, each sub-pulse has duration ty = 1s.
The initial pulse train has parameters of By = 200 Hz, uy = 200 Hz/s, Afy = 10 Hz (see Figure 1b).
Two parameters p and Af are optimized, respectively. Figure 3 shows the AF shapes of LFM-Costas
pulse train after optimization. In comparison with the initial AF shapes in Figure 1b, the levels of
instinct sidelobe peaks are improved to be too low to mask the mainlobe, while the width of the
mainlobe is not changed, which makes it more accurate to estimate the velocity of targets.

The ACF of the LFM-Costas pulse train is shown in Figure 4. Compared with the initial pulse train,
the optimized pulse train demonstrates lower sidelobe levels, especially in the region near the mainlobe.
This improves the ability of LEM-Costas to detect a weaker target in a reverberation environment.
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Figure 3. AF shapes of LFM-Costas pulse train after optimization. The optimized parameters are
Ut = 391.994 Hz/s and Af; = 10.621 Hz. Other settings are the same as Figure 1b.
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Figure 4. The Auto-Correlation Function (ACF) optimization for LFM-Costas pulse train. The blue
dotted line represents the initial LFM-Costas in Figure 1b. The solid red line represents the
optimized LFM-Costas in Figure 3. Here, the ACF levels are normalized and expressed in dB

as 10 loglo{R(T)/mTax[R(T)]}.

The sidelobe levels of the LEM-Costas pulse train are presented in Table 1. The average sidelobe
level of the optimized AF is slightly better (column 1). On the other hand, the peak sidelobe level
achieved the greatest reduction, over 17 dB (column 2). The optimized average and peak level of ACF
sidelobes in column 3 and 4 decrease substantially. The reduction of the sidelobe levels confirms the
validity of the optimization model on LFM-Costas.

Table 1. The sidelobe levels of LFM-Costas pulse train (dB).

Average AF AF Sidelobe  Average ACF  ACF Sidelobe

Objects Sidelobe Peak Sidelobe Peak
Initial —48.89 ~183 8729 _36.44
Optimized ~49.02 ~18.99 ~99.37 —4243

4.2. GSFM Pulse Train

In this sub-section, we demonstrate the validity of the optimization model on GSFM. A pulse
train with size of N = 8 is optimized in the simulations. All GSFM sub-pulses are the even symmetric
style. The initial settings shown in Figure 2 are totally the same with those in [9,13,20]. The optimized
AF shape of the GSFM pulse and the corresponding pulse train are shown in Figure 5. Compared with
Figure 2a, the AF sidelobes in Figure 5a are reduced dramatically. The average sidelobe level is reduced
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from -29.73 to -39.68 dB and the peak sidelobe level is reduced from -10.7 to —18.09 dB. Furthermore,
the thumbtack mainlobe tends to be more distinct. In Figure 5b, the width of the mainlobe decreases in
both dimension of time delay and velocity. Sidelobes in Figure 2b have also vanished completely.

10 10

Velocity n(m/s)
Veloeity 7 (m/s)
=}

-10 -10
-0.25 -0.2 -0.15 -0.1 -005 0 005 01 015 02 025 -02 -015 0.1 005 0 005 01 015 0.2

Time-Delay 7 (s) Time-Delay 7 (s)
(a) (b)
Figure 5. AF shapes of (a) GSFM pulse and (b) continuous pulse train (N = 8) after optimization.
The GSFM pulse in Figure 5a has the optimized parameters o = 1966, p = 2.21, and it composes the
GSFM pulse train in Figure 5b.

Figure 6 shows the ACF optimization results. After the optimization, there is an obvious reduction
in the region near the mainlobe, which suggests a higher resolution in range (time delay). A decline of
average sidelobe levels (from -23.7 to —28.7 dB) can also be observed through the difference between
the horizontal dotted blue line and the solid red line. Meanwhile, the peak sidelobe levels are reduced
from -9.36 to —18.72 dB.

ACF optimization for GSFM

Normilized level(dB)
. o \ .
=]

“025 02 015 01 005 0 005 01 015 02 025

Time-Delay 7 (s)
Figure 6. The ACF optimization for GSFM pulse train. The horizontal dotted blue line and solid red
line, respectively, represent the average ACF sidelobe level before and after optimization.

Figure 7 shows the autocorrelation curves of the pulse train before and after optimization. Figure 7a
presents the autocorrelation of initial GSFM pulse, while Figure 7b presents the autocorrelation of the
optimized pulse. The solid red lines represent the average levels of sidelobes, which are reduced from
—24 dB (Figure 7a) to —34 dB (Figure 7b). The peak sidelobe (in the magnifying plots) is lowered from
-11 to over —20 dB.
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Normalized level(dB)
|
Normalized level(dB)

Ik

- -40
-0.25 0.2 <015 01 <005 0 1.05 01 015 0.2 0.25 .25 02 <015 0.1 005 0 005 1.1 015 0.2

A | ”I1

0.25
Time-Delay 7 {s) Time-Delay 7 (s)

(a) (b)

Figure 7. Autocorrelations of (a) the initial GSFM pulse and (b) the optimized GSFM pulse. Their

parameters are same as Figures 2a and 5a, respectively. The solid red lines represent the average
sidelobe levels.

Figure 8 demonstrates the cross-correlation curves of pulse trains before and after optimization.
Figure 8a presents the cross-correlation between two initial sub-pulses. The average sidelobe
level (the solid red line) is —22.38 dB and the peak sidelobe level is -8.36 dB. Figure 8b shows
the cross-correlation between two optimized sub-pulses. The average sidelobe level is —32.89 dB and
the peak sidelobe level is -16.45 dB. Compared with Figure 8a, both the average level and the peak level

in Figure 8b have obvious reductions. The lower cross-correlation level implies the better performance
to mitigate interference from the direct blast.

-10F -10

=20

Normalized level(dB)
Normalized level(dB)

30F

h L ) 40
-0.25 -2 015 <01 -0.05 0 0.05 (8] 015 0.2 .25 -0.25 0.2 <015 <01 -5 0 1.05 11 015 0.2
Time-Delay 7 (s) Time-Delay 7 (s)

{a) (b)

0.25

Figure 8. Cross-correlations of (a) the initial GSFM pulses and (b) the optimized GSFM pulses.
(a) is the cross-correlation between initial pulses with the normal instantaneous-frequency and the

even-symmetric instantaneous-frequency, while (b) is the cross-correlation between pulse 1 and 2 with
a1 =1966,p1 = 2.21 and ap = 1877, pp = 2.18.

4.3. Q-Function Performance

Reverberation has significant influence on the detection performance of active sonar systems,
particularly in shallow water environments. As a result, the detecting performance of transmitted
signals in reverberation must be taken into account. This performance is usually evaluated by
the Q-function, which shows the detection ability of signals on targets with different velocity in a
reverberation environment [6]. In this paper, we also use this method to estimate the reverberation
suppression performance of optimized pulse trains. The Q-function is known to be relative to the
zero-time-delay cut of AF and is always written as:

-+o00
Qlp) = f lx(z, ) [dr 27)
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Figure 9 presents the Q-functions of six continuous pulse trains. The initial and optimized
LFM-Costas and GSFM pulse trains are compared with the most widely used continuous signals,
namely CW and LEM. All six waveforms have the same total duration as T = 30 s. The LEM pulse
train has N = 30 and the same settings as Figure 1a. The initial and optimized LFM-Costas have the
same settings as Figures 1b and 3, respectively. The settings of initial and optimized GSFM sub-pulses
are the same as Figures 2a and 5a, respectively, which means the sub-pulse duration is t, = 0.25 s.
Hence, the sub-pulse number of GSFM is N = T/t, =120. As Figure 9 shows, CW performs poorly in
a reverberation environment for detecting stationary targets. However, the reverberation levels decline
rapidly as the velocities become greater, which shows that CW is appropriate for detecting high-speed
targets in a reverberation environment. The initial GSFM obviously has the highest reverberation
levels in the non-zero-velocity zone. However, the curves in this zone are nearly flat, which shows the
Doppler tolerance of the GSFM. The optimized GSFM provides a better reverberation suppression
performance and maintains the Doppler insensitivity similar with the LEM pulse train. The Q-function
curve of initial LFM-Costas has five periodic peaks in 0 m/s, +3.6 m/s and +7.2 m/s which achieve
identical levels. After the optimization, the LFM-Costas gets a reduction of the reverberation levels
in all the velocities. The peaks exist in 0 m/s, £3.2 m/s, +6 m/s and +8.8 m/s, but these in the
non-zero-velocity zone are no longer as high as the peak in 0 m/s.

'

—

=)
T

I

30 o, o+
=

=40

Normalized level (dB)

LFM-Costas int
_____ LFM-Costas
op!
GSFM,
int

t
=50 1

-10 -8 -6 -4 -2 0 2 4 6 8 10
Velocity 7 (m/s)

Figure 9. Q-functions of several continuous pulse trains.
5. Conclusions

This paper discussed the optimal waveform design for two kinds of frequency-modulated
continuous pulse train. Based on the quantitative AF expression, the detection performance of pulse
trains was analyzed, showing that there is the Doppler ambiguity in the AF of LEM-Costas. Moreover,
the AF sidelobe levels of GSFM pulse train were high. Due to these disadvantages, we constructed
an optimization model composed of three fitness functions about AF and correlation properties.
The characteristic parameters of pulse trains were optimized by means of a GA algorithm. Optimization
results showed that the Doppler ambiguity was reduced drastically in the optimized LFM-Costas.
Moreover, the optimized GSFM not only retained the ideal thumbtack AF mainlobe, but also reduced
AF sidelobe levels. Better correlation properties were also achieved via the optimization model.
In addition, the optimized pulse trains exhibited improved performance on reverberation suppression.

We have identified three potential avenues for future works. The first is to utilize the optimization
approach on other kinds of active sonar waveforms, such as some phase-modulated waveforms
worth being optimized. The second is to expand the analytical method and optimization approach to
wideband transmitted waveforms, which are more suitable for engineering application. The third is to
verify the performance of our optimization model through sea-trial experiments.
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