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Abstract: A critical revision is made on recent applications of voltammetric electronic tongues in
the field of food analysis. Relevant works are discussed dealing with the discrimination of food
samples of different type, origin, age and quality and with the prediction of the concentration of key
substances and significant indexes related to food quality.
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1. Introduction

Electronic noses and electronic tongues are bioinspired devices created during the 1980’s
as a successful encounter of electronics and electrochemistry with chemometrics. As suggested
by their names, they try to mimic the ability of human noses and human tongues to identify
characteristic odors and tastes [1–6]. For this purpose, an array of non-specific sensors is used to
mimic the role of the diverse bio-receptors present in the human nose/tongue and a chemometric
model is used to mimic the processing of the bio-receptor’s signals by the human brain, as Figure 1
shows. Regarding the sensors, they must present different sensitivities (cross response) with respect
to the substances related to the odor/taste, so that these sensors are able to provide complementary,
non-redundant information. As for chemometric models, they can be used to classify the samples
(e.g., according to different protected designations of origin, PDO) or to quantitatively determine
the concentrations of target species (e.g., major components, adulterants, pollutants) or the values of
parameters related to some food properties (e.g., antioxidant capacity, bitterness).

Although electronic noses and tongues are employed in many research fields such as environmental
monitoring [7], pharmacy [8] or biotechnology [9], these devices have been mostly focused on food
analysis [10–13]. This is not strange, since they try to mimic human noses and tongues, which are
frequently busy smelling and tasting food products. As a consequence, a large number of works have
been published in recent years dealing about the application of electronic noses and tongues to food
analysis, as the reviews in [10–13] show.

In this work we will focus on voltammetric electronic tongues, proposed by Winquist et al. in
1997 [14] as an alternative/complement to the existing potentiometric electronic tongues, mostly based
on measurements with ion-selective electrodes and frequently applied in food analysis [12]. Figure 1
shows an example of voltammetric electronic tongue constituted by three screen-printed devices
acting as sensing units. Although every screen-printed unit includes all electrodes needed for
a voltammetric measurement (working, reference and auxiliary), the tongue shown in the picture also
has conventional reference and auxiliary electrodes for a more accurate control of the potential applied.
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Then, a multichannel potentiostat simultaneously registers the current of the three working electrodes
of the screen-printed devices as a function of the potential. The voltammograms measured by all
three sensors (depicted in blue, green and red) are integrated into a data matrix (where the position of
the datasets coming from the different sensors is indicated with the same colors). Then, the matrix is
submitted to a chemometric strategy to get qualitative and/or quantitative information.
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Figure 1. General scheme of voltammetric electronic tongues.

In the first case, a pattern recognition tool like principal component analysis (PCA) can be applied
to detect groups of samples with common properties (clusters). In the PCA scores plot shown in
the figure above, three clusters are visible, which agree very well with the previous information
about the origin of the samples (denoted with purple, yellow and black colors). If the PCA model
can identify the origin of known samples (training set), then it can be used to identify unknown
samples. In the case of quantitative information, a calibration model is built with a method like partial
least squares (PLS) applied to a training set of samples with known values of the properties to be
determined. Then, if the predictions of the calibration model are right (as shown by the predicted
versus measured plot in Figure 1) it can be used to predict the desired properties in unknown samples
from the voltammograms acquired by the tongue.

As compared to potentiometric devices, the advantages of voltammetric electronic tongues
include the higher amount of information achieved (a full voltammogram instead of a single potential
per sensor) and the higher sensitivity (especially when electrochemical preconcentration is possible),
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which allows one to consider not only major components of the sample but also trace substances
that can be very informative about the origin and quality of food products. However, the main
drawbacks of voltammetric devices are the higher complexity of the experimental design and, especially,
of the datasets, which usually require sophisticated chemometric models for the data treatment.
Thus, although it is clear that potentiometric tongues are a simple, compact and user-friendly solution
in many cases, voltammetric tongues can be a more powerful solution for complicated problems.
The real power of the ‘voltammetric way’ is conditioned, on the one hand, by the sensitivity and (cross)
selectivity of the sensors integrating the array and, on the other hand, by the performance of
the chemometric method used for the data treatment.

Concerning the sensors integrating the array, two main trends can be identified. Some research
groups prefer arrays of bare metals such as silver, gold, platinum, or iridium combined with high
and low amplitude pulsed signals at different frequencies [15], whereas other groups select electrode
substrates chemically modified with substances that present certain affinity for the target species
combined with the potential scans typically used in voltammetry (e.g., linear sweep, differential pulse,
square wave). In the last case, modifications can be made on many substrates such as carbon paste [16],
graphite–epoxy composites [17], glassy carbon [18] or screen-printed electrodes [19].

As for the chemometric tools, methods like PCA, linear discriminant analysis (LDA) or partial least
squares discriminant analysis (PLS-DA) are applied for sample discrimination, whereas multivariate
calibration methods like principal component regression (PCR) or PLS are used for determining
concentrations and quality parameters in the case of reasonably linear data [20–24]. When measurements
behave in a strongly non-linear way, more sophisticated methods like artificial neural networks (ANN)
or support vector machine (SVM) are employed [23–26]. Figure 1 summarizes how both sensing and data
treatment strategies applied to voltammetric electronic tongues converge to mimic human tongues.

The main body of this review is divided into two parts, a first one dedicated to the characterization,
classification and authentication of food products and a second part regarding the determination of
chemical species and other quantitative parameters. For more general information about the use of
voltammetric electronic tongues in food analysis we refer to the more extensive review by Wei et al. [27].

2. Characterization, Classification and Authentication of Food Products

As already pointed out, voltammetric electronic tongues can provide valuable qualitative
information about food samples when combined with a chemometric method of pattern recognition.
Table 1 summarizes some relevant applications found in references [14–17] and [28–71] focused on
the characterization, classification and authentication of food products.

In general terms, voltammetric tongues are mostly applied to liquid samples, with especial
predominance of wine, but they can also operate with more consistent food products such as honey,
yogurt, meat or fish. The number of working electrodes ranges from two to eight and includes bare
metals, carbon paste electrodes modified with phthalocyanine and other substances, graphite–epoxy
based electrodes and screen-printed electrodes. As already mentioned, arrays of bare metals usually
are submitted to multi-pulse excitation signals whereas the rest of the sensors mostly work with cyclic
(CV), square wave (SW) or differential pulse voltammetric (DPV) scans. In some cases (especially CV),
the scans generate a large amount of data and some compression is needed to increase the speed of
calculations. The simplest solution is to replace the full voltammogram by a few parameters describing
relevant features. For instance, Bougrini et al. [60] used the difference between the maximum
and minimum values of the current and the maximum slope of the current curve in the anodic
and cathodic scans. In this way, the measurements of a honey sample with an array of seven working
electrodes produces just a set of 21 numbers. The PCA treatment of these roughly compressed data
allowed a quite satisfactory discrimination among 13 types of honey. However, in some cases this
method of compression can lead to the loss of valuable information and it is better to resort to more
sophisticated compression strategies like fast Fourier transform (FFT) or discrete wavelet transform
(DWT) which preserve most of the information of the voltammogram with a significant decrease in
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the amount of data. For instance, Cetó et al. [37] obtained good results with the DWT compression of
CV data from five sensors in the PCA discrimination of different cava wine varieties (results that were
further refined by means of ANN).

In many situations, a relatively simple and unsupervised data treatment by means of PCA is
sufficient to visually discriminate groups of samples in the scores plot. However, more complex
problems require supervised classification methods like LDA or PLS-DA where the classes of the known
samples are included in a model that will be used to assign unknown samples to the predefined classes.
This is the case, for instance, of the work by Blanco et al. [48] that will be further discussed.

As for the discrimination purposes, most studies are focused either on the authentication of
both local origin (typically PDO) and quality of food products or on the detection of adulterations.
Nevertheless, there is an increasing interest on the evolution of products with time (e.g., grape ripening,
spoilage of meat and fish during storage) in order to detect the samples that are not in good conditions
to be consumed. Especially interesting is the work by Haddi et al. [70], which used measurements
by CV in a tongue of seven working electrodes to discriminate the type of meat (beef, goat or sheep)
and the degree of spoilage, measured in terms of number of storage days.

The same data sets used for sample discrimination can be processed by multivariate calibration
methods like PLS to predict certain parameters related to food quality. For this purpose, it is necessary
to measure the target parameter in the known samples and include the resulting values in the calibration
model. Anyway, these quantitative implications of electronic tongues will be discussed in Section 3.

Table 1. Selected works dealing about the characterization, classification and authentication of food
products with voltammetric electronic tongues.

Food Product Working Electrodes Data Analysis Comments Ref.

Orange juice
and milk Pt and Au PCA First voltammetric e-tongue [14]

Milk

Au, Pt, Rh, stainless steel PCA Monitoring of milk in dairy industry [28]

Au, Cu, Au modified with Prussian
blue PCA Recognition of milk adulteration with

hydrogen peroxide [29]

Au, Cu, Pt PCA Recognition of milk adulteration with
urea, formaldehyde and melamine [30]

Au, Pd, Pt MPCA, NPLS-DA Recognition of milk adulteration
with urea [31]

Au, Pt, Ag PCA, PLS-DA Discrimination of various brands of
pure milk [32]

Au, Ag, Pt, Pd PCA, CA Monitoring of quality and storage
time of unsealed pasteurized milk [15]

Yogurt Au, Ag, Pt, Pd SVM
Monitoring the fermentation,
post-ripeness and storage processes of
set yogurts

[33]

Au, Ag, Pt, Pd PCA, CA Evaluation of varieties of set yogurts [34]

Wines and liqueurs

Phthalocyanine-based carbon paste
electrodes and electrodes covered
with conducting polypyrrole doped
with different counter ions

PCA Detection of adulterations in wines [16]

Au, Cu PCA Discrimination of wines and whiskies
of different quality [35]

Au, Ag, Pt, Pd, W, Ti PCA, CA Classification of rice wines of
different ages [36]

Five bulk-modified
graphite-epoxy electrodes PCA, ANN Cava wine authentication [37]

Six bulk-modified
graphite-epoxy electrodes LDA Cava wine authentication [17]

Five different graphite-epoxy
composite electrodes PCA, ANN Discrimination of wines of different

types and PDO [38]
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Table 1. Cont.

Food Product Working Electrodes Data Analysis Comments Ref.

Wines and liqueurs

Sensors based on metallic
and bulk-modified graphite electrodes LDA Classification of wines of

different PDO [39]

Four carbon paste electrodes
chemically modified in different ways PCA

Discrimination between red wines
aged in oak barrels and matured in
steel tanks in contact with oak
wood chips

[40]

Three nanocomposites modified
electrodes prepared with Au and Cu
nanoparticles in the presence of
conducting polymers
and carbon nanotubes.

PCA, LDA Classification of rice wines of different
geographical origins [41]

Six modified
epoxy-composite electrodes LDA

Classification of brandies according to
their taste category
and ageing method

[42]

Four carbon paste electrodes: one
unmodified and the others chemically
modified with Co, Fe
and Zn phthalocyanines

PCA Discrimination of apple liqueurs [43]

Grapes
Eight metallic electrodes housed
inside a stainless steel cylinder PCA Study of grape ripening [44]

Poly-ethylendioxythiophene modified
Pt electrode and sonogel
carbon electrode

PCA Study of grape ripening [45]

Beer

Three enzymatic biosensors based on
tyrosinase and phthalocyanines
as mediators

PCA, LDA Monitoring of the aging of beers [46]

Six bulk-modified graphite-epoxy
electrodes

PCA, LDA,
PLS-DA

Classification of three types of beer:
Lager, Stout and IPA [47]

Four commercial screen-printed
electrodes made of carbon, Au,
carbon/Co-Phtahlocyanine and Pt

PCA, LDA Classification of different types of beer [48]

Coffee
Six graphite-epoxy electrodes
modified in different ways LDA, SVM Geographical classification of

Mexican coffees [49]

Au wire and graphite rod PCA Discrimination of civet coffee [50]

Tea

Ir, Pt, Rh PCA Discrimination of nine different teas [51]

Au, Ir, Pd, Pt, Rh PCA, LDA Tea quality assessment [52,53]

Pt and glassy C PCA, LDA Classification of black tea liquor [54]

Metallic oxide-modified nickel foam
electrodes (SnO2, ZnO, TiO2, Bi2O3) PCA, SVM Classification of green and black teas [55]

Au, Ir, Pd, Pt, Rh PCA Monitoring the fermentation process
of black tea [56,57]

Honey

Au, Ag, Pt, Pd, W, Ti PCA, CA, DFA Classification of mono-floral honeys [58]

Au, Ag, Pt, Pd, W, Ti PCA, DFA Tracing floral and geographical
origins of honey [59]

Pt, Au, glassy C, Ag, Pd, Ni, Cu PCA, SVM, HCA

Classification of Moroccan and French
honeys according to geographical
and botanical origins and detection
of adulteration

[60,61]

Au, Ag, Pt PCA, LDA Authentication of mono-floral
and honeydew Romanian honeys [62]

Ir, Rh, Pt, Au PCA Monitoring honey adulteration with
sugar syrups [63]

Au, Ag, Pt, glass electrode PLS-DA Monitoring honey adulteration [64]

Oil

Six electrodes based on polypyrrole PCA, PLS-DA
Discrimination of extra virgin olive
oils according to their degree
of bitterness

[65]

Pt, Au, glassy C, Ag, Ni, Pd, Cu PCA, DFA, SVM Detection of adulteration in argan oil [66]

Modified carbon paste electrodes PLS-DA Detection of virgin olive
oil adulteration [67]

Cu, glassy C, Au, Ni, Pd, Pt, Ag PCA, SVM, HCA Identification of Portuguese olive oils [68]
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Table 1. Cont.

Food Product Working Electrodes Data Analysis Comments Ref.

Meat and fish

Screen-printed electrodes modified
with bisphthalocyanine
and polypyrrole

PCA, PLS-DA Beef freshness monitoring by
detection of ammonia and putrescine [69]

Pt, Au, Ag, glassy C, Pd, Cu, Ni PCA Assessment the origins of red meats
and their storage time [70]

Ir, Rh, Pt, Au, Ag, Co, Cu, Ni PCA Shelf-life assessment of fresh cod in
cold storage [71]

As a first example of sample discrimination with voltammetric electronic tongues, we will briefly
discuss the work by M. Sliwinska et al., published in [43] and focused on apple liqueurs (Nalewka).
In this study, an array of four working electrodes was used, including an unmodified carbon paste
electrode (C-CPE) and three electrodes chemically modified with cobalt, iron and zinc phthalocyanines
(denoted as CoPc–CPE, FePc–CPE and ZnPc–CPE, respectively). Figure 2 compares the cyclic
voltammograms registered for liqueurs prepared with five different apple varieties (Ligol, Kosztela,
Grey Reinette, Rubin and Cox Orange). Notorious differences can be observed between the responses
obtained with different electrodes and in different types of liqueur.Sensors 2019, 19, 4261 8 of 19 
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Figure 2. Cyclic voltammograms registered using four different carbon paste electrodes (CPEs)
immersed in liqueur samples made from different varieties of apples. (a) Unmodified CPE; (b) ZnPc–CPE;
(c) FePc–CPE; (d) CoPc–CPE. Apple varieties: Ligol (black), Kosztela (red), Grey Reinette (blue), Rubin
(green), Cox Orange (purple). Reproduced from [43].

The application of PCA to this kind of data allowed the authors to clearly discriminate among
liqueurs made from different varieties of apple, as shown by Figure 3. This is a 3D plot of the scores
achieved by the three samples of every apple variety for the three first principal components of
the model (PC1, PC2 and PC3). As it can be seen, the three replicates of each variety are very close with
each other in the graph and quite far from the groups of replicates of the other varieties, which makes
it possible to identify unknown samples from the position of their scores in the diagram.
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acquired with four working electrodes in three replicates of five types of apple liqueur (from Ligol,
Kosztela, Grey Reinette, Rubin and Cox Orange apples). Reproduced from [43].

As pointed out before, supervised classification methods like LDA and PLS-DA can improve
the performance of PCA in more intricate situations, as it happens in our second example.
Blanco et al. [48] applied LDA to CV data from four commercial screen-printed electrodes (Figure 4)
to classify beer samples in four categories: free alcohol, Pilsener, doppelbock and European strong
lager. In LDA, new optimized variables (discrimination functions, DFs) are obtained from the original
variables but, unlike the principal components (PCs) used in PCA, such variables do not try to
explain most of the data variance. They are constructed to get the maximum discrimination between
the predefined classes. Then, a plot of the scores of the discriminant functions (Figure 5) allows
a satisfactory classification of the beers which was not possible with PCA (data not shown).
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3. Determination of Chemical Species and Other Quantitative Parameters Related to Food
Analysis

Unlike human tongues, voltammetric electronic tongues can be used for quantitative purposes if
their signals are submitted to a multivariate calibration method such as PLS or ANN. For instance,
they can be applied to determine pollutants like nitrophenols [72], heavy metal ions [73] or
glyphosate [74] in different samples. In the case of food analysis, predictions can be made not
only of the concentrations of relevant species, but also of a large deal of parameters informing about
the quality of food products. Table 2 summarizes some representative contributions in this field,
corresponding to references [75–90]. It can be seen that the working electrodes used are essentially
the same employed for sample discrimination (Table 1). Among the substances determined we can
mention theaflavine and thearubigin in tea, several sugars in fruits and sugar cane bagasse, bisulfite
and ethylphenol metabolites in wine, some anions in meat and antibiotic residues in milk. As for
the quality parameters, the determination of bitterness, polyphenol indexes and antioxidant capacity
in wines, beers and olive oils deserves special attention. Concerning chemometric tools, PLS (and,
eventually, PCR) is the main choice, but non-linearity problems quite often demand more sophisticated
methods like ANN or SVM.

As an example of these studies, we will summarize the work by Apetrei, who in [65] not
only classified different extra virgin olive oils according to their degree of bitterness, but also
applied a multivariate calibration model to predict the corresponding bitterness indexes. For this
purpose, six polypyrrole-based screen-printed electrodes were used to measure quite different
cyclic voltammograms as these shown in Figure 6. Then, a PLS model was constructed with
the voltammograms of calibration samples whose bitterness indexes had been previously determined
by means of a chemical method. PLS is amongst the most popular multivariate calibration methods
and is present in commercial software. It is based on a calibration between the experimental data
matrix and that containing the parameters to be predicted, where both matrices have been ‘compressed’
in terms of a set of optimized variables called latent variables (LVs). The main difference of LVs
with the PCs of PCA is that they are optimized to maximize the covariance between both matrices
involved in the calibration. Although PLS processing provides many useful graphs, most authors just
provide the errors of the calibration (RMSEC) and the validation (RMSEV) in a table. Fortunately,
a few authors like Apetrei also provide the plot of the predicted values as a function of the real ones
(Figure 7). In a good PLS model the points of this graph should be placed in a straight line, not very far
from the theoretical line of slope 1 and intercept 0. As Figure 7 shows, the PLS model in [65] is quite
successful in predicting bitterness indexes.
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Table 2. Selected works dealing with the determination of chemical species and other quantitative
parameters in food analysis by using voltammetric electronic tongues.

Application Working Electrodes Data Analysis Ref.

Prediction of bitterness and alcoholic strength
in beers

Polypyrrole polymerized onto Pt disks
and doped with different modifiers PLS [75]

Determination of total polyphenol index in wines Five graphite-epoxy electrodes modified in
different ways PLS, ANN [76]

Determination of theaflavin and thearubigin in
black tea Au, Ir, Pd, Pt, Rh PLS, SVM, ANN [77,78]

Evaluation of sugar content and firmness of
non-climacteric pears Au, Ag, Pt, Pd, W, Ti PLS, PCR, SVM [79]

Evaluation of the antioxidant capacity of red wines Graphite-epoxy composite electrodes
and modified carbon paste electrodes PLS, ANN [80]

Evaluation of oxygen exposure levels
and polyphenolic content of red wines

Modified carbon paste electrodes based on
bisphthalocyanines and perylenes PLS [81]

Quantification in rosé cava wines of different indexes
related to total phenolic content and other specific
phenolic features

Four graphite–epoxy voltammetric
(bio)sensors with different modifiers such
as tyrosinase, laccase
and copper nanoparticles

ANN [82]

Determination of galactose, glucose, xylose
and mannose in sugar cane bagasse

Glassy carbon electrodes modified with
multi-walled carbon nanotubes containing
metal (Pd, Au, Cu, Ni, Co)

ANN [18]

Determination of spring water quality parameters Ir, Rh, Pt, Au PLS [83]

Determination of bisulphites in wines Au, Rh, Pt, stainless steel PLS [84]

Determination of ethylphenol metabolites in wines Six graphite–epoxy modified
composite electrodes ANN [85]

Determination of nitrate, nitrite and chloride in
minced meat Au, Pt, Rh, Ir, Ag, Ni, Co, Cu PLS [86]

Determination of Tl(I) and In(III) in tonic water by
using a multivariate standard addition method

A screen-printed carbon nanofibers
electrode modified with selenocystine
and a screen-printed carbon electrode
modified with a Bi film

PLS [19]

Determination of the polyphenolic content of extra
virgin olive oils

Twelve sensors: five of them based on
lanthanide bisphthalocyanines, six based
on polypyrrole and one unmodified carbon
paste electrode.

PLS [87]

Determination of bitterness index in olive oils Six polypyrrole-based
screen-printed electrodes PLS [65]

Quantification of total polyphenol content in
olive oils

Polypyrrole modified
screen-printed electrodes PLS [88]

Detection of antibiotic residues in bovine milk Au, Ag, Pt, Pd, Ti PCR, PLS, SVM [89]

Determination of the antioxidant activity of camu
camu and tumbo juices Au, Pt, Ir, Rh, Ag, Cu, Ni, Co PLS [90]

In general terms, PLS method works well for reasonably linear data. However, for strongly
non-linear data PLS fails and more sophisticated data treatments are required, like ANN or SVM.
In our last example, taken from ref. [85], González-Calabuig and del Valle used ANN to predict
the content in wine samples of the metabolites related to the Brett defect: 4-ethylphenol (4-EP),
4-ethylguaiacol (4-EG) and 4-ethylcatechol (4-EC). For this purpose, they registered CV scans in wine
samples spiked with different concentrations of metabolites by using a voltammetric electronic tongue
integrated by six bulk-modified graphite–epoxy composites and obtained signals like those shown in
Figure 8. The original data (2490 inputs per sample) were compressed by means of DWT with a 93.5%
compression ratio (132 numbers per sample) to keep the maximum information with the minimum data
size. Then, an ANN model was built with 27 standards containing different proportions of the three
analytes (according to a 33 factorial design). The model is composed by neurons, i.e., calculation
units organized in layers (usually three) which use transfer functions that operate the numbers in
the preceding layer to generate the numbers in the next layer. A critical point in ANN strategy is to
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design the architecture of the network (e.g., the neurons per layer or the type of transfer functions).
In this case, a network was built with 132 neurons in the input layer, 3 neurons in the hidden layer and 3
neurons in the output layer. The training of the ANN consists on the optimization of the coefficients
of the transfer functions to get results in the output layer (the concentrations of the three analytes)
as close as possible to the real ones when the compressed measurement of the 27 standards are fed to
the input layer. As Figure 9 shows, the trained ANN produced good predictions for all three analytes
not only in the standard solutions (denoted with black circles), but also in 10 additional solutions used
for external validation (empty circles).Sensors 2019, 19, 4261 12 of 19 
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4. Conclusions

In the field of food control, voltammetric electronic tongues are a promising complement for
the more widely used potentiometric electronic tongues and electronic noses, especially in these really
complex situations demanding a higher amount of information. For data sets not too far from linearity,
conventional chemometric methods such as PCA, LDA, PLS or PLS-DA can be applied to build
models that are able to discriminate between samples of different origin and freshness or to determine
the concentration of key substances and relevant indexes related to food quality. In the presence
of strongly non-linear data, more sophisticated chemometric methods such as ANN or SVM can be
applied instead. The problem of these methods, however, is that their use is not obvious. For instance,
ANNs require a careful design of their architecture, which usually is made by means of the trial
and error strategy. As a consequence, models are built for particular situations and datasets, and are
rarely accessible as supplementary materials of the papers or in the webs of research groups. Then, hey



Sensors 2019, 19, 4261 12 of 16

promote a sensation of ‘black box’ that, unlike PCA or PLS, prevents their dissemination as a common
practice in the treatment of voltammetric tongue data.

Nowadays there is a great diversity of designs and applications of voltammetric electronic tongues,
recently enhanced by the popularization of screen-printed electrodes. In our view, the initial strategy
of pulse activation signals and metallic electrodes has been progressively replaced by conventional
voltammetric scans (mainly CV) and chemically modified electrodes which enhance the (cross)
selectivity of the sensors constituting the tongue. We believe that this is a positive trend, since chemical
interactions of significant components of the sample with the modified electrodes are more likely to
produce sample discrimination than just the different electrochemical behavior of electrodes made of
different metals. Nevertheless, in our opinion, an effort is required to achieve the maximum simplicity
and economy in both the electrode selection and the strategy for data treatment. This means that
statistic tools should be applied to confirm that all the sensors used are really necessary (eight sensors
for a tongue predicting a single parameter sounds a bit excessive). Additionally, powerful compression
methods like DWT or FFT should be extensively applied to the data sets to reduce the computing time
(in their competition with chromatographic methods, voltammetric tongues should not spend in
calculations the time saved for the absence of separation). Finally, an effort should be made to adapt
calibration models to matrix effects and signal drifts in order to improve their reliability in real operating
conditions. For this purpose, multivariate adaptations of the univariate methodologies of standard
addition and inner standard would be highly welcome.

Just to conclude, only with robust and reproducible electrode arrays susceptible to cost-effective
mass production and with programs for data treatment implemented in commercial software
voltammetric electronic tongues will be able to cross the frontier between the proof of concept
and the market for an effective assessment of food provenance and quality.
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