ﬂ SCNSors m\py

Article
A Deep-Learning-Driven Light-Weight Phishing
Detection Sensor

Bo Wei '*, Rebeen Ali Hamad 1, Longzhi Yang 1 Xuan He 23, Hao Wang 4 Bin Gao ° and
Wai Lok Woo !

1 Department of Computer and Information Sciences, Northumbria University,

Newcastle upon Tyne NE1 85T, UK; rebeen.hamad@northumbria.ac.uk (R.A.H.);
longzhi.yang@northumbria.ac.uk (L.Y.); wai.l. woo@northumbria.ac.uk (W.L.W.)

School of Sino-Dutch Biomedical & Information Engineering, Northeastern University, Shenyang 110169,
China; hexuan@bmie.neu.edu.cn

3 Neusoft Research of Intelligent Healthcare Technology, Co. Ltd., Shenyang 110169, China

Automation College, Chongging University of Posts and Telecommunications, Chongqing 400065, China,
wanghao@cqupt.edu.cn

School of Automation Engineering, University of Electronic Science and Technology of China,

Chengdu 610054, China; bin_gao@uestc.edu.cn

Correspondence: bo.wei@northumbria.ac.uk

Received: 10 September 2019; Accepted: 28 September 2019; Published: 30 September 2019 e or
Abstract: This paper designs an accurate and low-cost phishing detection sensor by exploring
deep learning techniques. Phishing is a very common social engineering technique. The attackers
try to deceive online users by mimicking a uniform resource locator (URL) and a webpage.
Traditionally, phishing detection is largely based on manual reports from users. Machine learning
techniques have recently been introduced for phishing detection. With the recent rapid development
of deep learning techniques, many deep-learning-based recognition methods have also been explored
to improve classification performance. This paper proposes a light-weight deep learning algorithm
to detect the malicious URLs and enable a real-time and energy-saving phishing detection sensor.
Experimental tests and comparisons have been conducted to verify the efficacy of the proposed
method. According to the experiments, the true detection rate has been improved. This paper has
also verified that the proposed method can run in an energy-saving embedded single board computer
in real-time.

Keywords: phishing detection; cyber security; deep learning

1. Introduction

A phishing website is a common social engineering method that mimics trustful uniform resource
locators (URLs) and webpages to gather users’ sensitive and confidential information, such as user
names, passwords, credit card information, etc. Figure 1 shows one example of a phishing website
imitating the popular website facebook.com. It replaces “00” with the unnoticeable “00”. The webpage
looks exactly the same as the official Facebook, but the phishing one will keep the username and
passwords of victims and forward them to attackers. The phishing website issue is becoming
increasingly severe. According to the latest phishing activity trends report from the Anti-Phishing
Working Group (APWG) [1], 138,328 phishing websites were reported in the fourth quarter of 2018.
The report also indicates the increasing trend of detection difficulty because attackers are trying to use
multiple redirection techniques in order to make the malicious URLs obscure. There was a $48-million
financial loss due to phishing in the US in 2018, only based on the cases reported to the Federal Bureau
of Investigation (FBI) [2].

Sensors 2019, 19, 4258; d0i:10.3390/s19194258 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/19/4258?type=check_update&version=1
http://dx.doi.org/10.3390/s19194258
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 4258 20f13

“00” is replaced
f Log in to Facebook | Facebook X by “00”

-
cC 0 @ https:(;‘www.face‘)OOl{.com

acebook Create New Account

Log in to Facebook

Email address or phone number

Password

Forgotten account?

or

Create New Account

Figure 1. One example of a phishing website imitating the popular website facebook.com.

As shown in Figure 2, malicious URL recognition is relatively easy for cyber security experts since
they have sufficient experience in the relevant areas. However, it is extremely difficult for normal users
who usually do not pay much attention when accessing one URL. Therefore, the research community
takes advantage of the expert knowledge of cyber security and designs machine-based automatic
phishing URL detection. The most popular method to detect a phishing website is the use of a phishing
URL tank. The URLs in that tank will be recognised as phishing URLs. Phishing URL tanks are
maintained by antiphishing organisations to provide live antiphishing databases. There are several
famous antiphishing organisations, such as phishtank [3], Joewein [4], hphosts [5], Malware Domains
List [6], etc. Due to the rapidly increasing number of phishing websites, antiphishing organisations
require comprehensive contributions from the whole community. To maintain up-to-date phishing URL
tanks, they need users, including individuals and organisations, to report phishing websites manually.
The URLSs are fairly accurate because of this manual involvement, but there are still drawbacks in that
the human effort introduces delay and extra maintenance labour costs. These handcraft list-based
phishing website detection could effectively prevent further harm, but this may fail to promote
warnings before its URL is reported by one user and placed in the phishing tank.

Conventional machine learning techniques have been introduced to the phishing website detection
domain [7,8]. As shown in Figure 3, with the help of experts in cyber security, URLs and websites are
first analysed to conduct feature selection from the malicious websites. Next, machine learning experts
use the features, along with their labels, to construct a training set and take advantage of classical
supervised machine learning algorithms to develop a phishing detection model. Many conventional
methods, e.g., support vector machine (SVM), k-nearest neighbours algorithm (kNN), etc., have been
explored to fully utilise these features. Deep learning is also incorporated in the phishing detection
domain, motivated by its recent rapid development and many successful applications [9,10].
Different from classical machine learning methods involving an explicit handcrafted feature selection
process, the machine learning experts can use the data directly without the knowledge from the cyber
security experts (shown in Figure 3).

Sensors 2019, 19, 4258 30f13

“00” is replaced
by HOO!’
-

+

benign ’ http://www.faced'oo K.com ‘

malicious ’http://www.faced'OOK.com‘

b =

A]

Expert: Normal Users: Machine:
easy to recognise difficult to recognise, need to be trained
need to be careful

Figure 2. Difficulties to recognise malicious URLs for experts, normal users, and machines.

1 1
1 1
N ® |
1
{2 am - :
© .)
| = Cyber Security Machine Learning Experts 1
[Experts |
i3 ® .
1 L 1
1 = 1
! § Feature —)
= election]
i 8 (N) |
1 O '
1 1
Labelled Dataset i |
hitp://www.facebook.com |Benign : | —)
http/wwwfaceb00kcom |Phishing | g T T T T T T T T T TS mS oSS oo moomoo—oo—oo——oo-oo----- — [—]
: ' o . Loce |
1
i |
1 1
1 1
[|
[} |
1 £ 1
: o |
i = :
o 1
£ |
[} c I
| T |
@ |
1 — 1l
- i
1
H?
o]
1 1
1 1
1

Figure 3. The phishing detection methods using classical machine learning methods and deep
learning techniques.

This paper designs and implements a light-weight phishing detection sensor. The paper proposes
an innovative deep learning model to enable accurate and efficient phishing detection using URLs of
websites. Different from previous research works, this research also investigates the feasibility of our
proposed deep learning model in resource-constrained computing devices. Furthermore, this research
work implements a prototype of a deep-learning-driven light-weight phishing detection sensor in one
embedded single board computer, which shows the feasibility of the integration of our method into
one wireless router. This work also uses a large volume of benign and malicious URLs to construct the
training set and evaluate the efficacy of the proposed model.

Sensors 2019, 19, 4258 40f 13

In summary, the main contributions of this paper are:

e This research paper proposes a novel character-level multi-spatial deep learning model to detect
malicious URLs. The popular convolutional neural networks (CNN) have been explored to
improve detection performance.

o This research paper also integrates the proposed model in one single board computer to enable an
energy-saving and efficient phishing website sensor. As far as is known, this paper is the first to
discuss the feasibility of the usage of resource-constrained computing devices to enable a phishing
website detection sensor.

e This paper has conducted extensive evaluations to show the performance of the proposed method
and the efficiency of our prototype.

This paper first introduces related work in Section 2. Section 3 shows the background and
motivations of the proposed method. The proposed method is introduced in Section 4, and this paper
evaluates the performance of the proposed model in Section 5. Section 6 shows the details of the
implementation. Finally, Section 7 concludes our work.

2. Related Works

The common method to detect phishing websites is the use of blacklists to include all the
reported URLs of phishing websites. This method requires largely manual efforts from the whole
community. As introduced in Section 1, the blacklists are mainly maintained by antiphishing
organisations. Some popular antiphishing organisations are phishtank [3], Joewein [4], hphosts [5],
Malware Domains List [6], etc. Whitelists can also be created to exclude the websites that users trust.
Some methods are also proposed, aiming to facilitate the labelling process for list-based phishing
website detection. Cao et al. proposed a method to automatically update the whitelist from the users’
familiar websites [11]. Jain et al. designed a hyperlink-based phishing detection mechanism to update
the whitelist [12]. Sharifi et al. took advantage of search engines to evaluate the legitimacy of websites
and create an up-to-date blacklist accordingly [13].

Machine learning has been extensively used in the phishing detection domain. Phishing detection
can be classified as a supervised machine learning problem. A large number of phishing websites
on blacklists can be analysed and researched by the cyber security and machine learning community.
Features from two main components of a website are commonly used for phishing detection.
At first, the attackers usually imitate legitimate URLs to lure users into entering phishing websites,
so researchers have focused on the analysis of URL for phishing detection. Additional to URLs,
the documents implemented to display one website, such as HTML, CSS, and Javascript documents,
are also explored for phishing detection. Amrutkar et al. use multiple features from HTML,
CSS, and javascript documents from websites to detect the phishing contents [7]. That work also
investigates the website features from smart phones and aims to realise real-time malicious website
detection on mobile devices. Rule-based features from URLs were explored to detect phishing internet
banking webpages [14]. Natural language processing techniques are also explored in [15] to determine
a malicious URL, and the authors use seven traditional classifiers along with selected features from
URLs to enable an antiphishing system. Zhang et al. [16] and Xiang et al. [8] proposed Cantita and its
augmented version Cantita+, which also extracted features from the contents of websites and used
multiple machine learning algorithms.

Recently, deep-learning-based methods have been introduced in the phishing website detection
domain. Jiang et al. used convolutional neural network (CNN) techniques, a popular model in deep
learning, to detect malicious URLs [17]. One deep learning model using word embedding and CNN
has also been proposed to detect malicious URLs, file paths, and registry keys [9]. Le et al. proposed
URLNet to use CNN for analysing both word-level features and character-level features for malicious
URL detection [10]. Yang et al. applied multiple features for detecting phishing URLs [18]. The deep
learning technique has also been introduced into phishing email detection [19].

Sensors 2019, 19, 4258 50f13

Different from the previous works, this paper proposes a new deep learning model and further
investigates the feasibility of enabling an energy-saving phishing website sensor with the integration
of the deep learning model in a resource-constrained computing device.

3. Background and Motivations

List-based phishing website detection is the most common method currently. The lists created
by this method can offer labelled training sets, which is an essential prerequisite for the future use
of machine-learning-based detection methods. Two URL lists are normally produced by list-based
phishing website detection methods, i.e., a blacklist and a whitelist. Figure 4 shows the general
mechanism of list-based phishing URL detection methods. The antiphishing companies use the reports
from the community to create one blacklist and one whitelist. The computing devices use these two
lists to detect malicious websites. The whitelist contains the user-trusted URLs. In contrast, when one
URL is on the blacklist, it is recognised as a malicious URL. However, with the list-based method
there remains an ongoing challenge of the detection of unknown URLs. It is difficult to classify an
unknown URL that is not on any list. The common policy is to recognise that as a benign URL. If a new
malicious website uses this unknown URL, the false negative could potentially harm users. Attackers
take advantage of this loophole and keep changing URLSs for their phishing websites to ensure the new
URLs are not on the blacklist.

URLSs to be detected

http://www.facebook.com

http://www.faceb00k.com
Black List White List
Not on Any List
Phishing URL Hard to Know Benign URL

Figure 4. The mechanism of list-based phishing URL detection methods.

Phishing website detection is modelled as a supervised machine learning problem. Components
from websites, such as URL, HTML, etc., are used as the training data for building a model to conduct
malicious website detection. Classifiers play a vital role in supervised machine learning methods.
There are several classical and popular supervised machine learning algorithms, such as kNN, SVM, etc.
that have already been used for malicious website detection applications. Figure 5 shows the general
process of a classical supervised learning-based malicious website detection method. The feature

Sensors 2019, 19, 4258 60f 13

selection process is an initial and essential step for these classical classifiers. Informative features can
help improve the detection performance, but excellent feature selection needs the expert knowledge
from a cyber security perspective. Furthermore, it is always difficult to decide the best features for a
particular application. Feature selection may cause a drastic loss of valuable information.

Labelled Dataset

http://www.facebook.com |Benign

http://www.faceb00k.com | Phishing

> Feature Selection = Classical Classifiers > Outputs

Figure 5. The general process of a classical supervised learning-based malicious website detection
method.

Recently, the use of deep learning has improved the performance of many applications in image
processing [20], computer vision [21], acoustic classification [22], natural language processing [23],
etc. Many research works also utilise deep learning techniques in malicious website detection.
Additional to the significant performance improvement, deep learning has the advantage of being
featureless. As shown in Figure 6, the deep-learning-based methods do not require feature selection.
The unprocessed data could be used to train a model without any extra effort, and deep learning
algorithms will help select the best patterns for the final decision. Motivated by these facts, this paper
also designs a deep learning model and uses unprocessed URLs to derive a deep-learning-based
light-weight phishing detection sensor for inference.

DNN model

URLs to be detected http://www.faceb00k.com Phishing URL

http://www.facebook.com

http://www.faceb00k.com

http://www.facebook.com Benign URL

Figure 6. Deep-learning-based malicious website detection.

To enable the light-weight phishing detection sensor, another question this paper would
like to address in this paper is “Can the proposed deep learning model be integrated into a
resource-constrained computing device?” The paper aims to design a phishing detection sensor
to achieve accurate and efficient phishing detection. By applying the designed system, it is not
necessary to install antiphishing software on every single computing device and Internet of Things
(IoT) device. Only the designed sensor is required for one household or office between the devices
and the router. The proposed model can also be implemented into the router directly due to its
computational efficiency. To summarise, this paper implements a phishing detection prototype sensor
with the integration of the proposed deep learning methods.

This section will give the details of the proposed deep-learning-based phishing URL detection
method. Figure 7 shows an overview of the proposed method.

Sensors 2019, 19, 4258 7 of 13

e N

DNN model

URLs

S
e 0%
9‘« XYy

N
¥

%
/o

+CD

tokenisation

® Training

detected

) Inference

|

Figure 7. System structure.

4. Method

The first step of the proposed method is data sanitisation. In this step, the common URL
prefixes, such as http://, https:// and www, are deleted to prevent the impact of URL presentations
of the different datasets on phishing URL recognition performance. Without pruning prefixes,
the inconsistency of URL formats can easily affect the quality of the model. For example, all the
URLs in some phishing URL datasets contain the http prefix, which means that the trained model will
falsely classify all of the URLs with the http prefix as phishing. The shorter representation will also
accelerate the inference, which is also a main considerable factor for resource-constrained devices.

The tokeniser is used to vectorise each character in URLs. Character-level tokenisation
is used instead of word-level analysis because URLs usually use words without any meaning.
More information is contained at the character level. The attackers also mimic the URLs of authentic
websites by changing several characters that are not noticeable. For example, they may change
facebook.com to facebOOk.com, replacing “00” with ”00”. The character-level tokenisation helps find
this mimic information, improving the performance of malicious URL detection.

This paper proposes an innovative deep neural network for malicious URL detection. As shown
in Figure 8, the proposed Deep Neural Network (DNN) model has the following layers: (1) embedding
layers; (2) convolutional layers; (3) concatenation layer (4) dropout layers; (5) dense layers; (6) sigmoid
layers. Table 1 shows the configuration of the layers of the proposed deep-layered model. The output
dimension of the word embedding layer, the number of filters, and the kernel size of the convolutional
layers, the rate of the dropout layer and the number of units of the dense layers are shown. Here are
the details for each type of layer in the configuration.

Sensors 2019, 19, 4258 8of 13

Convolutional

Layers
= S p—
D mmp | (Flatten Dense Layers
2 @ﬂ Flatten c |
i°] el = — S\ o §
) 3] o) S o o [
3 .@‘Flatten»»»»»‘
= 0 3 a a o a
o @‘ Flatten 5
§ (@)
D‘ Flatten
) (Fottcn | W
N

Figure 8. Structure of the proposed DNN model.

Table 1. Architecture configuration of the proposed DNN model.

Output Dimension

Word Embedding 32
Number of Filters Kernel Size
ConvlD_1 256 2
ConvlD_2 256 3
ConvlD_3 256 4
ConvlD_4 256 5
ConvlD_5 256 10
Dropout Rate
Dropout 0.5
Number of Units
Dense_1 128
Dense_2 128
Dense_3 128

Embedding layer: The embedding layer is usually used in the first layer of the DNN structure for
a Natural Language Processing(NLP) problem. Additional to the tokenisation, the embedding layer
will return a vector. Figures 9 and 10 show examples of the simple one hot encoding and the used word
embedding. Different from one hot word using binary representations for each word, the coefficients
in the vector returned from the embedding layer are able to indicate the relations among characters,
which can help improve the performance of NLP-related research questions. The proposed network
uses embedding word configuration.

Convolutional layers: Following the embedding layer, five convolutional layers are used.
For each convolutional layer, the kernel, a.k.a. a convolutional filter, is applied to extract the most useful
features and remove unnecessary information. The element-wise multiplication and the summary
operations occur between the filter and the relevant part of data, and the filter slides through the data
to generate the features. Instead of a common sequential structure of convolutional neural networks,
parallel convolutional layers are used. Each layer considers one window size of consecutive characters
and extracts features from them. The rectified linear unit (ReLU) activation function is also used
following each convolutional layer. The output from each convolutional layer is then flattened and
subsequently concatenated.

Concatenation layer: This layer is used to concatenate the features from previous layers for
further processing. Different from simply concatenating the outputs from convolutional layers,
the output from the embedding layers are also combined. In addition, the output from the embedding

Sensors 2019, 19, 4258 90f 13

layer (without the convolutional filtering) preserves the original information of content that can be
used to detect malicious URLs as well.

Dropout layer: Dropout layer is a regularisation technique that is used to prevent overfitting
during the training phase [24]. Neurons are randomly selected and ignored by the dropout layer
during the training phase. Those ignored neurons are temporally removed on the forward pass,
and their weights are not updated on the backward pass.

Dense layers: A dense layer is a fully connected feedback layer that equips the proposed model
with the more capabilities for extracting the informative features. Following the dropout layer,
three dense layers are used to analyse the patterns from the concatenation layer. One ReLU activation
function also follows each dense layer.

Sigmoid layer: The sigmoid function is used in this layer to determine the malicious URLs.
The range of the output from a sigmoid function is between 0 and 1, which is used in the final layer of
the proposed model to show the prediction probability.

One hot encoding

r— " —"—"—"""=""="="="="="==-- 1
£ 1] 1] of of of o of of ol
a Il of 1| o of o o o ol
| .
c : of o 1l of o o of o One hot encoding
ol o 0 of 1 © S > does not consider
e Il o o o o o T o | the relations
o Il ol ol ol o o ol 1 | among words
m | o] o o o o 0 Ly
- _ _ _ _ _ _ __________ |
Figure 9. Example of one hot encoding.
Word Embedding
- - - - - - -------"-"-- [N
f 4] 0.13[0.85]0.77 0.51] 0.59 0.78 0.35] 0.24] |
a 4]0.28] 0.74| 0.45] 0.55] 0.76 0.08] 0.24| 0.94] |
¢ 4] 0.71] 0.28] 0.84] 0.08| 0.45 0.42] 0.23] 0.31] |
e 4]0.96|0.28| 0.66| 0.81| 0.53 0.18| 0.9/ 0.82]] > Word embedding
] | considers the relation
¢ 4| o8| 0.1]0.12]{0.93]0.93 0.15] 0.49] 0.04] |
o]o0.14[082] 05[035]/0.13 0.14] 0.49 0.17] |
m 4] 0.42] 0.69] 0.96| 0.2| 0.57 0.87/0.34{ 0.65| | _J
e o o - - - - o - - - — - - — — — d

Figure 10. Example of word embedding.
5. Evaluation

This section discusses the performance of the proposed model. As discussed, the configuration
of the proposed model is shown in Table 1. A PC with a Graphics Processing Unit (GPU) is used to
train and evaluate the model. The computer used has an Intel Core i7 8 core CPU 3.60 GHz processor,
16 GB memory, and Nvidia GeForce GTX 1060 6 GB GPU. A total of 1,523,966 URLs were used, where
999,996 were legitimate URLs and 523,970 were phishing URLs. The legitimate URLs are from the
list of Alexa top 1 million sites [25], hphosts [5], Joewein [4], malwaredomains [26], and phishtank [3].
Before using them, repeated URLs were removed to construct a dataset. The dataset was randomly
split into a training set and a test set. The percentage of testing instances was 10%. The true detection

Sensors 2019, 19, 4258 10 of 13

rate was used as the accuracy metric, i.e., the ratio between the number of correct detected instances
and the total number of instances.

Using the proposed model can achieve an 86.630% true detection rate. Many similar
deep-learning-based URL detection models use similar structures but configurations with different
numbers of dense layers and convolutional layers. Therefore, in the following, the effect of the
dense layers, convolutional layers, and concatenation of the output from the embedding layer will
be discussed.

First, the effect of the dense layers is shown in Table 2. It is expected that increasing the number of
dense layers can improve performance, so we first investigate the effect of the number of dense layers.
The proposed model has 4 dense layers (3 dense layers plus the sigmoid layer). Table 2 shows that
the true detection rate gradually increases with the increasing number of dense layers. The proposed
method can achieve an 86.630% true detection rate. With 1, 2, and 3 dense layers, the true detection
rates are 86.537%, 86.538%, and 86.542%, respectively.

Table 2. The effect of the dense layers.

Accuracy

Proposed 86.630%
1 Dense Layer 86.537%
2 Dense Layers 86.538%
3 Dense Layers 86.542%

Table 3 shows the effect of convolutional layers. A similar observation was also found here.
Th increasing number of convolutional layers can help improve the performance the URL-based
phishing detection. When using 1, 2, 3, and 4 convolutional layers, the deep learning model can achieve
true detection rates of 85.401%, 85.832%, 86.169%, and 86.439%, respectively. The true detection rate of
the proposed method is highest at 86.630%.

Table 3. The effect of the convolutional layers.

Accuracy

Proposed 86.630%
1 Convolutional Layer ~ 85.401%
2 Convolutional Layers 85.832%
3 Convolutional Layers 86.169%
4 Convolutional Layers 86.439%

In this paper, we also propose to concatenate the output from the word embedding layer to enable
the dense layers to have the unprocessed information as well. Performance improvement can also
be found using this strategy, as shown in Table 4. Without the concatenation of the output from the
embedding layer, the true detection rate drops from 86.630% to 83.472%.

Table 4. The effect of the concatenation of the output from the embedding layer.

Accuracy

Proposed 86.630%
No Concatenation 83.472%

6. Prototype Implementation

The proposed method is implemented by integrating the proposed deep-learning-based method
into resource-constrained devices. In this work, Raspberry Pi 3 B+ was chosen to implement our
prototype. Raspberry Pi 3 B+ has a Quad core 1.4 GHz 64 bit CPU with 1 GB RAM. It is powered by

Sensors 2019, 19, 4258 11 of 13

5V power input or battery and has various Input/Output (I0) ports, such as 4 USB 2.0 ports, 40-pin
general-purpose input/output (GPIO) header, and Camera Serial Interface (CSI) port. Raspberry Pi 3
B+ also supports the common network ports, such as 2.4 GHz and 5 GHz IEEE 802.11 wireless cards
and the Ethernet. The abundance of network cards makes Raspberry Pi 3 B+ a good candidate for
simulating a router.

Figure 11 shows the implementation process for the whole system. We first use the labelled URLs
to train the DNN model by using powerful computing devices, such as GPU servers, rack servers,
or cloud servers. The trained DNN model is then transferred to the intelligent WiFi router that acts as
the phishing malicious URL sensor. When the intelligent WiFi router receives URL requests, it conducts
phishing detection by using the integrated DNN model before requiring a domain name system (DNS)
server. When the URL is recognised as malicious, the smart WiFi router will raise an alarm to the user
and block the user’s access to that URL.

Labelled Dataset
http://www.facebook.com |Benign

http://www.faceb00Ok.com | Phishing
Server {\

-

DNN model

URLs to be suffered

|
|
|
|
|
|
|
|
http://www.facebook.com :
http://www.faceb00k.com O |
|
|
|
|
|
|
|

|

Smart Wireless Router :
with integrated DNN |
|

|

Computing Devices

Figure 11. The implementation process.

To evaluate the efficiency of the proposed model, we measure the computational time of each
step of the proposed method using Raspberry Pi. Table 5 demonstrates the execution time of data
sanitisation, tokenisation, and inference using DNN. A total of 10 trials were executed, and we
calculated the mean execution time for each step. The inference costs 105 ms for each URL request,
which occupies most of the running time. In the meantime, the data sanitation and tokenisation take
no more than 1 ms. Totally, the proposed phishing detection method uses approximately 110 ms to
evaluate each URL request, which can enable real-time malicious detection.

Table 5. Execution time in the prototype.

Execution Time (ms)

Data Sanitisation 0.0106
Tokenisation 0.1997
DNN Inference 105

The word-level word embedding method along with character-level word embedding is used
in [10]. To compare that work and show the efficiency of the proposed model, a deep learning model

Sensors 2019, 19, 4258 12 of 13

is implemented using both word-level and character-level word embedding methods. The same
convolutional layers (as shown in Figure 8) are applied on the outputs of those two word embedding
layers. Two outputs from convolutional layers are concatenated for further processing by dropout,
dense, and sigmoid layers to make a decision. This deep learning model was evaluated in Raspberry
Pi, but an out-of-memory (OOM) error occurred when running it. In other words, there was not
sufficient memory in the resource-constrained Raspberry Pi to execute the implemented deep learning
model with both word-level and character-level word embedding methods. This further confirms the
efficiency of the proposed light-weight model. To compare the performances, the proposed model
and the model with both word-level and character-level word embedding methods are executed in
the PC. The execution time of DNN inference with the proposed model is 67 ms, while the model
with both word-level and character-level word embedding methods needs 96 ms. The execution time
significantly reduces by 30% using the proposed model.

7. Conclusions

This paper proposed a multispatial convolutional neural network to enable an accurate and
efficient phishing detection sensor. Extensive evaluations were conducted to show the performance
of the proposed method. The true detection rate of the proposed method can achieve 86.63%.
A prototype by using Raspberry Pi was also implemented to enable real-time phishing URL detection.
With the proposed method, the execution time reduces by 30%, and real-time detection is realised in a
resource-constrained device.

In the future, a webpage-content-based phishing detection model using deep learning can be
proposed and implemented in a resource-constrained sensor as well.

Author Contributions: Conceptualization, B.W. and W.L.W.; methodology, B.W., HW., and R.A.H.; validation,
B.W.,, X.H. and B.G.; writing-original draft preparation, B.W. and R.A.H.; writing-review, X.H., L.Y. and WL.W,;
editing, W.L.W,, B.G., L.Y. and H.W,; visualisation, B.W., X.H., L.Y. and H.W.

Funding: This research was funded by the National Natural Science Foundation of China (NSFC) (Grant No.
61971093 and No. 61771121), the Open Program of Neusoft Research of Intelligent Healthcare Technology, Co. Ltd.
(Grant No. NRIHTOP1802), the Research and Application for Key Technologies of IoT Oriented to Smart Cities
(cstc2018jszx-cyztzx0081), and the Innovation and Application for Smart Test of Supply and Demand Integration
(cstc2018jszx-cyzd0404).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

URL Uniform resource locator
APWG Anti-phishing working group
FBI Federal Bureau of Investigation

SVM Support vector machine
kNN k-nearest neighbours algorithm

CNN Convolutional neural network
ReLU Rectified linear unit

DNS Domain name system
References

1. Anti-Phishing Working Group (APWG). Available online: https://docs.apwg.org/ /reports/apwg_trends_
report_q4_2018.pdf (accessed on 15 July 2019).

IC3 Annual Report 2018. Available online: https://pdf.ic3.gov/2018_IC3Report.pdf (accessed on 15 July 2019).
Phishtank. Available online: https://www.phishtank.com/ (accessed on 15 July 2019).

Joewein. Available online: https://joewein.net/ (accessed on 15 July 2019).

ISLEE IR N

Hphosts. Available online: https://www.hosts-file.net/ (accessed on 15 July 2019).

https://docs.apwg.org//reports/apwg_trends_report_q4_2018.pdf
https://docs.apwg.org//reports/apwg_trends_report_q4_2018.pdf
https://pdf.ic3.gov/2018_IC3Report.pdf
https://www.phishtank.com/
https://joewein.net/
https://www.hosts-file.net/

Sensors 2019, 19, 4258 13 of 13

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

Malware Domains List. Available online: http://mirrorl.malwaredomains.com (accessed on 15 July 2019).
Amrutkar, C.; Kim, Y.S.; Traynor, P. Detecting mobile malicious webpages in real time. IEEE Trans. Mob.
Comput. 2016, 16, 2184-2197.

Xiang, G.; Hong, J.; Rose, C.P,; Cranor, L. Cantina+: A feature-rich machine learning framework for detecting
phishing web sites. ACM Trans. Inf. Syst. Secur. (TISSEC) 2011, 14, 21.

Saxe, J.; Berlin, K. eXpose: A character-level convolutional neural network with embeddings for detecting
malicious URLs, file paths and registry keys. arXiv 2017, arXiv:1702.08568.

Le, H.; Pham, Q.; Sahoo, D.; Hoi, S.C. URLNet: Learning a URL representation with deep learning for
malicious URL detection. arXiv 2018, arXiv:1802.03162.

Cao, Y.,; Han, W;; Le, Y. Anti-phishing based on automated individual white-list. In Proceedings of the 4th
ACM Workshop on Digital Identity Management, Alexandria, VA, USA, 31 October 2008; pp. 51-60.

Jain, A.K.; Gupta, B.B. A novel approach to protect against phishing attacks at client side using auto-updated
white-list. EURASIP J. Inf. Secur. 2016, 2016, 9.

Sharifi, M.; Siadati, S.H. A phishing sites blacklist generator. In Proceedings of the 2008 IEEE/ACS
International Conference on Computer Systems and Applications, Doha, Qatar, 31 March—4 April 2008;
pp. 840-843.

Moghimi, M.; Varjani, A.Y. New rule-based phishing detection method. Expert Syst. Appl. 2016, 53, 231-242.
Sahingoz, O.K.; Buber, E.; Demir, O.; Diri, B. Machine learning based phishing detection from URLs.
Expert Syst. Appl. 2019, 117, 345-357.

Zhang, Y.; Hong, J.I.; Cranor, L.E. Cantina: A content-based approach to detecting phishing web sites.
In Proceedings of the 16th International Conference on World Wide Web, Banff, AB, Canada, 8-12 May 2007;
pp. 639-648.

Jiang, J.; Chen, J.; Choo, K.K.R; Liu, C.; Liu, K,; Yu, M.; Wang, Y. A deep learning based online malicious
URL and DNS detection scheme. In International Conference on Security and Privacy in Communication Systems;
Springer: Berlin, Germany, 2017; pp. 438—448.

Yang, P.; Zhao, G.; Zeng, P. Phishing Website Detection Based on Multidimensional Features Driven by Deep
Learning. IEEE Access 2019, 7, 15196-15209.

Fang, Y.; Zhang, C.; Huang, C.; Liu, L.; Yang, Y. Phishing Email Detection Using Improved RCNN Model
With Multilevel Vectors and Attention Mechanism. IEEE Access 2019, 7, 56329-56340.

Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. Decaf: A deep convolutional
activation feature for generic visual recognition. In Proceedings of the International Conference on Machine
Learning, Beijing, China, June 21- 26 2014; pp. 647-655.

Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 27-30 June 2016; pp. 2818-2826.

Hinton, G.; Deng, L.; Yu, D.; Dahl, G.; Mohamed, A.R; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.;
Kingsbury, B. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process. Mag.
2012, 29; pp. 82-97.

Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th International Conference on Machine Learning, Helsinki,
Finland, 5-9 July 2008; pp. 160-167.

Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929-1958.

Alexa Top sites. Available online: https://www.alexa.com/topsites (accessed on 15 February 2019).
Malwaredomains. Available online: https:/ /www.malwaredomains.com/ (accessed on 15 February 2019).

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://mirror1.malwaredomains.com
https://www.alexa.com/topsites
https://www.malwaredomains.com/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Background and Motivations
	Method
	Evaluation
	Prototype Implementation
	Conclusions
	References

