
sensors

Article

An Aggregate Signature Scheme Based on a Trapdoor
Hash Function for the Internet of Things

Hong Shu 1,2,3 , Fulong Chen 1,2,* , Dong Xie 1,2, Liping Sun 1,2, Ping Qi 3 and
Yongqing Huang 3,4

1 School of Computer and Information, Anhui Normal University, Wuhu 241002, China;
shuhongtl@126.com (H.S.); xiedong@ahnu.edu.cn (D.X.); slp620@163.com (L.S.)

2 Anhui Provincial Key Lab of Network and Information Security, Wuhu 241002, China
3 School of Mathematics and Computer, Tongling University, Tongling 244061, China;

qiping929@gmail.com (P.Q.); hyq@tlu.edu.cn (Y.H.)
4 Institute of Information Technology & Engineering Management, Tongling University,

Tongling 244061, China
* Correspondence: long005@mail.ahnu.edu.cn; Tel.: +86-553-591-0371

Received: 5 August 2019; Accepted: 27 September 2019; Published: 29 September 2019
����������
�������

Abstract: With the rapid development of the Internet of Things (IoT), it becomes challenging to
ensure its security. Identity authentication and integrity verification can be achieved by secure
hash functions and digital signature algorithms for IoT applications. In order to solve the issues of
bandwidth limitation and computational efficiency of secure communication in IoT applications,
an aggregate signature scheme based on multi- trapdoor hash function is proposed in this paper.
Firstly, to prevent key exposition, based on the elliptic curve discrete logarithm problem (ECDLP),
we constructed a double trapdoor hash function (DTH) and proved its reliability. Secondly, the
multi-trapdoor hash function (MTH) based on DTH is presented. Finally, an MTH-based aggregate
signature scheme (MTH-AS) with constant signature length is proposed. Based on the assumption of
ECDLP, the proposed scheme is proven unforgeable against adaptive chosen message attacks with
the Forking Lemma. Different from the most signature schemes with bilinear mapping, the proposed
scheme has higher computational efficiency and shorter aggregate signature length. Moreover, it is
independent of the number of signers. Security analysis and performance evaluation has revealed
that the proposed scheme is an ideal solution for secure IoT applications with limited computing
power, storage capacity, or limited bandwidth, such as wireless sensor networks, vehicular ad hoc
networks, or healthcare sensor networks.

Keywords: Internet of Things (IoT); aggregate signature; trapdoor hash function; elliptic curve
discrete logarithm; random oracle model

1. Introduction

With the development of wireless communication technology, sensor network, microchip
technology, and pervasive computing, the Internet of Things (IoT) has been applied in more and
more areas, including smart home, smart health, wearable equipment, vehicular ad-hoc network,
environmental monitoring, and smart grids, etc. [1]. The IoT collects various information from the
physical world through radio frequency identification (RFID) devices, infrared sensors, GPS, sensors,
etc. It enables people-to-people, people-to-thing, thing-to-thing connection, and communication,
which in turn realizes intelligent perception, recognition, decision-making, and control on the physical
world [2]. For example, wearable systems can effectively provide patients with seamless monitoring,
remote surgery, telemedicine, timely assistance, and turn hospital-centered medical services into

Sensors 2019, 19, 4239; doi:10.3390/s19194239 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-4626-6176
https://orcid.org/0000-0003-0557-5084
http://dx.doi.org/10.3390/s19194239
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/19/4239?type=check_update&version=2

Sensors 2019, 19, 4239 2 of 21

patient-centered care [3]. However, while the Internet of Things provides people with more and
more convenient services, its security issues are becoming increasingly prominent. Data security and
privacy preservation are major challenges in the applications of the IoT. Integrity, non-repudiation and
authenticity have become the key security requirements for the Internet of Things [4].

In IoT applications, identity authentication, encryption, and integrity verification can be achieved
by secure hash functions and digital signature algorithms which can ensure data privacy and rooting
security [2]. Many scholars have been working on this issue [4–6]. Yeh et al. [5] proposed a certificateless
signature scheme based on elliptic curve cryptography (ECC). Since ECC is more efficient than bilinear
mapping in terms of computational efficiency [7], the scheme provides a safe and efficient interaction
for IoT-based smart objects. When tackling the computational efficiency problem, Kumar et al. [6] did
not select bilinear pairing operations either. Instead, they proposed a lightweight digital signature
scheme based on quadratic residual theory and proved the security of the scheme under the standard
model. The solution, based on the intrusion detection system (IDS), authenticates the crowdsensing
data acquired from IoT environment. Meanwhile, to meet security requirements of data integrity and
authenticity in IoT environment, Yang et al. [4] proposed a certificateless signature scheme. Based on the
collision resistant hash function and computational Diffie-Hellman (CDH) assumption, Yang’s scheme
was proved to be highly unforgeable under adaptive chosen message attacks in the standard model.

Computing power, battery capacity, and storage resources are the important factors that limit IoT
capabilities [2]. In IoT, such as SIoT [8–10] and WIoT [3], hundreds and thousands smart objects are
connected. A large number of applications are many-to-one. That is, multiple data senders and one
data receiver. Figure 1 shows the many-to-one IoT scenario. In the scenario, smart objects generate
or collect information from the physical world and pass data from one node to the other. Finally,
the receiver aggregates IoT data and sends it to data center. In the case of smart health, a patient
can generate multiple medical records. Some medical records, blood pressure, blood sugar, heart
rate, etc., are generated from wearable devices. Other medical records such as medical orders and
prescriptions, are from medical personnel. Considering the integrity and authenticity of medical data,
each individual medical record should be signed by the corresponding responsible entity. Consequently
the digital signatures on different medical data will map to one patient (many-to-one). Aggregate
signature can compress the digital signatures of different messages into one short digital signature, thus
saving storage space and improving computational efficiency. It is very suitable for IoT applications
such as vehicular ad-hoc network, smart grid and wireless sensor network with limited bandwidth
and computational resources. This nature of aggregate signatures has attracted interests of more
and more scholars [11–13]. Pankaj Kumar et al. [11] proposed a certificateless aggregate signature
scheme for medical wireless sensor networks. This scheme features certificateless cryptosystem and
aggregate signature, and preserves privacy, non-repudiation and integrity of medical wireless sensor
networks. In regard to vehicle-to-infrastructure (V2I) communication in vehicular ad hoc networks,
Horng et al. [12] proposed a certificateless aggregate signature. It implements conditional privacy
preservation through pseudo identity. Another aggregate signature scheme was proposed by Shen
et al. [13] for wireless sensor networks based on identity-based cryptography. That solution has been
proved resistant to coalition attacks, capable to reduce energy consumption and ensure security for
data acquisition, processing and transmission in wireless sensor networks.

The motivation of our study is to find a solution to identity authentication and integrity verification
in many-to-one IoT scenarios where device resources are limited, such as smart health, vehicular
ad hoc networks and smart grid et al. In these applications, traditional encryption, authentication
and cryptographic algorithms can severely reduce the efficiency of small embedded devices and
increase their power consumption. However, secure hash function and lightweight aggregate signature
algorithm can effectively solve the problem of battery capacity, computing power and storage capacity
limitation while fulfilling security requirements. Therefore, we propose an aggregate signature scheme
based on multi-trapdoor hash function in this paper.

Sensors 2019, 19, 4239 3 of 21
Sensors 2019, 19, x FOR PEER REVIEW 3 of 21

Data aggregator

IoT device

… …

Data Center

Figure 1. Many-to-one IoT.

The contributions of this paper are as follows:
 Based on ECDLP, we constructed a double trapdoor hash function and a multi-trapdoor hash

function respectively. Batch trapdoor collision computation of multi-trapdoor hash function can
improve the efficiency of aggregate signature.

 An aggregate signature scheme based on MTH is proposed. With Forking Lemma, the proposed
scheme is proven to be secure against the existing unforgeability on adaptively chosen message
attacks.

 Compared with other bilinear pairings-based schemes, our ECC-based scheme is more efficient
in terms of computational overhead. On the other hand, our MTH-AS scheme has the advantage
in storage capacity because the length of the proposed aggregate signature is a constant.

 Due to the above performance, our MTH-AS scheme is suitable for secure IoT applications with
limited computing power, storage capacity, and bandwidth.

The rest of this paper is organized as follows. Section 2 discusses the relevant works. The

necessary preliminaries and system model are given in Section 3. Section 4 presents the ECDLP-based
double trapdoor hash scheme DTH. Section 5 describes the ECDLP-based multi-trapdoor hash
function MTH. Thereafter, we demonstrate the MTH- based aggregate signature scheme for IoTs and
carry out performance comparison in Section 6. Finally, the conclusion is offered in Section 7.

2. Related Work

Hash functions are one-way and collision resistant. Being a special type of hash function,
trapdoor hash function [14] is related to the concept of trapdoor commitment [15]. The trapdoor hash
function uses some special information (the trapdoor information) to produce a fixed hash value.
People who know the trapdoor information open the trapdoor commitment in different ways, thus
opening different collisions [15]. That means, the owner of the trapdoor can calculate the trapdoor
collision.

Krawczyk et al. [14] first proposed the trapdoor hash function in order to construct chameleon
signatures. Thereof, many digital signature schemes were developed based on chameleon signatures.
One of the most representative schemes was a solution proposed by Shamir et al. [16] for
online/offline signatures. The scheme could resist the adaptive chosen message attacks. However, it
encountered key exposure problems of the chameleon hash. That is because collision calculation
would lead to exposure of trapdoor information. Focusing on solving this problem, Chen et al. [17]
and Atteniese et al. [18] proposed trapdoor hash schemes without key exposure. In 2008, Chen et al.
[19] introduced a special double trapdoor hash scheme. This scheme features two trapdoors, long-
term trapdoor and temporary trapdoor. It guarantees the safety of long-term trapdoor at the cost of
temporary trapdoor leakage.

Figure 1. Many-to-one IoT.

The contributions of this paper are as follows:

• Based on ECDLP, we constructed a double trapdoor hash function and a multi-trapdoor hash
function respectively. Batch trapdoor collision computation of multi-trapdoor hash function can
improve the efficiency of aggregate signature.

• An aggregate signature scheme based on MTH is proposed. With Forking Lemma, the
proposed scheme is proven to be secure against the existing unforgeability on adaptively chosen
message attacks.

• Compared with other bilinear pairings-based schemes, our ECC-based scheme is more efficient in
terms of computational overhead. On the other hand, our MTH-AS scheme has the advantage in
storage capacity because the length of the proposed aggregate signature is a constant.

• Due to the above performance, our MTH-AS scheme is suitable for secure IoT applications with
limited computing power, storage capacity, and bandwidth.

The rest of this paper is organized as follows. Section 2 discusses the relevant works. The necessary
preliminaries and system model are given in Section 3. Section 4 presents the ECDLP-based double
trapdoor hash scheme DTH. Section 5 describes the ECDLP-based multi-trapdoor hash function
MTH. Thereafter, we demonstrate the MTH- based aggregate signature scheme for IoTs and carry out
performance comparison in Section 6. Finally, the conclusion is offered in Section 7.

2. Related Work

Hash functions are one-way and collision resistant. Being a special type of hash function, trapdoor
hash function [14] is related to the concept of trapdoor commitment [15]. The trapdoor hash function
uses some special information (the trapdoor information) to produce a fixed hash value. People
who know the trapdoor information open the trapdoor commitment in different ways, thus opening
different collisions [15]. That means, the owner of the trapdoor can calculate the trapdoor collision.

Krawczyk et al. [14] first proposed the trapdoor hash function in order to construct chameleon
signatures. Thereof, many digital signature schemes were developed based on chameleon signatures.
One of the most representative schemes was a solution proposed by Shamir et al. [16] for online/offline
signatures. The scheme could resist the adaptive chosen message attacks. However, it encountered key
exposure problems of the chameleon hash. That is because collision calculation would lead to exposure
of trapdoor information. Focusing on solving this problem, Chen et al. [17] and Atteniese et al. [18]
proposed trapdoor hash schemes without key exposure. In 2008, Chen et al. [19] introduced a special
double trapdoor hash scheme. This scheme features two trapdoors, long-term trapdoor and temporary
trapdoor. It guarantees the safety of long-term trapdoor at the cost of temporary trapdoor leakage.

Sensors 2019, 19, 4239 4 of 21

Chandrasekhar and Singhal et al. [20–23] carried out in-depth study on trapdoor hash function.
Based on discrete logarithm, Chandrasekhar et al. [20] proposed a multi-trapdoor hash function without
key exposure. This scheme had multiple trapdoors corresponding to different entities. It was suitable
for constructing multi-party digital signatures. Chandrasekhar et al. [22] put forward the concept of
aggregate signcryption. They proposed a new efficient scheme of aggregate signcryption which could
generate the aggregate signcryption text of constant order. The new scheme combined multi-trapdoor
hash function with decomposable multiplicative homomorphism ElGamal encryption while providing
confidentiality, integrity and identity authentication for many-to-one communication scenarios.

The conception of aggregate signature was first proposed by Boneh et al. [24] in 2003, which has
played a significant role in promoting digital signature cryptography technology. Based on trapdoor
permutations, sequential aggregate signature was proposed by Lysyanskaya et al. [25] in 2004. In this
scheme, before adding his own signature, every signer has to verify all the previously aggregated
signatures. It is, however, not suitable for the situation where the signers operate independently of each
other. Accordingly, Brogle et al. [26] improved it with the idea of "lazy verification". Their scheme does
not require the signer to know the public key of other signers, but the length of the signature grows
linearly when the number of signers increases. In order to reduce the interaction between signers, a
synchronous aggregation signature scheme with a synchronous clock was proposed by Ahn et al. [27].
The scheme allows a signer to sign at most once in each period of time, and only the signatures in the
same period can be aggregate. However, the computation cost is relatively high.

The identity-based aggregation signature scheme proposed by Gentry et al. [28] does not require
to store the public key of each signer. The purpose is to minimize the total amount of information for
verification. However, it requires an additional trusted third party (e.g., key generation center).

Certificateless aggregation signature has the characteristics of keyless escrow in certificateless
cryptosystem and relatively low computation and communication overhead in aggregation signatures.
That’s why some relevant scholars have made in-depth research on it [29,30]. In 2007, Gong et al. [29]
firstly proposed two certificateless identity-based aggregation signature schemes. But there were
shortcomings in respect of signature length and verification efficiency. Zhang et al. [30] introduced a
certain improvement in computation efficiency. In Zhang’s scheme, the verification process, not reliant
on the number of aggregate signatures, requires a small set of a constant number of pairing computations.
However, the generation of aggregate signatures requires assistance of a synchronous clock.

With the Forking Lemma [31], the scheme proposed by Chen et al. [32] was proven strong
security based on the hardness of computational Diffie-Hellman problem (CDHP). It makes use of
the bilinear pair and state information. However, the length of signature grew with the number of
signers. The scheme proposed by Li et al. [33] drew on the state information of Chen et al. [32]. It was
existentially unforgeable against adaptively chosen message attacks without the Forking Lemma.
The scheme provides fixed-length aggregate signatures. Zhou et al. [34] and Cheng et al. [35] effectively
compensated for the shortcomings of the above two schemes [32,33] by using elliptic curve discrete
logarithm problem (ECLDP). Zhou et al. [34] proposed two certificateless aggregate signatures CLAS-1
and CLAS-2, which were proven unforgeable by the discrete logarithm problem (DLP). Compared
with CLAS-1, information sharing was used in CLAS-2 to aggregate partial signatures in advance.
CLAS-2 provides shorter constant-level signature lengths than CLAS-1. Cui et al. [36] applied the
certificateless aggregation signature scheme to vehicle ad hoc network, and used pseudo-identity to
provide privacy preservation for vehicle information. The scheme has high computation efficiency.
However, the length of signature is related to the number of signers.

Among the above-mentioned schemes, the aggregate signature lengths of the schemes [26,32,35,36],
CAS-1 [29], and CLAS-II [34] increase linearly with the number of signers and they are only suitable
for low bandwidth network environments. Meanwhile, the schemes [24,29,32] based on bilinear pairs
having no advantage in the computational performance because the time overhead of bilinear pair
operations is relatively high [7]. The comparisons of relevant aggregate signatures are shown in Table 1.

Sensors 2019, 19, 4239 5 of 21

Table 1. The comparison of relevant aggregate signatures.

Scheme Bilinear Pair Constant Signature Length Hardness Problem

Boneh [24] Yes No Co-CDH
Gong-1 [29] Yes Yes CDHP
Gong-2 [29] Yes No CDHP
Chen [32] Yes Yes CDHP

Zhou-I [34] No Yes DLP
Zhou-II [34] No No DLP
Cheng [35] Yes Yes CDHP

Cui [36] No Yes ECDLP,CDHP
Our proposed scheme No Yes ECDLP

3. Preliminaries

3.1. Symbolic Representation

The symbols used in the proposed scheme are shown in Table 2.

Table 2. Symbol description.

Symbol Interpretation

|x| Length of binary string x
t ∈R V t is uniformly distributed in V
{ xi }

n
m

{
xm, xm+1, . . . , xn

}
{
x→ x

}n
m\T

{
xm, . . . , xi−1, xi, xi+1, . . . , xn

}
, where ∀i ∈ T, T ⊂ {m, n}, xi = xi, other values of xi remain

unchanged. For example,
{
xi → xi

}n
m\

{
p, q

}
represents{

xm, . . . , xp−1, xp, xp+1, . . . , xq−1, xq, xq+1, . . . , xn
}
.

3.2. Double Trapdoor Hash Function

Different from other hash functions, trapdoor hash function is a probability function with the
hash key and the trapdoor key < HK, TK >. The collision resistance of the trapdoor hash functions
depends on the user’s knowledge state [16]. When both TK and HK are known, it is easy to calculate the
trapdoor collision. That is to say, when only HK is known, it is difficult to find two different messages
M and M′ in the message space, and two different auxiliary parameters R and R′, which satisfy
THHK(M, R)= THHK (M′, R′). However, when both TK and HK are known, it is easy to calculate R′

based on M, M′ and R such that THHK(M, R)= THHK (M′, R′).
In trapdoor hash function, the calculation of the collision causes the trapdoor key to leak, which is

called key exposure. In chameleon signature, the exposure of the trapdoor key affects its transitivity.
In online/offline signature scheme, key exposure will result in anyone being able to forge the signature.
A hash function without key exposure usually has two trapdoors, i.e., a long-term trapdoor and a
temporary trapdoor. Collision calculations only expose the temporary trapdoor, thus preventing the
long-term trapdoor key from leaking.

Different from the traditional trapdoor hash function family [16], the trapdoor hash function [20]
proposed in this paper is a variant of the double trapdoor hash function family [21], using the temporary
key pair < HK′, TK′ > to generate trapdoor collisions.

Definition 1. Trapdoor hash function consists of four probability polynomial time (PPT) algorithms < ParGen,
KeyGen, HashGen, TrapColGen >.

• ParGen: Inputs security parameter k, outputs system parameters Params;
• KeyGen: Inputs Params, outputs < HK, TK >;
• HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash value

THHK(M, R);

Sensors 2019, 19, 4239 6 of 21

• TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M′(,M), and outputs new auxiliary
parameter R′ and the temporary hash key HK′ such that:

THHK(M, R)= THHK′ (M′, R′);

When HK ,HK′, < HK′, TK′ > and < HK, TK > are called temporary hash/trapdoor key pair and long-term
hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.
(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK′ which satisfies:

THHK(M, R)= THHK′ (M′, R′), M′ ,M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M′ ,M, output
HK′ and R′ such that:

THHK(M, R)= THHK′ (M′, R′).

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK′, and (M, R), (M′, R′),
M′ ,M, there is no PPT algorithm to output long-term trapdoor key TK with non-negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2. (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve over the finite
field Fl. And P is a q-order generator of E(Fl), when Q ∈ E(F l) and Q = kP, find the integer k (0 ≤ k ≤ q−1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

successfully
solves ECDLP is defined as:

AdvECDLP
A (ϕ) = Pr[A(q, P, Q)= k|0 < k ≤ q− 1, Q = kP]

It is determined by the random selection of k ∈R Z∗q and

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS=< Setup, KeyGen, Sign, Verify, Aggregate,
Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard system
parameter establishment, key generation, signature, verification of the short signature process, called
the standard signature of aggregate signature.

• Setup: Inputs security parameter k, outputs system parameter Params.
• KeyGen: For a particular IDi ∈ U (U is a user set), inputs system parameter Params, then outputs

the private and public key < y, Y >.
• Sign: For a message Mi to be signed, inputs private key yi, outputs individual signature σi.
• Verify: Inputs public key Yi, message Mi, and individual short signature σi, if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.
• Aggregate: Inputs {ID i }

n
1 ∈ U, their signature messages {M i}

n
1 and individual signatures {σ i }

n
1 ,

outputs aggregate signature σ.
• Aggregate Verify: Inputs public keys {Y i}

n
1 , messages {M i}

n
1 , and aggregate signature σ, if the

aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

3.5. Security Model

Assuming k is a security parameter, GMTH_AS
A (1k) is a game between challenger

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

and adversary

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

. The attack model is shown below:

Sensors 2019, 19, 4239 7 of 21

• Setup Inputs the security parameter k,

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

runs the Setup algorithm and returns the system parameter
to

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

.
• Query

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

adaptively performs the following oracle query.

– Hash queries:

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

makes hash oracle queries to all hash functions in the proposed scheme,
and challenger

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

returns the corresponding value.
– Trapdoor hash queries:

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

inputs < m, r > for trapdoor hash query and the oracle outputs
THY (m, r).

– Key queries:

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

inputs the message mi of user i to make key query, and the oracle returns
the trapdoor key y of user i to the adversary

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

.
– Signature queries:

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

inputs the original message/random value pair < mi , ri >, new
message m′i and hash key TKi, the oracle outputs the signature.

• Forge

Finally,

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

outputs σ∗= (K ∗, C∗) as a forged aggregate signature based on new message set
{
m′i
∗
}n

1
.

• The adversary

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

wins the game if σ∗ is a valid signature and

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

does not make a key query on at
least one user among n users.

3.6. System Model

In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are
limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is
also vital to protect data from modification and repudiation. Due to its natural compression properties,
aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As shown in
Figure 2, the system model of the aggregated signature in the IoT environment proposed in this paper
consists of five components: the key generation center (KGC), IoT devices, data aggregator, verifier
and data center.
• KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme. The
KGC generates system parameters and sends them to all the entities, such as IoT devices, aggregator,
verifier and data center. The private keys ski are computed by the KGC for each IoT device. Then these
private keys are sent to each entity through a secure channel.
• IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data
from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,
with the system parameter and the private key, each IoT device makes individual signature on the
original data they collect. Then the IoT devices send message mi, individual signature σi and public
key pki to the data aggregator.
• Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures
it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them
into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.
• Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can
verify the correctness of all individual signatures by one operation. If the aggregation signature is
verified correctly, all the messages and the aggregate signature are sent to the data center.
• Data Center

The data center has powerful storage space and computing power, which can store and share the
validated aggregate signatures and original messages safely.

Sensors 2019, 19, 4239 8 of 21

Sensors 2019, 19, x FOR PEER REVIEW 8 of 21

……

KGC

Data
aggregator

Data Center

σi =Verify(mi , pki)
(m1,…, mn, pk1,…, pkn,σ)

Verifier

σ=Aggregate Verify()
?

IoT Devices

?

(m2, pk2,σ2)(m1, pk1,σ1) (mn, pkn,σn)

sk2sk1 sk3 skn

(m3, pk3,σ3)

Figure 2. System model.

4. Scheme of Double Trapdoor Hash Function

4.1. Double Trapdoor Hash Scheme Based on ECDLP

In this section, a scheme of double trapdoor hash function based on ECDLP is presented, which
is consisted of the tuple: DTH = < DParGen, DKeyGen, DHashGen, DTrapColGen >.
 DParGen: Select l and a big prime p, where l = pm. Let E(Fl) be an elliptic curve over finite field

Fl and G a cyclic subgroup of E(Fl). Let P be a generator of G with prime order q and H : {0, 1}* →
Zq

* , f : G × Zq
* × G → Zq

* , F : G → Zq
* cryptographic hash functions. The system parameters are

params = < G , P, q , H, F, f >.
 DKeyGen: Select randomly y ∈ Zq

* and compute Y = yP. The trapdoor key is y and the hash
key is Y.

 DHashGen: Select randomly t ∈ Zq
* , compute A = tP and r = F(A). The trapdoor hash value is

h = H(m)P + rY .
 DTrapColGen: Select randomly t' ∈ Zq

* , compute:

A' = tʹ P and r' = F(A').

The temporary trapdoor key is yʹ = rʹ-1 (H(m) - H(mʹ) + ry) mod q and the temporary hash key
is Y' = y' P.
Compute:

k = tʹ- y * f (h ,r' , Y') mod q.

which then outputs < k , rʹ, Yʹ >.
< k , rʹ> is the signature on THHK(m, r)=THHKʹ (mʹ, rʹ) verifiable under Y [20]. The verification
equation expands: kP + f (h, rʹ, Yʹ) Y = (tʹ- y * f (h, rʹ, Yʹ)) P + f (h, rʹ, Yʹ) * yP

Figure 2. System model.

4. Scheme of Double Trapdoor Hash Function

4.1. Double Trapdoor Hash Scheme Based on ECDLP

In this section, a scheme of double trapdoor hash function based on ECDLP is presented, which is
consisted of the tuple: DTH = < DParGen, DKeyGen, DHashGen, DTrapColGen >.

• DParGen: Select l and a big prime p, where l = pm. Let E(Fl) be an elliptic curve over finite
field Fl and G a cyclic subgroup of E(Fl). Let P be a generator of G with prime order q and
H : {0, 1}∗ → Z∗q , f : G × Z∗q × G → Z∗q , F : G → Z∗q cryptographic hash functions. The
system parameters are params = < G, P, q, H, F, f >.

• DKeyGen: Select randomly y ∈ Z∗q and compute Y = yP. The trapdoor key is y and the hash
key is Y.

• DHashGen: Select randomly t ∈ Z∗q, compute A = tP and r = F(A). The trapdoor hash value
is h = H(m)P + rY.

• DTrapColGen: Select randomly t′ ∈ Z∗q, compute:

A′ = t′ P and r′ = F(A′).

The temporary trapdoor key is y′ = r′−1 (H(m) − H(m′) + ry) mod q and the temporary hash
key is Y′ = y′ P. Compute:

k = t′ − y ∗ f (h , r′ , Y′) mod q.

which then outputs < k , r′, Y′ >. < k , r′ > is the signature on THHK(m, r)= THHK′ (m′, r′)
verifiable under Y [20]. The verification equation expands:

Sensors 2019, 19, 4239 9 of 21

kP + f (h, r′, Y′) Y
= (t′ − y ∗ f (h, r′, Y′)) P + f (h, r′, Y′) ∗ yP
= t′P
= A′

F (A′) = r′

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary parameter
pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m′(, m) ∈ {0, 1}∗, choose randomly
t′ ∈ Z∗q. Then compute

A′ = t′ P, r′ = F(A′).

The temporary trapdoor key is given by

y′ = r′−1 (H(m) − H(m′) + ry) mod q

which satisfies
H(m)P + rY = H(m′)P + r′Y′.

That is to say
H(m) + ry = H(m′) + r′y′.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)= THY′ (m′, r′).

That is to say:
H(m) + ry = H(m′) + r′y′.

In the equation, the long-term trapdoor key y is not computable because y′ is unknown. That is,
the computation complexity of y′ is equivalent to ECDLP because y′ is solved by Y′ = y′ P.

(4) Collision resistance: The PPT collision forger

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

is assumed to resist the DTH scheme with a
non-negligible probability. Given params and HK,

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

runs in polynomial time and outputs
< m, r, m′, r′, HK′, k′ > with non-negligible probability where the following statements hold:

THHK(m, r)= THHK (m′, r′) ,
F (k′ P + f (h, r′, Y′)Y) = r′ ,
m′ , m, HK′ , HKand r′ , r

Suppose

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP
< G, P, q, Y >, Q needs to find a value z ∈ Z∗q so that Z = zP. The hash function f acts as
a random oracle O f that Q simulates. That means Q provides a random value for each new
query to answer any hash query of O f . Then Q gives two identical answers if the same query
is asked twice. Q runs an instance of

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

and answers any hash query of O f until

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

produces
collision forgery. When

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

queries < THY(m, r), r′, Y′ > to O f , Q answers x’. With the Oracle
replay attack [38], Q rewinds

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

to the point when

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

queries < THY(m, r), r′, Y′ > to O f , and
select randomly a new value x′′ , x′ ∈R Z∗q as the answer to

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

. Q continues running

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

until
producing another collision forgery < m2, r2, m′2, r′2, Y′′ , k′′ >. Each instance of

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

is randomly

Sensors 2019, 19, 4239 10 of 21

selected. Given THHK(m1, r1), THHK′ (m2, r2), m1 , m2, r1 , r2, m1 , m′1, r1 , r′1, which
satisfy the following equations:{

THHK(m1, r1) = THHK′(m′1, r′1)
THHK(m2, r2) = THHK′(m′2, r′2){

k′ = t − y ∗ x′

k′′ = t − y ∗ x′′

According to these two equations, the following can be computed:

y = (k′′ − k′)(x′ − x′′)−1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, . . . , Un, each of them having
its own trapdoor/hash key pair {TK i , HKi }

n
1 and original message {m i }

n
1 . It generates the objective

multi-trapdoor hash value h according to {m i, ri }
n
1 and { HK i }

n
1 , then the participants can produce

hash collisions with h based on new messages {m′ i }
n
1 . The multi-trapdoor hash function combines

multiple collisions generated by multiple participants to generate a single collision [20], thus saving
storage space and bandwidth effectively.

5.1. Formal Definition

The multi-trapdoor hash function is composed of tuples <MParGen, MKeyGen, MHashGen,
MTrapColGen >.

• MParGen: Inputs security parameter k, outputs system parameter Params.
• MKeyGen: Inputs system parameter Params, each participant Ui (i ∈ [1, n]) outputs

< TKi , HKi > (i ∈ [1, n]).
• MHashGen: Inputs Params, hash key group { HK i }

n
1 , message/auxiliary parameter pairs {m i, ri }

n
1 ,

outputs multi-trapdoor hash value TH{ HKi }
n
1

(
{ mi, ri }

n
1

)
.

• MTrapColGen: Inputs Params, a trapdoor key TK j, message/auxiliary parameter pairs {m i, ri }
n
1

and a new message m j , m′ j, outputs collision parameter < r′ j , HK′ j > which satisfies the
following equation:

TH{ HKi }
n
1

(
{mi , ri }

n
1

)
= TH

{ HKi → HK′i }n1 \{ j }

({
mi → m′i, ri → r′i

}n
1\

{
j
}
)

5.2. The ECDLP-Based Multi-Trapdoor Hash Function

This section presents an ECDLP-based multi-trapdoor hash function MTH. The algorithm process
describes as follows:

• MParGen: Similar to DParGen in Section 4.
• MKeyGen: For each participant Ui, select randomly the long-time trapdoor key yi ∈ Z∗q and

compute long-time hash key:
Yi = yiP.

then outputs
{
y i , Yi

}n

1
.

• MHashGen: For each Ui, select randomly ti ∈ Z∗q, compute auxiliary parameters:

Ai = ti P and ri = F(A i).

Sensors 2019, 19, 4239 11 of 21

Trapdoor hash value is hi = H(m i)P + riYi. Finally, aggregate all the trapdoor hash values as
multi-trapdoor hash value:

h =
∑n

i=1
hi

then outputs h.
• MTrapColGen: For each Ui, select randomly t′i ∈ Z∗q and compute new auxiliary parameters:

A′i = t′i P and r′i = F(A′ i).

According to trapdoor collision, compute temporary trapdoor/hash key:

y′i = r′i−1 (H(m i) − H(m′ i) + riyi) mod q
Y′i = y′i P .

5.3. Security Analysis

Theorem 1. The proposed multi-trapdoor hash function scheme is collision resistant.

Proof. The PPT collision forger

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

is assumed to resist the MTH scheme with a non-negligible probability.
Suppose

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP < G, P, q,
Y >, Q needs to find a value z ∈ Z∗q so that Z = zP.

Q runs an instance of

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

and answers any hash query of O f until

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

produces collision forgery.
When

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

queries < THYi(mi, ri), r′i, Y′i > to O f , Q answers x′i. With the Oracle replay attack [38],
Q rewinds

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

to the point when

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

queries < THYi(mi, ri), r′i, Y′i > to O f , and select randomly a
new value x′′ i , x′i ∈R Z∗q as the answer to

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

. Q continues running

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

until producing another
collision forgery < mi,2, ri,2, m′i,2 , r′i,2 , Y′′ i , k′′ i >. Each instance of

Sensors 2019, 19, x FOR PEER REVIEW 9 of 21

 = A'
F (A') = r'

4.2. Security Analysis

(1) Efficiency: Given the system parameter params, the hash key Y and the message/auxiliary

parameter pair < m, r >, the trapdoor hash valve h = H(m) P + rY is computable in PPT.

(2) Trapdoor collisions: Given < y, Y >, < m, r > and new message m'(≠ m) ∈ {0,1}*, choose randomly

t' ∈ Zq
* . Then compute

A' = t' P, r' = F(A').

The temporary trapdoor key is given by

y' = r'-1 (H(m) - H(m') + ry) mod q

which satisfies

H(m)P + rY = H(m')P + r'Y'.

That is to say

H(m) + ry = H(m') + r'y'.

(3) Key exposure freeness: Given two tuples < Y, m, r > and < Y’, m’, r’ > such that:

THY(m, r)=THY' (m', r').

That is to say:

H(m) + ry = H(m') + r'y'.

In the equation, the long-term trapdoor key y is not computable because y' is unknown. That

is, the computation complexity of y' is equivalent to ECDLP because y' is solved by Y' = y' P.

(4) Collision resistance: The PPT collision forger E is assumed to resist the DTH scheme with a non-

negligible probability. Given params and HK, E runs in polynomial time and outputs

< m, r, m', r', HK', k' > with non-negligible probability where the following statements hold:

THHK(m, r)=THHK (m', r') ,

F (k' P + f (h, r', Y')Y) = r' ,

m' ≠ m , HK' ≠ HK and r' ≠ r

Suppose E can construct a PPT algorithm Q for solving ECDLP. Given an instance of ECDLP <

G, P, q, Y >, Q needs to find a value z ∈ Zq
* so that Z = zP. The hash function f acts as a random

oracle Of that Q simulates. That means Q provides a random value for each new query to

answer any hash query of Of . Then Q gives two identical answers if the same query is asked

twice.

Q runs an instance of E and answers any hash query of Of until E produces collision forgery.

When E queries < THY(m, r), r', Y' > to Of , Q answers x’. With the Oracle replay attack [38] , Q

rewinds E to the point when E queries < THY(m, r), r', Y' > to Of, and select randomly a new

value x'' ≠ x' ∈R Zq
* as the answer to E. Q continues running E until producing another

collision forgery < m2, r2, m'2, r'2, Y'', k'' > . Each instance of E is randomly selected. Given

THHK(m1, r1) , THHK' (m2, r2) , m1 ≠ m2 , r1 ≠ r2 , m1 ≠ m'1 , r1 ≠ r'1 , which satisfy the following

equations:

{
 THHK(m1, r1) = THHK'(m'1, r'1)
 THHK(m2, r2) = THHK'(m'2, r'2)

{
k' = t - y * x'

 k'' = t - y * x''

According to these two equations, the following can be computed:

y = (k'' - k')(x' - x'')-1.

This is contrary to the elliptic curve discrete logarithm hypothesis.

5. Multi-Trapdoor Hash functions based on ECDLP

The multi-trapdoor hash function [20] contains many participants U1, … , Un, each of them

having its own trapdoor/hash key pair {TKi , HKi }1
n and original message {mi }1

n. It generates the

objective multi-trapdoor hash value h according to {mi, ri }1
n and { HKi }1

n, then the participants can

is randomly selected. Given
THYi

(
mi,1, ri,1

)
, THYi

′

(
mi,2 , ri,2

)
, mi,1 , mi,2, ri,1 , ri,2, mi , 1 , m′i,1, ri,1 , r′i,1, which satisfy the

following equations. THYi

(
mi,1, ri,1

)
= THYi

′

(
m′i,1, r′i,1

)
THYi

(
mi,2, ri,2

)
= THYi

′

(
m′i,2, r′i,2

){
k′i = ti − yi ∗ x′i
k′′i = ti − yi ∗ x′′i

According to these two equations, the following can be computed

yi = (k′′ i − k′i)(x′ i − x′′ i)
−1.

It is contrary to the elliptic curve discrete logarithm hypothesis. Thus, the proposed MTH scheme
is collision resistant. �

6. Aggregate Signature Scheme Based on MTH

6.1. The Aggregate Signature Scheme Based on MTH

This section presents an aggregate signature scheme based on MTH, called MTH-AS. The algorithm
is presented below.

• AParGen: Similar to DParGen in Section 4.
• AKeyGen: For each participant Ui, select randomly the long-time trapdoor key yi ∈ Z∗q and

compute long-time hash key:
Yi = yi P.

then outputs
{
y i, Yi

}n

1
.

Sensors 2019, 19, 4239 12 of 21

• AHashGen: For each Ui, select randomly ti ∈ Z∗q, compute auxiliary parameters:

Ai = ti P and ri = F(A i).

and computes the trapdoor hash value:

hi = H(m i)P + riYi.

Finally, aggregate all the trapdoor hash values as the multi-trapdoor hash value:

h =
∑n

i=1
hi

Then outputs h.
• ATrapColGen: For each Ui, select the latest timestamp t′i ∈ Z∗q and compute new auxiliary

parameters:
A′i = t′i P and r′i = F(A′ i).

According to trapdoor collision, compute temporary trapdoor/hash key:

y′i = r′i−1 (H(m i) − H(m′ i) + riyi) mod q
Y′i = y′i P.

Computes:
ki = ti

′
− yi ∗ f (h, r i

′, Yi
′) mod q.

and generates Ui’s individual signature:

σi = (r i
′, ki).

outputing { σi , Yi
′, Ai

′, ri
′, ti

′
}
n
1 .

• Verify: This algorithm verifies the correctness of the individual signature of Ui, computing:

Bi = kiP + f (h, r i
′, Yi

′)Yi.

If the equation F(B i) = ri
′ holds, it accepts the participant’s individual signature and outputs

ACCEPT, otherwise, outputs REJECT.
• AggSign: For each participant Uj whose individual signature is accepted, computing:

K = K + k j mod q
C = C + A j

′ mod q.

outputting the aggregate signature:
σ = (K, C).

• AggVerify: Let m be the number of participants in the aggregate signature, that is, the number of
individual signatures accepted, computing:

B = KP +
∑m

j=1
f (h, r j

′, Y j
′)Y j

If the equation F (B) = F (C) holds, accepts the aggregate signature and outputs ACCEPT,
otherwise, outputs REJECT.

Sensors 2019, 19, 4239 13 of 21

6.2. The Correctness of Aggregate Verify

The aggregate verify equation expands as follows:

B = KP +
∑m

j=1 f (h, r j
′, Y j

′)Y j

=
∑m

j=1(t j
′
− y j f (h, r j

′, Y j
′))P +

∑m
j=1 f (h, r j

′, Y j
′) y jP

=
∑m

j=1 t j
′P

=
∑m

j=1 A j
′

= C

6.3. Security Proof

Theorem 2. Given an adversary makes at most q f f-hash queries, qH H-hash queries, qS signature queries, qF

F-queries, qK key queries, qT trapdoor hash queries within a period t in the random oracle model, and wins the game
GMTH_AS

A (1k) with an non-negligible probability ε, that is, successfully forging the signature of an MTH_AS
scheme. Then an algorithm

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

can be performed in polynomial time t′ ≤ t + O(q k + 2qT + 2qs)TME, and
solve an instance of ECLDP with probability ε′ ≥ 1

106qk
√

q f
ε. Let TME be the run time for scalar multiplication

in elliptic curve.

Proof. Given an instance of ECLDP (P, yP) ε G, the goal of the algorithm

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

is to compute y. Assume
the hash key of m∗ is yP. The following is a detailed interaction process between algorithm

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

and
adversary

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

.

• Setup: Challenger

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

inputs security parameters 1k, runs algorithm AParGen, generates system
parameters params, and sends params to adversary

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

simulates hash functions random oracle
DH, DF and D f , key random oracle DK, trapdoor hash random oracle DT and signature oracle DS
to answer all the queries from adversary

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

needs to maintain 6 lists (LH, LF, Lf, LT, LK, LS),
whose initial values are empty.

• Query:

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

adaptively performs the following oracle queries.

– When

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

queries DH with mi,

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

checks whether existing (m i, Hi) ∈ LH or not, if so,

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

sends Hi to

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

. Otherwise,

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

selects a random Hi ∈ Z∗q, sends Hi to

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

and saves (mi , Hi)

into the hash list LH.
– When

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

queries DF with Ai,

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

checks whether existing (A i, Fi) ∈ LF or not, if so,

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

returns Fi to

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

. Otherwise, selects a random Fi ∈ Z∗q, returns Fi to

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

and saves (A i, Fi)

into the hash list LF.
– When

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

queries D f with (m i , h, ri
′, Yi

′),

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

checks whether existing
(m i , h, ri

′, Yi
′, f i) ∈ L f or not, if so,

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

returns f i to

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

. Otherwise, selects a random
fi ∈ Z∗q, returns f i to A and saves (m i , h, ri

′, Yi
′, Fi) into the hash list L f .

– When

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

queries DT with (m i, ri),

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

checks whether existing (m i , ri , hi) ∈ LT or not, if
so,

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

returns hi to

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

. Otherwise, selects a random yi ∈ Z∗q and computes:

hi = H(mi)P + riyiP.

returning hi to

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

and saves (m i , ri , hi) into the hash list LT.
– When

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

queries DK with mi,

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

checks whether existing (m i , Yi , yi

)
∈ LK or not, if so,

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

returns yi to

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

. Otherwise, if mi , m∗, selects randomly yi ∈ Z∗q, ki ∈ Z∗q and makes
a query to D f . If (m i , ∗, ∗, ∗, f i) ∈ L f , computes f −1

i . Otherwise, selects randomly

f −1
i ∈ Z∗q and stores (m i , ∗, ∗, ∗, f i

)
into L f , computing:

yi = (ti
′
− ki) f −1

i and Yi = yi P .

Sensors 2019, 19, 4239 14 of 21

then returns (y i , Yi) to

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

and saves (m i , Yi , yi

)
into the hash list LK. If mi = m∗ holds,

the game is over and outputs ∇.
– When

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

queries DS with (TK i, mi , mi
′),

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

checks whether existing (m i , mi
′, σi) ∈ LS

or not, if so,

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

returns σi to

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

, otherwise, selects a random ti
′
∈ Z∗q and computes:

A′i = t′i P ,
r′i = F(A′ i) ,
y′i = r′i−1 (H(m i) − H(m′ i) + riyi) mod q ,
Y′i = y′i P ,
ki = ti

′
− yi f (h, r i

′, Yi
′) mod q

Then,

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

generates individual signature (r i
′, ki) and returns to

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

.
• Forge: After polynomial bounded queries, the attacker

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

outputs the aggregate signature
σ∗ = (K∗, C∗) of the new message set {mi

′∗
}
n
1 under the condition of the user’s long-term hash key

set {Yi∗ }
n
1 and the original message/auxiliary parameter set {mi∗, ri∗ }

n
1 , and satisfies the following

two conditions at the same time:

– C = KP +
∑m

i=1 f iYi;
– There is at least a message mi (m∗) to which neither a key query nor an individual signature

query is performed.

According to the Forking Lemma [31], the attacker

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

simply replaces the hash function f
with f̃ , a new valid forged signature σ̃ = (K̃∗, C̃∗) is obtained. When j ∈ {1, 2, . . . , n}\{s}, there is
s ∈ {1, 2, . . . , n} such that f ∗j = f̃ ∗j . When the following equations holds:

j = s, f (h∗, r j
′∗, Y j

′∗) = f ∗j , f̃ ∗j = f̃ (h∗, r j
′∗, Y j

′∗)

we can obtain the following equation set:

C∗ = K∗P +
∑m

i=1 f ∗i Yi
C̃∗ = K̃∗P +

∑n
i=1 f̃ ∗i Yi

At the same time, the following calculation is available:

K∗ − K̃∗ +
∑n

i=1 (f ∗i yi − f̃ ∗i yi) =
∑n

i=1 (ti
∗
− t̃i
∗)

K∗ − K̃∗ + (f ∗s − f̃ ∗s)ys =
∑n

i=1 (ti
∗
− t̃i
∗)

ys = (f ∗s − f̃ ∗s)
−1
(
∑n

i=1 (ti
∗
− t̃i
∗) + K̃∗ −K∗)

The probability of successful breaking of ECDLP by

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

is converted into the following three events:

(1) E1 represents that algorithm

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

does not terminate at the query stage;
(2) E2 indicates that

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

successfully forged aggregate signature; and
(3) E3 indicates the successful application of Forking Lemma.

The probability of solving the ECDLP by algorithm

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

is as follows:

Pr(E1 ∩ E2 ∩ E3)= Pr(E 1) Pr(E 2| E 1)Pr(E 3| E 1 ∩ E2
)

Pr(E 1) ≥
1
qk

Pr(E 2| E 1) ≥ ε

According to the Forking Lemma [31], we can obtain the following equation:

Sensors 2019, 19, 4239 15 of 21

Pr(E 3| E 1 ∩ E2) ≥
1

106√ q f

ε′ = Pr(E 1 ∩ E2 ∩ E3) ≥
1

106qk
√

q f
ε

The running time of

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

is equal to the sum of

Sensors 2019, 19, x FOR PEER REVIEW 7 of 21

 Query

V adaptively performs the following oracle query.

– Hash queries: V makes hash oracle queries to all hash functions in the proposed scheme,

and challenger B returns the corresponding value.

– Trapdoor hash queries: V inputs < m, r > for trapdoor hash query and the oracle outputs

THY (m, r).

– Key queries: V inputs the message mi of user i to make key query, and the oracle returns

the trapdoor key y of user i to the adversary V.

– Signature queries: V inputs the original message/random value pair < mi , ri >, new message

mi
′ and hash key TKi , the oracle outputs the signature.

 Forge

Finally, V outputs σ*= (K*, C*) as a forged aggregate signature based on new message set {m𝑖
′∗

}
1

n
.

The adversary V wins the game if σ* is a valid signature and V does not make a key query on at

least one user among n users.

3.6. System Model

 In many-to-one IoT scenarios where bandwidth, computing power, and storage resources are

limited, it is important to improve computational efficiency and storage capacity. Furthermore, it is

also vital to protect data from modification and repudiation. Due to its natural compression

properties, aggregate signatures are ideal for resource-constrained many-to-one IoT applications. As

shown in Figure 2, the system model of the aggregated signature in the IoT environment proposed

in this paper consists of five components: the key generation center (KGC), IoT devices, data

aggregator, verifier and data center.

 KGC

The KGC is responsible for system setup. It is regarded to be trusted in our proposed scheme.

The KGC generates system parameters and sends them to all the entities, such as IoT devices,

aggregator, verifier and data center. The private keys ski are computed by the KGC for each IoT

device. Then these private keys are sent to each entity through a secure channel.

 IoT Devices

The IoT devices with limited computational and storage capacity are capable to collect real data

from the physical world. In order to ensure data integrity, non-repudiation, privacy, and authenticity,

with the system parameter and the private key, each IoT device makes individual signature on the

original data they collect. Then the IoT devices send message mi , individual signature σi and

public key pk
i
 to the data aggregator.

 Data aggregator

The data aggregator may be a node in the system model that verifies all the individual signatures

it receives. It checks the validity of the individual signatures, if they are correct, then aggregates them

into a single short signature. Finally, the data aggregator sends the aggregate signature to the verifier.

 Verifier

The verifier are responsible to check the correctness of the received aggregate signature. It can

verify the correctness of all individual signatures by one operation. If the aggregation signature is

verified correctly, all the messages and the aggregate signature are sent to the data center.

 Data Center

The data center has powerful storage space and computing power, which can store and share

the validated aggregate signatures and original messages safely.

’s running time,

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

’s answer querying time and

Sensors 2019, 19, x FOR PEER REVIEW 6 of 21

 HashGen: Inputs Params, message M, and auxiliary parameter R, and outputs the trapdoor hash

value THHK(M, R);

 TrapColGen: Inputs Params, < HK, TK >, M, R, and new message M’(≠ M), and outputs new

auxiliary parameter R’ and the temporary hash key HK’ such that:

THHK(M, R)=THHK' (M', R');

When HK≠HK’, < HK’, TK’ > and < HK, TK > are called temporary hash/trapdoor key pair and

long-term hash/trapdoor key pair respectively. The properties of double trapdoor hash functions are

as follows:

(1) Validity: Given HK and (M, R), THHK(M, R) is calculated in polynomial time.

(2) Collision resistance: Given HK, there is no PPT algorithm that can find HK’ which satisfies:

THHK(M, R)=THHK' (M', R'), M’≠ M.

(3) Trapdoor collision: There is a PPT algorithm, given < HK, TK >, (M, R) and new message M’≠ M,

output HK’ and R’ such that:

THHK(M, R)=THHK' (M', R').

(4) Key exposure freeness: Given the long-term hash key HK, temporary hash key HK’, and (M, R),

(M’, R’), M’≠ M, there is no PPT algorithm to output long-term trapdoor key TK with non-

negligible probability.

3.3. Elliptic Curve Discrete Logarithm

Definition 2: (Elliptic curve discrete logarithm problem (ECDLP) [37]). E(Fl) is an elliptic curve

over the finite field Fl. And P is a q-order generator of E(Fl), when Q∈E(Fl) and Q = kP, find the integer k (0

≤ k ≤ q-1).

This definition is also known as the onewayness of ECDLP. The probability that algorithm A

successfully solves ECDLP is defined as:

AdvA
ECDLP(φ)=Pr[A(q, P, Q)= k|0 < k ≤ q-1, Q = kP]

It is determined by the random selection of k ∈R Zq
* and A.

3.4. Aggregate Signature

Aggregate signatures consist of PPT algorithms: AS = < Setup, KeyGen, Sign, Verify,

Aggregate, Aggregate Verify >. And the tuple < Setup, KeyGen, Sign, Verify > constructs a standard

system parameter establishment, key generation, signature, verification of the short signature

process, called the standard signature of aggregate signature.

 Setup: Inputs security parameter k, outputs system parameter Params.

 KeyGen: For a particular IDi∈U (U is a user set), inputs system parameter Params, then

outputs the private and public key < y, Y >.

 Sign: For a message Mi to be signed, inputs private key y
i
 , outputs individual signature σi .

 Verify: Inputs public key Yi , message Mi , and individual short signature σi , if the verification

algorithm is successful, it outputs ACCEPT, otherwise, it outputs REJECT.

 Aggregate: Inputs {IDi }1
n∈U , their signature messages {Mi}1

n and individual signatures

{σi }1
n , outputs aggregate signature σ .

 Aggregate Verify: Inputs public keys {Yi}1
n , messages {Mi}1

n , and aggregate signature σ , if

the aggregation validation algorithm is successful, it outputs ACCEPT, otherwise, it outputs

REJECT.

3.5. Security Model

Assuming k is a security parameter, GA
MTH_AS(1k) is a game between challenger B and adversary

V. The attack model is shown below:

 Setup

Inputs the security parameter k, B runs the Setup algorithm and returns the system parameter to

V.

’s
time to successfully break the ECDLP instance with forged signatures. One key query, trapdoor hash query,
and signature query respectively requires 1, 2, and 2 scalar multiplication on the group, so we can obtain:

t′ ≤ t + O(q k + 2qT + 2qs)TME.

In summary, the aggregate signature scheme proposed in this paper is (t i
′, ε′, qH , qK , qT , qS , n)

existing unforgeable under adaptively chosen message attack. �

6.4. Security Comparisons

As shown in Table 3, the security of our MTH-AS scheme is compared with relevant aggregate
signature schemes [11,24,35]. Since our proposed scheme selects the latest timestamp ti

′, which
is included in the messages {t i

′, r′i , A′i , Y′i , σi }
n
1 . Replay attacks can be found by checking the

freshness of the timestamp. Thus, our proposed scheme is resistant against replay attacks. The schemes
proposed in literature [11,24,35] are proven to be secure based on the hardness of Co-CDHP, CDHP,
CDHP, respectively. As mentioned above, the MTH-AS scheme proposed in this paper is proven
to be secure against the existing unforgeability under adaptively chosen message attacks assuming
ECDLP is hard. Our MTH-AS scheme could provide message authentication by checking whether the
equations kiP + f (h, r i

′, Yi
′)Yi = Ai

′, F(A′ i) = r′i hold. Due to the above security analysis, our
MTH-AS scheme is suitable for secure communications in IoT applications with limited computing
power, storage capacity, and bandwidth.

Table 3. The security comparison of relevant aggregate signatures.

Scheme Hardness
Problem

Message
Authentication

Resistance to
Replay Attacks

Kumar [11] CDHP Yes No
Boneh [24] Co-CDHP Yes No
Cheng [35] CDHP Yes No

Our proposed scheme ECDLP Yes Yes

6.5. Performance Analysis

In this subsection, performance analysis is mainly carried out from two aspects: the performance
comparison of related aggregate signature schemes and the performance comparison of aggregate
signatures in IoTs. These schemes are measured by communication cost and computation cost, which
are considered in terms of the length of the aggregate signature and the computational complexity of
the aggregation verification algorithm respectively.

In this paper, we adopt the performance evaluation method in [39]. The experiments are taken on
an Intel I7 3.4 GHz, 4 GB machine with Windows 7 operating system. to obtain the security level of
80 bits, the bilinear pairing e : G1 × G1 → G2 is conducted, where G1 is an additive group generated
by a point P with the order q1 on the super singular elliptic curve E1 : y2 = x3 + x mod p1 (p1 and q1

are 512-bit and 160-bit prime number, respectively) [36]. Accordingly the size of the elements in group
G1 (that is LG1) is 128 bytes (64 * 2 = 128). For ECC-based aggregate signature schemes, we use an
additive group G generated by a point on a non-singular elliptic curve E : y2 = x3 + ax + b mod p2
with the order q2 (p2, q2 are two 160-bit prime numbers, a , b ∈ Z∗q). The size of the elements in group
G (that is LG) is 40 bytes (20 ∗ 2 = 40). Let Lq be the size of the elements in Z∗q, n the number of
signers. Table 4 lists the execution time of the encryption operations below [36,39].

Sensors 2019, 19, 4239 16 of 21

Table 4. Different encryption operation execution time.

Encryption Operation Description Time (ms)

TB The bilinear pair operation 4.2110
TMB The scalar multiplication in the bilinear pair 1.7090
TAB The bilinear pair-to-midpoint addition 0.0071
THB The hash-to-point operation in bilinear pair 4.4060
TME The scalar multiplication in elliptic curve 0.4420
TAE The point addition operation in elliptic curve 0.0018
TH The general hash operation 0.0001

(1) The comparison of aggregate signature schemes

The scheme proposed in this paper is compared with the related aggregate signature schemes
from four aspects: individual signature, aggregate verify, aggregate signature length and correlation
between signature length and n. The specific performance comparison results of computation cost are
presented in Table 5 and Figure 3.

Table 5. The comparison of computation cost.

Scheme Individual Signature Time Aggregate Verification Time

Gong-1 [29] 2TMB + TAB + THB ≈ 7.8311ms (2n + 1) TB + 2n THB
≈ 17.234n + 4.211ms

Gong-2 [29] 3TMB + 2TAB + 2THB ≈ 13.9532ms (n + 2) TB + nTMB + n TAB + 2n THB
≈ 14.7391n + 8.422ms

Chen [32] 4TMB + 2TAB + 2THB+ 2TH ≈ 15.6624ms 4TB + 2nTMB + (n + 2)THB + 2nTH
≈ 7.8242n + 25.656ms

Zhou-I [34] TME + TH ≈ 0.4421ms (2n + 1)TME + 4nTAE + 2nTH
≈ 0.9166n + 0.422ms

Zhou-II [34] TME + nTAE + TH ≈ 0.0071n + 1.7091ms (2n + 1)TME + (3n + 1)TAE + 2nTH
≈ 0.9085n + 0.4438ms

Cheng [35] 4TMB + 2TAB + THB ≈ 11.2562ms 3TB + nTMB + nTAB + nTHB + nTH
≈ 6.1222n + 12.633ms

Our proposed scheme 2TME + 3TH ≈ 0.8843ms (n + 1)TME + (n + 1)TAE + 2TH
≈ 0.4438n + 0.444ms

Sensors 2019, 19, x FOR PEER REVIEW 16 of 21

≈ 6.1222n + 12.633ms

Our proposed
scheme

2TME + 3TH ≈ 0.8843ms (n + 1)TME + (n + 1)TAE + 2TH

≈ 0.4438n + 0.444ms

As shown in Table 5, the individual signature time of the proposed scheme is 0.8843 ms, which
is longer than that of CLAS-Ⅰ [34]. However, the aggregate signature overhead of our scheme is better
than that of CLAS-Ⅰ [34]. The proposed scheme in this paper is based on ECC which is more efficient
than bilinear pairings in computation cost [39]. Figure 3 shows that the aggregate verification time of
our scheme is obviously better than that of the bilinear pairings based aggregate signature schemes
[29,32,35], but slightly higher than ECC based schemes [34].

The comparisons of communication cost are presented in Table 6 and Figure 4. Since the size of
LG1, LG, Lq are 128 bytes, 40 bytes, and 20 bytes, respectively, the lengths of Gong et al.’s CAS-1 and
CAS-2 scheme [29] are 128 * n + 128 bytes and 2 * 128 = 256 bytes. The communication cost of Zhou
et al.’s CLAS-Ⅰscheme [34] is 128 * n + 20 bytes. The proposed scheme in this paper has the same
constant aggregate signature length as CLAS-Ⅱ [34], which is 60 bytes, obviously superior to that of
CAS-1 [29] and CLAS- Ⅰ [34]. The proposed scheme in this paper has great advantages in
communication efficiency.

Figure 3. The comparison of aggregate verification time.

Table 6. The comparison of communication cost.

Scheme Aggregate Signature Length Correlation between Signature Length and n

Gong-1 [29] (n + 1)LG1 Yes

Gong-2 [29] 2LG1 No

Chen [32] (n + 1)LG1 Yes

Zhou-Ⅰ[34] nLG + Lq Yes

Zhou-Ⅱ[34] LG + Lq No

Cheng [35] (n + 1)LG1 Yes

Our proposed scheme LG + Lq No

Figure 3. The comparison of aggregate verification time.

As shown in Table 5, the individual signature time of the proposed scheme is 0.8843 ms, which
is longer than that of CLAS-I [34]. However, the aggregate signature overhead of our scheme is
better than that of CLAS-I [34]. The proposed scheme in this paper is based on ECC which is more
efficient than bilinear pairings in computation cost [39]. Figure 3 shows that the aggregate verification

Sensors 2019, 19, 4239 17 of 21

time of our scheme is obviously better than that of the bilinear pairings based aggregate signature
schemes [29,32,35], but slightly higher than ECC based schemes [34].

The comparisons of communication cost are presented in Table 6 and Figure 4. Since the size
of LG1 , LG, Lq are 128 bytes, 40 bytes, and 20 bytes, respectively, the lengths of Gong et al.’s CAS-1
and CAS-2 scheme [29] are 128 ∗ n + 128 bytes and 2 ∗ 128 = 256 bytes. The communication cost
of Zhou et al.’s CLAS-I scheme [34] is 128 ∗ n + 20 bytes. The proposed scheme in this paper has
the same constant aggregate signature length as CLAS-II [34], which is 60 bytes, obviously superior
to that of CAS-1 [29] and CLAS-I [34]. The proposed scheme in this paper has great advantages in
communication efficiency.

Table 6. The comparison of communication cost.

Scheme Aggregate Signature Length Correlation between Signature Length and n

Gong-1 [29] (n + 1)LG1
Yes

Gong-2 [29] 2LG1 No
Chen [32] (n + 1)LG1

Yes
Zhou-I [34] nLG + Lq Yes
Zhou-II [34] LG + Lq No
Cheng [35] (n + 1)LG1

Yes
Our proposed scheme LG + Lq No

Sensors 2019, 19, x FOR PEER REVIEW 17 of 21

Figure 4. The comparison of signature length.

Performance improvements are compared in Table 7. For example, compared to individual
signatures of CAS-1 [29], the efficiency of performance improvement is approximately
7.8311-0.8843

7.8311
 ≈ 88.70%. Other performance improvements are calculated in the same way, assuming that

the number of signatures is 50. As shown in Table 7, in terms of individual signature, the computation
cost of our scheme is inferior to that of Zhou et al.’s CLAS-Ⅰscheme [34]. However, in terms of
aggregate verify, the computation cost of our scheme is superior to all the other schemes [29,32,34,35].
Therefore, the proposed scheme in this paper is more efficient in aggregation verification.

Table 7. The comparison of computational costs with other schemes.

Scheme Individual Signature Time (%) (50n =) Aggregate Verification Time (%) (50)n =

Gong-1 [29] 88.70 97.39
Gong-2 [29] 93.66 96.96
Chen [32] 94.35 94.57

Zhou-Ⅰ[34] ‒100.00 51.06
Zhou-Ⅱ[34] 57.16 50.65
Cheng [35] 92.14 92.90

(2) The comparison of aggregate signatures in IoTs

In IoT applications, it incurs lower computation cost and communication cost due to the limited
battery capacity, computing power, bandwidth and storage capacity requirements of IoT devices. In
this part, we compare the performance of the proposed scheme and other related IoT-based aggregate
signature schemes. The cost of signature and verification is an important factor affecting the
computing power of the IoT devices. Table 8 and Figure 5 show the comparison of computation cost
in IoT-based aggregate signatures. From Figure 5, we can see that the aggregate verification delay of
this proposed scheme is similar to that of Cui’s scheme [36], but is obviously superior to that of the
other schemes [11,12], because bilinear pairings are not used in our scheme and Cui’s scheme [36].

Table 8. The comparison of computation cost in IoTs.

Scheme Individual signature time Aggregate verification time

Kumar [11]
3TMB + 2TAB + THB+ TH ≈ 9.5437ms 3TB + nTMB + 3nTAB

≈ 1.7303n + 12.633ms

Horng [12]
2TMB + TAB + THB ≈ 3.4252ms 3TB + nTMB + nTAB + nTHB + nTH

≈ 6.1222n + 12.633ms

Figure 4. The comparison of signature length.

Performance improvements are compared in Table 7. For example, compared to individual
signatures of CAS-1 [29], the efficiency of performance improvement is approximately 7.8311−0.8843

7.8311 ≈

88.70%. Other performance improvements are calculated in the same way, assuming that the number
of signatures is 50. As shown in Table 7, in terms of individual signature, the computation cost of our
scheme is inferior to that of Zhou et al.’s CLAS-I scheme [34]. However, in terms of aggregate verify,
the computation cost of our scheme is superior to all the other schemes [29,32,34,35]. Therefore, the
proposed scheme in this paper is more efficient in aggregation verification.

Table 7. The comparison of computational costs with other schemes.

Scheme Individual Signature Time (%) (n= 50) Aggregate Verification Time (%)(n=50)

Gong-1 [29] 88.70 97.39
Gong-2 [29] 93.66 96.96
Chen [32] 94.35 94.57

Zhou-I [34] −100.00 51.06
Zhou-II [34] 57.16 50.65
Cheng [35] 92.14 92.90

Sensors 2019, 19, 4239 18 of 21

(2) The comparison of aggregate signatures in IoTs

In IoT applications, it incurs lower computation cost and communication cost due to the limited
battery capacity, computing power, bandwidth and storage capacity requirements of IoT devices.
In this part, we compare the performance of the proposed scheme and other related IoT-based
aggregate signature schemes. The cost of signature and verification is an important factor affecting the
computing power of the IoT devices. Table 8 and Figure 5 show the comparison of computation cost in
IoT-based aggregate signatures. From Figure 5, we can see that the aggregate verification delay of this
proposed scheme is similar to that of Cui’s scheme [36], but is obviously superior to that of the other
schemes [11,12], because bilinear pairings are not used in our scheme and Cui’s scheme [36].

Table 8. The comparison of computation cost in IoTs.

Scheme Individual Signature Time Aggregate Verification Time

Kumar [11] 3TMB + 2TAB + THB+ TH ≈ 9.5437ms 3TB + nTMB + 3nTAB
≈ 1.7303n + 12.633ms

Horng [12] 2TMB + TAB + THB ≈ 3.4252ms 3TB + nTMB + nTAB + nTHB + nTH
≈ 6.1222n + 12.633ms

Cui [36] TME + TAE + TH ≈ 0.4439ms (n + 2)TME + 2nTAE + 2nTH
≈ 0.4458n + 0.884 ms

Our proposed scheme 2TME + 3TH ≈ 0.8843ms (n + 1)TME + (n + 1)TAE + 2TH
≈ 0.4438n + 0.444 ms

The signature length affects the communication capability of IoT devices, which is an important
factor in IoT applications. As shown in Table 9 and Figure 6, the signature length of our scheme is
a constant (60 bytes), while the signature length of other schemes [11,12,36] are correlate with the
IoT devices. In other words, as the number of the signed IoT devices increases, the signature length
increases too. Therefore, the scheme proposed in this paper is more suitable for the application of IoTs
because it has great advantages in saving bandwidth and storage capacity.

Sensors 2019, 19, x FOR PEER REVIEW 18 of 21

Cui [36]
TME + TAE + TH ≈ 0.4439ms (n + 2)TME + 2nTAE + 2nTH

≈ 0.4458n + 0.884 ms

Our proposed
scheme

2TME + 3TH ≈ 0.8843ms (n + 1)TME + (n + 1)TAE + 2TH

≈ 0.4438n + 0.444 ms

The signature length affects the communication capability of IoT devices, which is an important
factor in IoT applications. As shown in Table 9 and Figure 6, the signature length of our scheme is a
constant (60 bytes), while the signature length of other schemes [11,12,36] are correlate with the IoT
devices. In other words, as the number of the signed IoT devices increases, the signature length
increases too. Therefore, the scheme proposed in this paper is more suitable for the application of
IoTs because it has great advantages in saving bandwidth and storage capacity.

Figure 5. The comparison of aggregate verification cost in IoTs.

Table 9. The comparison of communication cost in IoTs.

Scheme Aggregate Signature
Length

Correlation between
Signature Length and n

Kumar [11] (n + 1)LG1 Yes

Horng [12] (n + 1)LG1 Yes

Cui [36] (n + 1)LG Yes

Our proposed scheme LG + Lq No

Figure 5. The comparison of aggregate verification cost in IoTs.

Table 9. The comparison of communication cost in IoTs.

Scheme Aggregate Signature Length Correlation between Signature Length and n

Kumar [11] (n + 1)LG1
Yes

Horng [12] (n + 1)LG1
Yes

Cui [36] (n + 1)LG Yes
Our proposed scheme LG + Lq No

Sensors 2019, 19, 4239 19 of 21
Sensors 2019, 19, x FOR PEER REVIEW 19 of 21

Figure 6. The comparison of signature length in IoTs.

7. Conclusions

In this paper, an aggregate signature scheme is proposed based on ECDLP and MTH, which
could be used for secure communication in many-to-one IoT applications. In the random oracle
model, the proposed scheme is proven to be secure against the existing unforgeability under
adaptively chosen message attacks. The proposed scheme has the characteristics of batch trapdoor
collision calculation with multi-trapdoor hash functions and does not use bilinear pair operations.
Therefore, it is more efficient than other schemes in terms of computation cost. On the other hand,
the length of aggregate signature in this proposed scheme does not depend on the number of the
signed IoT devices. Thus, the storage space and bandwidth are greatly saved. In summary, the
scheme proposed in this paper is suitable for IoT applications with limited computing speed, storage
capacity and bandwidth, such as wireless sensor networks, vehicular ad hoc networks, and
healthcare sensor networks, etc.

Author Contributions: Conceptualization: H.S. and D.X.; methodology: H.S.; validation: P.Q. and Y.H.; formal
analysis: H.S., P.Q. and Y.H.; investigation: H.S. and L.S.; writing—original draft preparation: H.S.; writing—
review and editing: D.X. and F.C.; supervision: L.S.; project administration: H.S.; funding acquisition: F.C.

Funding: This research was funded by the National Natural Science Foundation of China (nos. 61972438,
61672039, 61602009, and 61801004); the Natural Science Foundation of Anhui Province (no. 1808085QF211); the
Natural Science Foundation of Universities of Anhui Province(nos. KJ2019A0702 and KJ2019A0704).

Acknowledgments: The authors thank for the help of reviewers and editors.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805.
2. Yang, Y.C.; Wu, L.F.; Yin, G.S.; Li, L.J.; Zhao, H.B. A Survey on Security and Privacy Issues in Internet-of-

Things. IEEE Internet Things J. 2017, 4, 1250–1258.
3. Hiremath, S.; Geng, Y.; Mankodiya, K. Wearable Internet of Things: Concept, Architectural Components

and Promises for Person-Centered Healthcare. In Proceedings of the 5th Eai International Conference on
Wireless Mobile Communication & Healthcare, London, UK, 14–16 October 2015; pp. 304–307.

4. Yang, X.D.; Pei, X.Z.; Chen, G.L.; Li, T.; Wang, M.D.; Wang, C.F. A Strongly Unforgeable Certificateless
Signature Scheme and Its Application in IoT Environments. Sensors 2019, 19, 2692–2718.

5. Yeh, K.-H.; Su, C.; Choo, K.R.; Chiu, W. A novel certificateless signature scheme for smart objects in the
internet-of-things. Sensors 2017, 17, 1001–1017.

6. Kumar, M.; Verma, H.K.; Sikka, G. A secure lightweight signature based authentication for Cloud-IoT
crowdsensing environments. Trans. Emerg. Telecommun. Technol. 2018, 30, 3292–3306.

Figure 6. The comparison of signature length in IoTs.

7. Conclusions

In this paper, an aggregate signature scheme is proposed based on ECDLP and MTH, which could
be used for secure communication in many-to-one IoT applications. In the random oracle model, the
proposed scheme is proven to be secure against the existing unforgeability under adaptively chosen
message attacks. The proposed scheme has the characteristics of batch trapdoor collision calculation
with multi-trapdoor hash functions and does not use bilinear pair operations. Therefore, it is more
efficient than other schemes in terms of computation cost. On the other hand, the length of aggregate
signature in this proposed scheme does not depend on the number of the signed IoT devices. Thus, the
storage space and bandwidth are greatly saved. In summary, the scheme proposed in this paper is
suitable for IoT applications with limited computing speed, storage capacity and bandwidth, such as
wireless sensor networks, vehicular ad hoc networks, and healthcare sensor networks, etc.

Author Contributions: Conceptualization: H.S. and D.X.; methodology: H.S.; validation: P.Q. and Y.H.; formal
analysis: H.S., P.Q. and Y.H.; investigation: H.S. and L.S.; writing—original draft preparation: H.S.; writing—review
and editing: D.X. and F.C.; supervision: L.S.; project administration: H.S.; funding acquisition: F.C.

Funding: This research was funded by the National Natural Science Foundation of China (nos. 61972438, 61672039,
61602009, and 61801004); the Natural Science Foundation of Anhui Province (no. 1808085QF211); the Natural
Science Foundation of Universities of Anhui Province (nos. KJ2019A0702 and KJ2019A0704).

Acknowledgments: The authors thank for the help of reviewers and editors.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805.
[CrossRef]

2. Yang, Y.C.; Wu, L.F.; Yin, G.S.; Li, L.J.; Zhao, H.B. A Survey on Security and Privacy Issues in Internet-of-Things.
IEEE Internet Things J. 2017, 4, 1250–1258. [CrossRef]

3. Hiremath, S.; Geng, Y.; Mankodiya, K. Wearable Internet of Things: Concept, Architectural Components
and Promises for Person-Centered Healthcare. In Proceedings of the 5th Eai International Conference on
Wireless Mobile Communication & Healthcare, London, UK, 14–16 October 2015; pp. 304–307.

4. Yang, X.D.; Pei, X.Z.; Chen, G.L.; Li, T.; Wang, M.D.; Wang, C.F. A Strongly Unforgeable Certificateless
Signature Scheme and Its Application in IoT Environments. Sensors 2019, 19, 2692. [CrossRef] [PubMed]

5. Yeh, K.-H.; Su, C.; Choo, K.R.; Chiu, W. A novel certificateless signature scheme for smart objects in the
internet-of-things. Sensors 2017, 17, 1001. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/JIOT.2017.2694844
http://dx.doi.org/10.3390/s19122692
http://www.ncbi.nlm.nih.gov/pubmed/31207962
http://dx.doi.org/10.3390/s17051001
http://www.ncbi.nlm.nih.gov/pubmed/28468313

Sensors 2019, 19, 4239 20 of 21

6. Kumar, M.; Verma, H.K.; Sikka, G. A secure lightweight signature based authentication for Cloud-IoT
crowdsensing environments. Trans. Emerg. Telecommun. Technol. 2018, 30, 3292–3306. [CrossRef]

7. Chen, L.; Cheng, Z.; Smart, N.P. Identity-based key agreement protocols from pairings. Int. J. Inf. Secur.
2007, 6, 213–241. [CrossRef]

8. Amin, F.; Ahmad, A.; Sang Choi, G.S. Towards Trust and Friendliness Approaches in the Social Internet of
Things. Appl. Sci. 2019, 9, 166. [CrossRef]

9. Amin, F.; Abbasi, R.; Rehman, A.; Choi, G.S. An Advanced Algorithm for Higher Network Navigation in
Social Internet of Things Using Small-World Networks. Sensors 2019, 19, 2007. [CrossRef] [PubMed]

10. Amin, F.; Ahmad, A.; Choi, G.S. Community Detection and Mining Using Complex Networks Tools in Social
Internet of Things. In Proceedings of the 2018 IEEE Region 10 Conference, Jeju Island, Korea, 28–31 October
2018; pp. 2086–2091.

11. Kumar, P.; Kumari, S.; Sharma, V.; Sangaiah, A.K.; Wei, J.H.; Li, X. A certificateless aggregate signature
scheme for healthcare wireless sensor network. Sust. Comput. 2017, 18, 80–89. [CrossRef]

12. Horng, S.J.; Tzeng, S.F.; Huang, P.H.; Wang, X.; Li, T.; Khan, M.K. An efficient certificateless aggregate
signature with conditional privacy-preserving for vehicular sensor networks. Inf. Sci. 2015, 317, 48–66.
[CrossRef]

13. Shen, L.; Ma, J.; Liu, X.; Wei, F.; Miao, M. A Secure and Efficient ID-Based Aggregate Signature Scheme for
Wireless Sensor Networks. IEEE Internet Things J. 2017, 4, 546–554. [CrossRef]

14. Krawczyk, H.M.; Rabin, T.D. Chameleon signatures. In Proceedings of the Network and Distributed System
Security Symposium (NDSS 2000), San Diego, CA, USA, 2–4 February 2000; pp. 143–154.

15. Wu, C.H. Trapdoor Commitment, Trapdoor Hash and Their Applications. Ph.D. Thesis, Sun Yat-Sen
University, Guangzhou, China, 2010.

16. Shamir, A.; Tauman, Y. Improved Online/Offline Signature Schemes. In Proceedings of the 21th Annual
International Cryptology Conference (CRYPTO 2001), Santa Barbara, CA, USA, 19–23 August 2001;
pp. 355–367.

17. Chen, X.; Zhang, F.G.; Kim, K. Chameleon Hashing Without Key Exposure. In Proceedings of the 7th
International Information Security Conference (ISC 2004), Palo Alto, CA, USA, 27–29 September 2004;
pp. 87–98.

18. Ateniese, G.; Medeiros, B.D. On the Key Exposure Problem in Chameleon Hashes. In Proceedings of the 4th
International Conference on Security in Communication Networks (SCN 2004), Amalfi, Italy, 8–10 September
2004; pp. 165–179.

19. Chen, X.F.; Zhang, F.G.; Susilo, W.; Mu, Y. Efficient Generic On-Line/Off-Line Signatures Without Key
Exposure. In Proceedings of the 5th International Conference on Applied Cryptography and Network
Security, Zhuhai, China, 5–8 June 2007; pp. 18–30.

20. Chandrasekhar, S.; Singhal, M. Multi-trapdoor hash functions and their applications in network security.
In Proceedings of the 2nd IEEE Conference on Communications and Network Security, San Francisco, CA,
USA, 29–31 October 2014; pp. 463–471.

21. Chandrasekhar, S.; Chakrabarti, S.; Singhal, M. A trapdoor hash-based mechanism for stream authentication.
IEEE Trans. Dependable Secur. Comput. 2012, 9, 699–713. [CrossRef]

22. Chandrasekhar, S.; Singhal, M. Efficient and scalable aggregate signcryption scheme based on multi-trapdoor
hash functions. In Proceedings of the 1st Workshop on Security and Privacy in the Cloud, Florence, Italy,
28–30 September 2015; pp. 610–618.

23. Chandrasekhar, S.; Ibrahim, A.; Singhal, M. A novel access control protocol using proxy signatures for
cloud-based health information exchange. Comput. Secur. 2017, 67, 73–88. [CrossRef]

24. Boneh, D.; Gentry, C.; Lynn, B.; Shacham, H. Aggregate and Verifiably Encrypted Signatures from Bilinear
Maps. In Proceedings of the International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT 2003), Warsaw, Poland, 4–8 May 2003; pp. 416–432.

25. Lysyanskaya, A.; Micali, S.; Reyzin, L.; Shacham, H. Sequential Aggregate Signatures from Trapdoor
Permutations. In Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT 2004), Interlaken, Switzerland, 2–6 May 2004; pp. 74–90.

26. Brogle, K.; Goldberg, S.; Reyzin, L. Sequential Aggregate Signatures with Lazy Verification from Trapdoor
Permutations. In Proceedings of the 18th International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT 2012), Beijing, China, 2–6 December 2012; pp. 644–662.

http://dx.doi.org/10.1002/ett.3292
http://dx.doi.org/10.1007/s10207-006-0011-9
http://dx.doi.org/10.3390/app9010166
http://dx.doi.org/10.3390/s19092007
http://www.ncbi.nlm.nih.gov/pubmed/31035667
http://dx.doi.org/10.1016/j.suscom.2017.09.002
http://dx.doi.org/10.1016/j.ins.2015.04.033
http://dx.doi.org/10.1109/JIOT.2016.2557487
http://dx.doi.org/10.1109/TDSC.2012.48
http://dx.doi.org/10.1016/j.cose.2017.02.008

Sensors 2019, 19, 4239 21 of 21

27. Ahn, J.H.; Green, M.; Hohenberger, S. Synchronized aggregate signatures: New definitions, constructions
and applications. In Proceedings of the 17th ACM conference on Computer and communications security,
Chicago, IL, USA, 4–8 October 2010; pp. 473–484.

28. Gentry, C.; Ramzan, Z. Identity-Based aggregate signatures. In Proceedings of the International Conference
on Theory & Practice of Public-key Cryptography, New York, NY, USA, 24–26 April 2006; pp. 257–273.

29. GONG, Z.; LONG, Y.; HONG, X.; CHEN, K. Two Certificateless Aggregate Signatures From Bilinear Maps.
In Proceedings of the 8th ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD 2007), Qingdao, China, 30 July–1 August 2007;
pp. 2093–2106.

30. Zhang, L.; Qin, B.; Wu, Q.H.; Zhang, F.T. Efficient many-to-one authentication with certificateless aggregate
signatures. Comput. Netw. 2010, 54, 2482–2491. [CrossRef]

31. Pointcheval, D.; Stern, J. Security arguments for digital signatures and blind signatures. J. Cryptol. 2000, 13,
361–396. [CrossRef]

32. Chen, H.; Wei, S.M.; Zhu, C.J.; Yang, Y. Secure certificateless aggregate signature scheme. J. Softw. 2015, 26,
1173–1180.

33. Li, Y.P.; Nie, H.H.; Zhou, Y.W.; Yang, B. A novel and provably secure certificateless aggregate signature
scheme. J. Cryptologic. Res. 2015, 2, 526–535.

34. Zhou, Y.W.; Yang, B.; Zhang, W.Z. Efficient and provide security certificateless aggregate signature scheme.
J. Softw. 2015, 26, 3204–3214.

35. Cheng, L.; Wen, Q.Y.; Jin, Z.P.; Zhang, H.; Zhou, L.M. Cryptanalysis and improvement of a certificateless
aggregate signature scheme. Inf. Sci. 2015, 295, 337–346. [CrossRef]

36. Cui, J.; Zhang, J.; Zhong, H.; Shi, R.H.; Xu, Y. An efficient certificateless aggregate signature without pairings
for vehicular ad hoc networks. Inf. Sci. 2018, 451, 1–15. [CrossRef]

37. Johnson, D.; Menezes, A.; Vanstone, S. The Elliptic Curve Digital Signature Algorithm (ECDSA). Int. J.
Inf. Secur. 2001, 1, 36–63. [CrossRef]

38. Pointcheval, D.; Stern, J. Security proofs for signature schemes. In Proceedings of the International Conference
on the Theory & Applications of Cryptographic Techniques (EUROCRYPT 1996), Saragossa, Spain, 12–16
May 1996; pp. 387–398.

39. He, D.B.; Zeadally, S.; Xu, B.W.; Huang, X.Y. An Efficient Identity-Based Conditional Privacy-Preserving
Authentication Scheme for Vehicular Ad Hoc Networks. IEEE Trans. Inf. Forensic Secur. 2015, 10, 2681–2691.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.comnet.2010.04.008
http://dx.doi.org/10.1007/s001450010003
http://dx.doi.org/10.1016/j.ins.2014.09.065
http://dx.doi.org/10.1016/j.ins.2018.03.060
http://dx.doi.org/10.1007/s102070100002
http://dx.doi.org/10.1109/TIFS.2015.2473820
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Preliminaries
	Symbolic Representation
	Double Trapdoor Hash Function
	Elliptic Curve Discrete Logarithm
	Aggregate Signature
	Security Model
	System Model

	Scheme of Double Trapdoor Hash Function
	Double Trapdoor Hash Scheme Based on ECDLP
	Security Analysis

	Multi-Trapdoor Hash functions based on ECDLP
	Formal Definition
	The ECDLP-Based Multi-Trapdoor Hash Function
	Security Analysis

	Aggregate Signature Scheme Based on MTH
	The Aggregate Signature Scheme Based on MTH
	The Correctness of Aggregate Verify
	Security Proof
	Security Comparisons
	Performance Analysis

	Conclusions
	References

