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Abstract: In this paper, we demonstrated a novel, all-fiber highly sensitive bend sensor based on a
four-core fiber rod with a diameter of 2.1 mm. We observed a high resolution of the sensor at a level
of 3.6 × 10−3 m−1. Such a sensor design can be used in harsh environments due to the relatively small
size and all-fiber configuration, containing no adhesive, nor welded joints.
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1. Introduction

Fiber Bragg gratings (FBGs) are widely used as selectors of optical channels, optical filters, and
mirrors for fiber lasers [1]. Bragg structures are also extensively applied as sensors of physical values,
such as temperature and mechanical deformation [2,3]. A typical FBG is a periodic structure with a
specific period Λ inscribed in the core of a single-mode optical fiber. This structure reflects the light in
a narrow spectral range at the Bragg wavelength λB = 2nΛ, where n is the effective refractive index for
the propagating fiber’s mode. In addition to a high measurement accuracy, the key advantage of such
sensors is their utility to be combined into arrays by inscribing the Bragg structures in a single optical
fiber with its own Bragg wavelength for each sensor.

Currently, such sensors are widely used for the structure monitoring of bridges, buildings, complex
engineering constructions and replacing electrical analogs [2]. Bragg sensors provide a high resolution
of about 1 micro-strain. That is very important for a number of tasks in which it is necessary to ensure
high accuracy of linear deformation measuring. This type of sensor is suitable for measuring bend
deformations as well. However, to increase sensitivity, the sensor has to be installed as far as possible
from the central axis of the bend. To measure bend deformations inside channels and pipes, special
composite structures have to be designed, based on transducers that convert bending deformations to
a linear deformation of the sensors [4–10] attached to the side surface of the transducer. Such sensor
systems allow, for example, to conduct the measurements by inserting the sensing element into the
channel of the object under investigation.

The high temperature cross-sensitivity of the Bragg sensors necessitates applying special
temperature compensation sensors in the measuring setup [11–13]. Another solution is applying
differential measurement schemes that are insensitive to temperature, but require several independent
lines of sensing elements [7,14]. Most commonly, the two-axis bend deformation sensor has a circle
cross-section [5–7]. Its diameter is determined by the application area, as well as the required sensitivity
to the bending deformation magnitude.
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In some cases, it is necessary to use compact sensors of small diameters (2–10 mm), which is
challenging when using combined structures. It should be noted that the accuracy and reliability of
such composite systems depend upon the installation methods, materials and operating conditions.
Moreover, the sensitivity of the sensor deteriorates as the diameter of the sensor decreases. At the
same time, the probability of error increases due to the instability of the adhesive joints, which have
non-zero plasticity. The difference in the thermal expansion coefficients of structural elements may
also be a reason for the increase in the measurement errors. Application of such sensors in the nuclear
industry deserve a special mention, namely for monitoring the technological parameters of nuclear
reactors. For instance, it is essential to control the curvature of the reactor’s technological channels
at high temperatures and increased background radiation [4]. Harsh operating conditions impose
severe restrictions on the design of sensors. For example, facing high level of ionizing radiation,
it is impossible to use adhesive compounds. Some design features, e.g., metal bases, makes them
inapplicable, considering high temperatures and the additional radiation heating of a reactor under
operation. Therefore, the development of all-fiber, radiation-resistant bending sensors featuring high
sensitivity is of great interest.

A number of papers [15–21] have proposed bend sensors based on multicore optical fibers or
fiber assemblies with Bragg gratings. The bend magnitude of those sensors is also determined by the
principle of the differential scheme. However, the sensitivity of such sensors to small bends remains
low, due to the small diameter of the fiber. The possible solution for increasing the sensitivity of fiber
bend sensors is manufacturing combined schemes based on a Fabry-Perot interferometer [22]. The
interferometer is produced by two Bragg gratings inscribed, as in previously mentioned setups, in
multicore fibers. Such sensors are high-sensitive, but they have a significant disadvantage of being
difficult to combine into arrays for manufacturing long quasi-distributed sensor systems. In [23], the
combined bend sensor based on twin-core few-mode fiber with inscribed grating was proposed. The
sensor demonstrated relatively high sensitivity. However, sensitivity of such sensors strongly depends
on the bend direction angle.

In this paper, we propose an original, all-fiber design of a high-sensitive bend sensor based on
Bragg structures.

2. Materials and Methods

We manufactured a few samples of the sensors for the experiments. The sensors’ design is based
on the bend measurement differential principle by means of two sensitive elements located on different
sides of its structure (Figure 1) [7,14]. Such an arrangement of the sensing elements allowed us to
increase the measurement accuracy and get rid of the temperature influence, since the difference of the
sensors’ readings rather than absolute values is used to measure the magnitude of the deformation.
Measuring the magnitude of the bend in two directions forces us to use at least three sensing elements,
or two pairs of them, orthogonal to each other in the cross-section of the sensor.
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This measurement principle was used in combined structures of fiber bend sensors meant to
control the curvature of the technological channels of an atomic reactor under repair [4], for the early
warning of landslides and other geological tasks [5,6]. The principle of measurement using three- and
four-core fibers is well described in literature [15–21]. However, the aforementioned sensors, based on
multicore fibers, have a small diameter and a small distance between the cores (of about 50–70 µm).
For this reason, they cannot be used as high-sensitive instruments for measuring small bend values.

The key feature of the design of the new bend sensor is a specially developed silica glass fiber
rod with the external diameter of 2.1 mm. This rod contains four light-guiding, single-mode cores
with a diameter of 7–8 µm. The cores are evenly spaced through 90◦ along the perimeter of the rod
cross-section at a distance of about 50 µm from the rod surface. The structure of the rod was formed
at the stage of the fiber preform fabrication. The rod was drawn with a fiber drawing tower and
covered with an acrylate protective layer. To connect the rod to the spectrometric equipment, standard
single-mode fibers, with 1-mm diameter ferules on the ends, were glued with immersion glue to the
edge of the rod positioned correspondingly to the cores. The alignment of these fibers during the glue
bonding was carried out according to the level of the output light signal. The estimated coupling losses
at each joint did not exceed 2 dB. The available technology allowed us to achieve good reproducibility
of the sensors manufacturing.

Bragg gratings with equal λB were inscribed in each core in one cross-section. The gratings were
inscribed by means of point-by-point inscription technology [24], but in our case, with the second
harmonic radiation of a femtosecond ytterbium fiber laser. The pulse duration was ~300 fs, the energy
of the pulse during recording was about 100 nJ. Applying the second harmonic of the ytterbium-doped
fiber laser at 532 nm allowed us to minimize the focusing spot of the laser beam. Thus the first-order
Bragg gratings inscription by the point-by-point method with high contrast is simplified.

The schematic design of the rod with Bragg gratings and a picture of its end face with the cores
illuminated by a green laser radiation are shown in Figure 2.
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Figure 2. (a) Schematic design of a section of four-core silica rod with Bragg gratings; (b) Photo of the
rod’s edge.

Due to the rod diameter being relatively large compared to a standard optical fiber and, as a
consequence, having light-guiding cores located far from the central axis, such a sensor has a much
higher sensitivity. In case of two orthogonal sensing elements, the total deformation ε during the
process of the rod bending can be estimated from the formula [16]:

ε = ε1 − ε2 =
d
R

(1)

where ε1 and ε2 are the deformations of the upper and lower gratings, respectively (Figure 1), d is the
distance between the cores, and R is the bend radius of the rod. Taking into account the photo-elastic
coefficient of the fiber pe, the total wavelength shift of the Bragg gratings ∆λ can be written as:
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∆λ =
λB(1− pe)d

2R
(2)

The sensitivity of the Bragg grating with a resonant wavelength near 1.5 µm is approximately
1.1–1.2 pm/µε [3]. Considering the fact that the standard resolution of the grating-assisted system is
1–2 pm, and taking into account that the distance between the cores is 2 mm, the expected minimum
detectable curvature κ = 1/R can be estimated as 10−3 m−1.

3. Experiment and Results

The experimental setup is shown in Figure 3. The sensor was mounted on the side supports
located at a distance of L = 800 mm between each other. The supports fixed the rod in a straight
position, while also allowing its longitudinal slip to minimize possible longitudinal deformations of
the sensor during its bending process. At the edge, the rod was installed in a rotation mount, which
provided the rotation of the rod around its axis to perform measurements at different positions of the
cores relative to the direction of the bend. The bend was performed with the help of a micrometer
screw located in the center of the sensor close to the section with Bragg gratings. The spectrum was
measured by means of a MicronOptics SM125-200 four-channel Bragg interrogator.
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Figure 3. Experimental setup: 1—four core fiber, 2—side supports, 3—micrometer screw, 4—rotation
mount, 5—interrogator.

For simplicity, the shape of the rod deformation curve in such a configuration can be divided into
two equal sections from the attachment point to the force application point (L/2), each of which is well
described by the following relation [20,25]:

ω(x) = 12
a

(L/2)2

(
x2

4
−

x3

3L

)
(3)

where ω(x) is the deviation from the straight line along the x coordinate, and a is the magnitude of the
transverse deformation at the point of the force application.

In general, the curvature κ can be calculated with the Formula (4):

κ =
ω′′ (x)(

1 + (ω′(x))2
) 3

2

(4)

In case of small values of deformation (i.e., when the first derivative ω’(x) is small), the curvature κ
can be calculated by simplifying expression (4), calculating only the second derivative of the function (3):
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κ = ω′′ (x) = 12
a

(L/2)2

(1
2
−

2x
L

)
, (5)

For L = 800 at the point of the force application (x = L/2), expression (5) takes the following form:

κ =
1
R

= −
6a

4002 , (6)

The cross-section of the sensor with four cores is schematically shown in Figure 4. Vector F
indicates the direction of force applied onto the sensor. In our calculations, we used the angle θ
between the vector F and the axis going through cores 2 and 1 in the sensor cross-section. The direction
of this axis is determined by the unit vector k. The orthogonal axis going through the cores 4 and 3 is
also denoted by the unit vector j. In our work, we conducted experiments for three different values of
the angle θ.
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Figure 4. The diagram of the influence on the sensor. The angle θ determines the angle between the
direction of external force F applied onto the sensor and the axis, going through the cores 2 and 1.

Figure 5 shows the initial spectra of the sensor for all four channels (a) and the spectra for its bend
(b) with a curvature κ = 0.47 m−1 (transverse deformation a = 10 mm) and the angle of influence θ
of approximately −2◦. We determined the Bragg wavelength through the standard software of the
interrogator without averaging the data.
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deformation a = 10 mm and θ ≈ −2◦.

The results of the experiments are shown in Figure 6, in the form of dependences of the change
in the sensors’ Bragg wavelengths on the magnitude of the linear influence a. At a small angle θ,
the magnitude of the resulting deformation can be calculated by Formula (2) or (1), considering the
sensitivity being equal to 1.1 pm/µε. Such influence is obviously a special case of the influence along
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an arbitrary axis. In general, the magnitude and direction of the deformation, namely the curvature κ
for a four-core sensor, can be calculated by the general Formula (7):

κ =
1
R

=
(ε1 − ε2) · cosθj + (ε3 − ε4) · sinθk

d
, (7)

where ε1, ε2, ε3, and ε4 are the values of the relative deformations of the Bragg gratings located in the
cores 1, 2, 3 and 4, respectively. The unit vectors j, k coincide with the axes drawn through the cores
2–1 and 4–3, respectively (Figure 4). It should be noted that we carried out the coarse measurement of
the angle θ with the help of the rotation mount dial. We have made a more accurate calculation of the
actual angle of force application, according to the results of measurements with the help of Formula (8):

θ = arctan
(
ε3 − ε4

ε1 − ε2

)
(8)

Obviously, at the zero values of the denominator, the angle θ becomes 0 or π, depending on
the sign of the numerator. The caption to Figure 6 shows the values of actual angles calculated by
Formula (8).
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Applying expression (7) to the experiment’s results, we calculated the value of the curvature κ at
the point of force application for each experiment. The results for three different angles θ are presented
in Figure 7. The figure below shows that the calculation of the curvature at different angles of force
application θ does not lead to any systematic errors. As a result, the dependence of the calculated
curvature on the magnitude of the linear transverse influence a at different angles is almost the same.
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where ∆εn is the standard deviation of the measured value. Considering that this value is approximately
the same (we denote it by ∆ε), and the angle θ does not change during measurement for all εn, it can
be shown that:

∆κ =

√
2∆ε
d

(10)

We fit all experimental data by means of a linear function, also shown in the figures as straight
lines (Figure 6). The standard deviation calculated for the series of experiments was ∆ε = 1.7 µε. The
error in determining the curvature κ does not exceed the value ∆κ = 1.2 × 10−3 m−1. The triple standard
deviation corresponds to the resolution of the sensor [26,27] that can be estimated as 3.6 × 10−3 m−1.

Thanks to the solid silica glass structure and the absence of adhesive joints, such a sensor retains
a high accuracy and stability of readings, and opens up the prospects of being applied at high
temperatures and under ionizing radiation conditions.

4. Conclusions

In this paper, we proposed the novel design of an all-fiber grating-assisted bend sensor, featuring
Bragg gratings inscribed in four cores of a silica glass fiber rod assembly with the external diameter
of 2.1 mm. The sensor’s high resolution of 3.6 × 10−3 m−1 was demonstrated. The absence of
adhesive joints and components of alien materials in the operating part of the sensor allowed us to
ensure the reliable operation of the sensor in harsh environments, including high temperatures and
ionizing radiation.
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