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Abstract: A forward–backward labeled multi-Bernoulli (LMB) smoother is proposed for multi-target
tracking. The proposed smoother consists of two components corresponding to forward LMB filtering
and backward LMB smoothing, respectively. The former is the standard LMB filter and the latter is
proved to be closed under LMB prior. It is also shown that the proposed LMB smoother can improve
both the cardinality estimation and the state estimation, and the major computational complexity
is linear with the number of targets. Implementation based on the Sequential Monte Carlo method
in a representative scenario has demonstrated the effectiveness and computational efficiency of the
proposed smoother in comparison to existing approaches.

Keywords: random finite set; bayes smoother; labeled multi-Bernoulli; multi-target tracking;
Sequential Monte Carlo

1. Introduction

Multi-target tracking (MTT) has been widely used in many engineering fields including aerospace
surveillance, biomedical analytics, autonomous driving, indoor localization, robotic networks and
so on [1–5]. In the applications, both the number of targets and their states may vary in time, and
the measurements are obscured by clutter and missed detection [2,3]. Traditionally, approaches to
MTT are built on the base of appropriate data association methods such as typically joint probabilistic
data association [1] or multiple hypothesis tracking [6,7]. A novel approach has been developed by
Mahler based on the random finite set (RFS) theory [2] which has attracted substantial attention in
the last decade. Simply speaking, the RFS methods model the target states and the measurements
into the RFSs explicitly and have gained tremendous interest in recent years [8]. A variety of RFS
filters have been proposed, including probability hypothesis density (PHD) filter [9,10], cardinalized
PHD (CPHD) filter [11], Cardinality Balanced multi-Bernoulli (CBMeMBer) filter [12], generalized
labeled multi-Bernoulli (GLMB) filter [13,14] and labeled multi-Bernoulli (LMB) filter [15]. Compared
with the filtering that refers the current state, the smoothing [16–19] typically refers to estimating the
target state of the past time using all measurements till the current time which has a better accuracy
than filtering but also suffers from a higher computational cost. Therefore, it is of great significance in
practice to develop an RFS smoother that is computationally efficient, reliable and accurate.
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The Bernoulli smoother was first proposed in [20,21]; it performs better than the Bernoulli filter,
but adapts to, at most, one target. For the multi-target problem, the forward–backward PHD smoothers
are proposed in [17,18,22–24]. It has been shown in [17] that the PHD smoother can improve the
accuracy of position estimation as compared with the PHD filter, but does not necessarily gain better
cardinality estimation. The CPHD smoother is proposed in [25] which uses an approximate scheme
to overcome the intractability of the classic CPHD smoother [26] but bears a complicated algorithm
structure. A forward–backward multi-target multi-Bernoulli (MeMBer) smoother is proposed in [27]
which also does not necessarily improve the cardinality estimation. However, these smoothers, as
well as the corresponding filters, do not provide the information for each track. Therefore, labelled
RFS-based filters and smoothers have been developed [28–32], for generating track estimates which is
also the focus of this paper.

The GLMB smoother is proposed in [32], which is the first exact closed form solution to the
smoothing recursion based on labeled RFS but has not been implemented in practice due to the
overcomplicated data associations. Recently, Chen has pointed out the challenge to form tracks
since the optimal solution is not as simple as labeling [33]. Relevantly, a multi-scan GLMB filter
based on the smoothing-while-filtering framework is proposed in [34] for better labeling. However,
the truncation of the multi-scan GLMB filter needs to solve an NP-hard multi-dimensional assignment
problem. In short, these existing labeled smoothers have a high computational complexity even if it
is practically implementable. Furthermore, we point out that, what is also related to the framework
of smoothing-while-filtering [34] is the joint smoothing and filtering [19,35,36] based on which so far,
however, only a single target is considered.

In this paper, we derive a forward–backward LMB smoother for multi-target tracking. Preliminary
and limited results have been published in [37]. This paper provides additional results, complete
proofs, and additional experiments. The proposed smoother consists of two parts regarding the
forward LMB filtering and backward LMB smoothing, respectively. While in the former we apply the
standard LMB filter [15], the key contribution of our work lies in the backward smoothing algorithm
design. We prove that the proposed backward LMB smoothing is closed under the LMB prior for the
standard multi-target system models and the backward smoothed density of each track is similar to
the Bernoulli backward smoothed density [20]. Superior to the approximate parameteric/Gaussian
(mixture) approximation [38], the Sequential Monte Carlo (SMC) method is a powerful method for
representing arbitrary/non-Gaussian models [4]. Based on the SMC method, the proposed smoother
reduces both the state error and the cardinality error as compared with the PHD smoother [17],
the MeMBer smoother [27] and the LMB filter [15], and has a lower computational complexity as
compared with the PHD smoother and the MeMBer smoother.

The rest of the paper is organized as follows. Basic definitions of labeled RFS and the multi-target
Bayes forward–backward smoother are reviewed briefly in Section 2. The proposed forward–backward
LMB smoother is detailed in theory in Section 3 and implemented based on the SMC in Section 4,
respectively. Simulation results are presented in section 5 before we conclude in Section 6.

2. Background

2.1. Notation

Single target states are denoted by lowercase letters, for example, x and x. Multi-target states are
denoted by uppercase letters, for example, X and X. x and X are the unlabeled state representations.
x and X are the labeled state representations. State spaces are denoted by blackboard bold letters,
for example, a label space which contains a countable number of distinct labels is denoted as L,
and a unlabeled target state space is denoted as X. A labeled single target state has the form x = (x, `),
where x ∈ X and ` ∈ L. A labeled multi-target state has the form X =

{
x1, ..., xi, ..., x|X|

}
, where

xi denotes a labeled single target state in X, |·| denotes the cardinality (or the number of targets) of
a multi-target set, and X ⊆ X×L.
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The projection L : X× L → L is to make L (x) = ` and L (X) = {L(x) : x ∈ X}. Then define
a generalized Kronecker delta function and inclusion function as:

δY(X) ,

{
1, X = Y;
0, otherwise.

(1)

1Y(X) ,

{
1, X ⊂ Y;
0, otherwise.

(2)

Define ∆ (X) , δ|X| (|L (X)|). The inner product of f (x) and g (x) on a labeled single target space
is defined as

〈 f , g〉 =
∫

f (x)g (x) dx =
∫

f (x)g(x)dx (3)

The multi-target exponential form of X is defined as

hX ,

{
1, X = ∅;
∏x∈X h(x), X 6= ∅.

(4)

2.2. GLMB and LMB RFS

The GLMB RFS X is a Labeled RFS constructed by labeled multi-target states. The distribution of
an GLMB RFS [13] is exactly closed under the prediction and update of the multi-target Bayes filter.
The GLMB distribution is denoted as

π (X) = ∆ (X) ∑
c∈C

ω(c) (L (X))
[

p(c)
]X

(5)

where C is a discrete index set, p(c) (·, `) is the density of the track `, ω(c) (I) is the nonnegative weight
of the hypothesis (c, I), and ∑

I⊂L
∑

c∈C
ω(c) (I) = 1,

∫
p(c) (x, `)dx = 1.

The distribution of an LMB RFS with the parameter set π = {(r`, p`)}`∈L is given by [15]

π (X) = ∆ (X)ω (L (X)) pX (6)

where

ω (I) = ∏
`∈L

(
1− r`

)
∏
`∈I

1L (`) r`

1− r`
(7)

p` , p(x, `) (8)

where r` denotes the existence probability of the track `, p (·, `) denotes the density, and ω (I) denotes
the weight of the hypothesis I =

{
`1, ..., `|I|

}
. Note that L is a discrete countable space and the number

of labels in L equals to the number of the Bernoulli components (with non-zero existence probability)
in the LMB RFS.

An LMB RFS is a special case of an GLMB RFS, and the densities and the existence probabilities
of different tracks in an LMB RFS are both uncorrelated. Two properties associated with an LMB RFS
are as follows. More specifically, the cardinality distribution [2] is given by

p (n) =

(
∏
`∈L

(
1− r`

))
σ|L|,n

(
r`1

1− r`1
, · · ·, r`|L|

1− r`|L|

)
(9)

where σν,n (x1, · · ·, xν) is the elementary homogeneous symmetric function of degree n in ν variables.
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Lemma 1. If Xa and Xb are both LMB RFSs with the probability densities πa (Xa) and πb (Xb), respectively,
where Xa ⊆ X× La, Xb ⊆ X× Lb and La

⋂
Lb = ∅, X = Xa

⋃
Xb is an LMB RFS with the probability

density π (X) and vice versa. The probability densities of πa (Xa), πb (Xb) and π (X) have the relations
as follows :

π (X) = πa (Xa)πb (Xb) (10)

The proof of Lemma 1 is given in the Appendix A.

2.3. Multi-Target Bayes Forward–Backward Smoother

The recursion of multi-target Bayes forward–backward smoother is shown in Figure 1 which
consists of forward Bayes filtering and backward Bayes smoothing. The multi-target state at t is Xt,
where Xt ⊆ X×L1:t and L1:t denotes the label space of the targets at t (including those born prior to
t). The measurement set at t is Zt. The prediction and update for the forward Bayes filtering can be
denoted as [2]

πt|t−1 (Xt) =
∫

ft|t−1 (Xt|Xt−1)πt−1|t−1 (Xt−1)δXt−1 (11)

πt|t (Xt) =
gt (Zt|Xt)πt|t−1 (Xt)∫
gt (Zt|X)πt|t−1 (X)δX

(12)

where πt|t−1 is denoted as the predicted multi-target density from t− 1 to t, ft|t−1 is denoted as the
multi-target Markov transition density at t, πt|t is denoted as the multi-target posterior density at t,
and gt is denoted as the multi-target likelihood function at t. The integral in the equations is the set
integral. If the backward smoothed density from t to k (k ≤ t) is denoted by πk|t (Y) which is initialized
with πt|t (Y), the backward Bayes smoothed density πk−1|t (X) at k− 1 can be written as [32]

πk−1|t (X) = πk−1|k−1 (X)
∫

fk|k−1 (Y|X)
πk|t (Y)

πk|k−1 (Y)
δY (13)

/ 1t t1/ 1t t /t t

1/t t /t t

Prediction Update

Initialization

Forward filtering

Backward smoothing

/ 1k k1/ 1k k /k k

1/k t /k t

Prediction Update

Figure 1. The recursion of the multi-target Bayes forward–backward smoother.

2.4. Multi-Target Motion and Measurement Models

Let p`s,t|t−1 , ps,t|t−1 (x, `) denote the surviving probability of the target (x, `) from t − 1 to t.
ft|t−1 (x+| (x, `)) denotes the single target Markov transition density from t− 1 to t. X denotes the
multi-target state at t − 1 while Y− denotes the survival multi-target state from t − 1 to t, where
X ⊆ X× L1:t−1 and Y ⊆ X. Considering the survival targets only, multi-target Markov transition
density fs,t|t−1 is [2,13]

fs,t|t−1
(
Y−|X

)
= ∆

(
Y−
)

∆ (X)
(

1− p`s,t|t−1

)X
∏

`∈L(Y−)

1L(X) (`) p`s,t|t−1 ft|t−1 (y|x, `)(
1− p`s,t|t−1

) (14)

It is assumed that the newborn targets are an LMB RFS denoted as Y+, and Y+ ⊆ X×Lt, where Lt

denotes the label space of the newborn targets at t. r`B,t|t−1 denotes the birth probability of target (x, `)
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at t and pB,t|t−1 (y, `) denotes the corresponded density. The density fB,t|t−1 of newborn targets can be
denoted as [2,13]

fB,t|t−1
(
Y+
)
= ∆

(
Y+
)

∏
`∈Lt

(
1− r`B,t|t−1

)
∏

`∈L(Y+)

1Lt (`) r`B,t|t−1 pB,t|t−1 (y, `)(
1− r`B,t|t−1

) (15)

The multi-target state at t can be denoted as Y = Y+ ⋃Y− where Y+ and Y− are disjoint and
independent. From Lemma 1, the joint multi-target Markov transition density ft|t−1 is written as [2,13]

ft|t−1 (Y|X) = fB,t|t−1
(
Y+
)

fs,t|t−1
(
Y−|X

)
(16)

Multi-target likelihood function gt (Zt|X) is given as [2]

gt (Zt|X) = e−〈κ,1〉κZt
(

1− p`D,t

)X
∑

θ∈Θ

 ∏
θ(`)>0

p`D,tgt

(
zθ(`)|x, `

)
(

1− p`D,t

)
κ
(

zθ(`)

)
 (17)

where p`D,t , pD,t (x, `) denotes the detection probability of target (x, `) at t. gt (z|x, `) denotes the
probability that target (x, `) generates the measurement z if detected. The intensity function (or the
PHD) of the Poisson clutter is κ (·). The association function θ : L (X)→ {0, 1, ..., |Zt|} has the property
that θ (`i) = θ (`i′) > 0 implies `i = `i′ . Θ denotes the set of all association functions and θ ∈ Θ.
When θ (`) = 0, the target (x, `) is missed in detection. When θ (`) > 0, zθ(`) denotes the measurement
associated with target (x, `). Zt/

⋃
`∈L(X),θ(`)>0

zθ(`) denotes the false alarms at time t.

3. LMB Smoother

In this section, we detail the proposed LMB smoother and discuss the cardinality estimation.
The LMB smoother framework can be simply depicted as shown in Figure 2 which consists of forward
LMB filtering and backward LMB smoothing. The forward LMB filtering used in our approach is
the standard LMB filter [15]. The backward LMB smoothing each time step has Ld-step backward
smoothing recursions where Ld denotes the fixed lag.

Prediction
First order moment 

approximation
Update

LMB GLMB LMB Backward

smoothing

ZBirth

LMB

LMB

Smoothing output

Forward filtering

Ld

LMB

Figure 2. The proposed LMB smoother framework.

3.1. Forward LMB Filtering

3.1.1. Prediction

Given that the multi-target prior at time t− 1 is an LMB (distribution) parameterized as πt−1|t−1 ={(
r`t−1|t−1, p`t−1|t−1

)}
`∈L1:t−1

and the density of the newborn targets is an LMB parameterized as

πB,t =
{(

r`B,t, p`B,t

)}
`∈Lt

, then the predicted multi-target density at t remains an LMB which can be

denoted as [12,15]

πt|t−1 =
{(

r`S,t|t−1, p`S,t|t−1

)}
`∈L1:t−1

⋃{(
r`B,t, p`B,t

)}
`∈Lt

=
{(

r`t|t−1, p`t|t−1

)}
`∈L1:t

(18)
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where
η`

S,t|t−1 =
〈

p`s,t|t−1 (·) , p`t−1|t−1 (·)
〉

(19)

r`S,t|t−1 = η`
S,t|t−1r`t−1|t−1 (20)

pS,t|t−1 (x+, `) =

〈
ps,t|t−1 (·, `) ft|t−1 (x+| (·, `)) , pt−1|t−1 (·, `)

〉
η`

S,t|t−1

(21)

pt|t−1 (x+, `) = 1L1:t−1 (`) pS,t|t−1 (x+, `) + 1Lt (`) pB,t (x+, `) (22)

3.1.2. Update

Assume that the predicted multi-target density at t is an LMB with the parameter set πt|t−1 ={(
r`t|t−1, p`t|t−1

)}
`∈L1:t

, namely,

πt|t−1(X) = ∆ (X)ωt|t−1 (L (X))
[

p`t|t−1

]X
(23)

Under the likelihood function of (17), the updated multi-target posterior density is an GLMB
(Strictly speaking, it’s a δ-GLMB which is a special case of an GLMB [13]) which can be denoted as [13]

πt|t (X) = ∆ (X) ∑
(I+ ,θ)∈F(L1:t)×ΘI+

ω
(I+ ,θ)
t|t (Z) δI+ (L (X))

[
pθ

t|t (x, `)
]X

(24)

where F (L1:t) denotes the class of L1:t, I+ =
{
`1, ..., `|I+ |

}
denotes the label set of a hypothesis, ΘI+ is

the set of the association function θ : I+ → {0, 1, ..., |Z|}, and

ω
(I+ ,θ)
t|t ∝ ωt|t−1 (I+)

[
ηθ

Z

]I+
(25)

pθ
t|t (x, `) =

pt|t−1 (x, `)ψZ (x, `; θ)

ηθ
Z (`)

(26)

ηθ
Z (`) =

〈
pt|t−1 (·, `) , ψZ (·, `; θ)

〉
(27)

ψZ (x, `; θ) =


pD(x,`)g(zθ(`) |x,`)

κ(zθ(`))
, θ (`) > 0

1− pD (x, `) , θ (`) = 0
(28)

In the update of the forward LMB filtering, the multi-target posterior density matches the
first-order moment of (24) for computing simplification, i.e., [15]

πt|t ≈
{(

r`t|t, p`t|t
)}

`∈L1:t
(29)

where
r`t|t = ∑

(I+ ,θ)∈F(L1:t)×ΘI+

ω
(I+ ,θ)
t|t (Z) 1I+ (`) (30)

pt|t (x, `) =
1

r`t|t
∑

(I+ ,θ)∈F(L1:t)×ΘI+

ω
(I+ ,θ)
t|t (Z) 1I+ (`) pθ

t|t (x, `) (31)
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The approximate posterior density (29) of the forward LMB filtering preserves the first-order
moment of the posterior density (24). It is proved in [29,31] that the approximate posterior density (29)
in the LMB class minimizes the Kullback-Leibler divergence (KLD) relative to the posterior density (24).

3.2. Backward LMB Smoothing

In this subsection, the backward LMB smoothing is derived. Our derivation directly relies on the
multi-target backward smoothing recursion (13), and is different from the derivation of the backward
GLMB smoothing [32] which uses the backward corrector recursion [18] as an intermediate process to
avoid the set integral of the quotient of two GLMBs.

Proposition 1. Given that the multi-target posterior πk−1|k−1 (X) and the predicted multi-target density
πk|k−1 (Y) are both LMBs, and the backward smoothed density πk|t (Y) from t to k (k ≤ t) is an LMB, then the
backward smoothed density πk−1|t (X) from t to k− 1 is also an LMB which can be written as

πk−1|t =
{(

r`k−1|t, p`k−1|t

)}
`∈L1:k−1

(32)

where

r`k−1|t = 1−

(
1− r`k−1|k−1

) (
1− r`k|t

)
1− r`k|k−1

(33)

pk−1|t (x, `) =
pk−1|k−1 (x, `)

(
αs,k|t (x, `) + βs,k|t (x, `)

∫ fk|k−1(y|x,`)pk|t(y,`)
pk|k−1(y,`) dy

)
∫

pk−1|k−1 (x, `)
(

αs,k|t (x, `) + βs,k|t (x, `)
∫ fk|k−1(y|x,`)pk|t(y,`)

pk|k−1(y,`) dy
)

dx
(34)

αs,k|t (x, `) ,

(
1− r`k|t

) (
1− ps,k|k−1 (x, `)

)
1− r`k|k−1

(35)

βs,k|t (x, `) ,
r`k|t ps,k|k−1 (x, `)

r`k|k−1

(36)

The proof of Proposition 1 is given in Appendix B. It is observed that the smoothed density
(r`k−1|t, p`k−1|t) of the track ` has the same form as the smoothed Bernoulli density when it doesn’t take
into account the newborn target [20]. Therefore, the proposed LMB smoother can be deemed as an
extension of the Bernoulli smoother [20] to multiple targets. From (33), the existence probability of
the track ` relates to r`k−1|k−1, r`k|k−1 and r`k|t. From (34), the density of the track ` contains two terms,
where one term only relates to pk−1|k−1 (x, `) and αs,k|t (x, `) which preserves the forward filtering state
at k− 1, and the other term relates to the backward smoothing.

Remark 1. The proposed LMB smoother owns a good computationally efficiency to two strategies: First,
the newborn tracks are uncorrelated with the backward smoothing since the newborn tracks cannot be alive prior
to the birth time, resulting in a simple label space. Second, the existence probabilities and the probability densities
of different tracks for an LMB RFS are uncorrelated, and then each track component can be calculated separately,
so the computational complexity of the backward smoothing is linear with the number of the tracks.

Remark 2. The proposed LMB smoother is also approximate Bayes optimal because the LMB family is closed
under the prediction operation and the backward smoothing operation. Although the LMB family is not closed
under the update operation, the first-order moment approximation in the LMB class minimizes the KLD relative
to the posterior density.
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4. SMC Implementation and Algorithm Analysis

This section presents the SMC implementation and the state extraction, and analyze the algorithm
complexity of the proposed LMB smoother.

4.1. SMC Implementation

Prediction: Consider the multi-target posterior at t− 1 is πt−1|t−1 =
{(

r`t−1|t−1, p`t−1|t−1

)}
`∈L1:t−1

.

In the SMC implementation, p`t−1|t−1 is represented by a set of weighted particles{(
ωi

t−1|t−1 (`) , xi
t−1|t−1 (`)

)}J`t−1|t−1

i=1
. The density of the newborn targets at t is

πB,t =
{(

r`B,t, p`B,t

)}
`∈Lt

, where p`B,t is also represented by a set of weighted particles{(
ωi

B,t (`) , xi
B,t (`)

)}J`B,t

i=1
. Through the prediction of (18)–(22), the predicted multi-target density at

t is πt|t−1 =
{(

r`S,t|t−1, p`S,t|t−1

)}
`∈L1:t−1

⋃{(
r`B,t, p`B,t

)}
`∈Lt

where r`S,t|t−1 is calculated by (20) and

p`S,t|t−1 is also represented by
{(

ωi
S,t|t−1 (`) , xi

S,t|t−1 (`)
)}J`t−1|t−1

i=1
. That is,

ωi
S,t|t−1 (`) =

ps,t|t−1

(
xi

t−1|t−1 (`) , `
)

ωi
t−1|t−1 (`)

η`
S,t|t−1

(37)

η`
S,t|t−1 =

J`t−1|t−1

∑
i=1

ps,t|t−1

(
xi

t−1|t−1 (`) , `
)

ωi
t−1|t−1 (`) (38)

xi
S,t|t−1 (`) ∼ ft|t−1

(
·|
(

xi
t−1|t−1 (`) , `

))
(39)

where ft|t−1 is chosen as the importance sampling density.

Update: Denoting the predicted density as πt|t−1 =
{(

r`t|t−1, p`t|t−1

)}
`∈L1:t

, it can be written

as the form of (6) given by
{(

ωt|t−1 (I+) , pX
t|t−1

)}
I+⊂L1:t

, where ωt|t−1 (I+) is denoted by (7) and

I+ = L (X). p`t|t−1 is represented by a set of weighted particles
{(

ωi
t|t−1 (`) , xi

t|t−1 (`)
)}J`t|t−1

i=1
.

The K-shortest paths algorithm [14] is used to truncate the predicted multi-target density in order
to reduce the number of hypotheses. The multi-target posterior density given in (24) is denoted by{(

ω
(I+ ,θ)
t|t (Z) ,

[
pθ

t|t

]X
)}

(I+ ,θ)∈F(L1:t)×ΘI+

. We compute pθ
t|t (x, `) and ω

(I+ ,θ)
t|t as follows.

pθ
t|t (x, `) can also be represented by a set of particles

{(
ω

i,θ(`)
t|t , xi,θ(`)

t|t (`)
)}J`t|t−1

i=1
where

ω
i,θ(`)
t|t =

ωi
t|t−1 (`)ψZ

(
xi

t|t−1 (`) , `; θ
)

ηθ
Z (`)

(40)

xi,θ(`)
t|t (`) = xi

t|t−1 (`) (41)

and

ηθ
Z (`) =

J`t|t−1

∑
i=1

ωi
t|t−1 (`)ψZ

(
xi

t|t−1 (`) , `; θ
)

(42)
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ψZ

(
xi

t|t−1 (`) , `; θ
)
=


pD

(
xi

t|t−1(`),`
)

g
(

zθ(`) |xi
t|t−1(`),`

)
κ(zθ(`))

, θ (`) > 0

1− pD

(
xi

t|t−1 (`) , `
)

, θ (`) = 0
(43)

The weight ω
(I+ ,θ)
t|t of the hypothesis (I+, θ) is given as

ω
(I+ ,θ)
t|t (Z) =

ω̃
(I+ ,θ)
t|t (Z)

∑
(I+ ,θ)∈F(L1:t)×ΘI+

ω̃
(I+ ,θ)
t|t (Z)

(44)

ω̃
(I+ ,θ)
t|t (Z) = ωt|t−1 (I+)

[
ηθ

Z

]I+
(45)

where θ is an association function and θ ∈ ΘI+ . (I+, θ) is a hypothesis and (I+, θ) ∈ F (L1:t)×ΘI+ .
To avoid computing all the hypotheses and their weights, we only reserve a specific number Th of
largest weights and the ranked optimal assignment algorithm [14] is applied to truncate the multi-target
posterior density.

The multi-target posterior density of the forward LMB filtering matches the first-order moment
of (24) which can be denoted as an LMB with the parameter set πt|t ≈

{(
r`t|t, p`t|t

)}
`∈L1:t

where r`t|t is

given by (30) and p`t|t is represented by a set of weighted particles
{(

ω
j
t|t (`) , xj

t|t (`)
)}J`t|t

j=1
with

ω
j
t|t (`) =

ω
(I+ ,θ)
t|t (Z) 1I+ (`)ω

i,θ(`)
t|t

r`t|t
(46)

xj
t|t (`) = xi,θ(`)

t|t (`) (47)

where (I+, θ) ∈ F (L1:t)×ΘI+ . The number of particles for p`t|t increases rapidly and resampling [39]
is needed.

Backward smoothing: From the forward LMB filtering, the multi-target posterior density
is πk−1|k−1 =

{(
r`k−1|k−1, p`k−1|k−1

)}
`∈L1:k−1

at k − 1, where p`k−1|k−1 is approximated by{(
ωi

k−1|k−1 (`) , xi
k−1|k−1 (`)

)}J(`)

i=1
. The predicted multi-target density from k − 1 to k is an LMB

and the existence probability of track ` is r`k|k−1 where ` ∈ L1:k. The multi-target backward smoothed

density from t to k (k ≤ t) is denoted as πk|t (Y) =
{(

r`k|t, p`k|t
)}

`∈L1:k
, where p`k|t is represented by

a set of weighted particles
{(

ω
j
k|t (`) , yj

k|t (`)
)}Q(`)

j=1
.

Proposition 1 implies that the multi-target backward smoothed density from t to k− 1 is also
an LMB given by πk−1|t =

{(
r`k−1|t, pk−1|t

)}
`∈L1:k−1

where r`k−1|t is calculated by (33) and p`k−1|t is

represented by a set of weighted particles
{(

ωi
k−1|t (`) , xi

k−1|t (`)
)}J(`)

i=1
. The detailed formula of p`k−1|t

is given as

ωi
k−1|t (`) =

ω̃i
k−1|t (`)

J(`)
∑

i=1
ω̃i

k−1|t (`)

(48)
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ω̃i
k−1|t (`) =

(
1− r`k|t

) (
1− ps,k|k−1

(
xi

k−1|k−1 (`) , `
))

ωi
k−1|k−1 (`)(

1− r`k|k−1

) +

r`k|t ps,k|k−1

(
xi

k−1|k−1 (`) , `
)

ωi
k−1|k−1 (`)

r`k|k−1

×

Q(`)

∑
j=1

fk|k−1

(
yj

k|t (`) |x
i
k−1|k−1 (`) , `

)
ω

j
k|t (`)

pk|k−1

(
yj

k|t (`) , `
)

(49)

xi
k−1|t (`) = xi

k−1|k−1 (`) (50)

where i = 1, · · ·, J (`) and

pk|k−1

(
yj

k|t (`) , `
)
=

r`k−1|k−1

r`k|k−1

×
J(`)

∑
i=1

ωi
k−1|k−1 (`) ps,k|k−1(xi

k−1|k−1(`), `) fk|k−1

(
yj

k|t (`) |x
i
k−1|k−1 (`) , `

) (51)

Note that the predicted density (22) cannot be directly used as pk|k−1 (·, `) in (49) for smoothing.
Because the forward LMB filtering performs the resampling procedure [39] in each filtering step,
the particles of pk|t (·, `) from pt|t (·, `) (initial smoothed density) are different from those of pk|k−1 (·, `).
We need to estimate pk|k−1

(
yj

k|t (`) , `
)

for each particle
(

yj
k|t (`) , `

)
, j = 1, · · ·, Q (`) as in (51).

4.2. Backward Smoothing and State Extraction

The pseudo code of the proposed backward smoothing algorithm is given in Algorithm 1.
The forward filtering is up to t and the lag of the backward smoothing is Ld. We need to store
Ld + 1 multi-target posterior densities from t− Ld to t and Ld multi-target predicted densities from
t− Ld + 1 to t for Ld-step backward smoothing recursions. The backward smoothed density πk|t (Y)
is initialized with πt|t (Y). In the SMC implementation, pruning, truncation and track cleanup are
required and the label set varies with the time, so L1:i is replaced with Li|j, where Li|j denotes the label
set of the corresponded density πi|j(·) and Li|j ⊂ L1:i. Therefore, we have Lk−1|t = Lk−1|k−1

⋂
Lk|t to

represent the label set of backward smoothing at k− 1 which eliminates the labels of newborn tracks
at k and the labels of the pruned tracks in the forward filtering.

Note that, in our approach, resampling [39] can be applied either as the final step of the forward
filtering or after the backward smoothing, which lead to insignificant difference in performance.
Target states are extracted from the output

{(
r`t−Ld |t

, p`t−Ld |t

)}
`∈Lt−Ld |t

. That is, the target number N is

first estimated by
N̂ = arg max

n
{p(n)} (52)

where p(n) is the cardinality distribution (9). Then N̂ tracks with the largest existence probabilities are
extracted and the target states are mean of the corresponding probability densities.
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Algorithm 1: The proposed backward LMB smoothing algorithm.

Input: lag Ld at time t,
{{(

r`k|k, p`k|k
)}

`∈Lk|k

}t

k=max(t−Ld ,1)
,
{{

r`k|k−1

}
`∈Lk|k−1

}t

k=max(t−Ld ,1)+1
;

initialize πk|t (Y) with πt|t (Y);
for k=t:-1:max(t− Ld,1)+1

Lk−1|t = Lk−1|k−1
⋂
Lk|t;

for q = 1:size(Lk−1|t,2)

compute r
`q
k−1|t according to (33);

for j=1:Q
(
`q
)

estimate pk|k−1

(
yj

k|t
(
`q
)

, `q

)
according to (51);

end
for i=1:J

(
`q
)

compute ωi
k−1|t

(
`q
)

according to (48)–(49);

xi
k−1|t

(
`q
)
= xi

k−1|k−1

(
`q
)
;

end
end

end

Output:
{{(

r`k−1|t, p`k−1|t

)}
`∈Lk−1|t

}t

k=max(t−Ld ,1)+1
.

4.3. Algorithm Complexity

The major computational cost of the LMB smoother is due to backward LMB smoothing.
The computational complexity of the backward LMB smoothing is O

(
LdNL2) which can be obtained

from the four for-loops of Algorithm 1, where N is the number of tracks (or targets) and L is the
number of particles per track. The computational complexity of the innermost two parallel for-loops is
O
(

L2), so the computational complexity of the backward LMB smoothing is O
(

LdNL2) multiplying
by the outermost two for-loops.

The structures of backward smoothing for PHD smoother [17] and MeMBer smoother [27] are
similar to that of LMB smoother, and the difference is that the particles of all tracks are used for
backward smoothing for PHD smoother and MeMBer smoother while the particles of each track are
used for their respective backward smoothing in our LMB smoother. We can obtain that the major
computational costs for the PHD smoother (Here, we consider the classic SMC implementation [17]
instead of the fast SMC implementation [23]) and the MeMBer smoother are both approximately to
o(LdN2L2). Therefore, the computational complexity of the proposed LMB smoother is lower than
those of PHD smoother [17] and MeMBer smoother [27].

5. Simulation Result

A nearly constant turn (NCT) model is considered which has varying turn rate together with
noisy range and azimuth measurements [12,13]. The state of the target with label ` at t is denoted as
xt = (xt, `), where xt =

[
x̃T

t , wt
]T , x̃t =

[
px,t, ṗx,t, py,t, ṗy,t

]T denotes the planar position and velocity
of the target, and wt denotes the turn rate. The NCT model can be written as

x̃t = F (wt−1) x̃t−1 + GWt−1 (53)

wt = wt−1 + ut−1T (54)
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where Wt−1 and ut−1 are the state noises of velocity and turn rate, respectively. Wt−1 ∼ N
(
W; 0, σ2

W I2
)

and ut−1 ∼ N
(
u; 0, σ2

u I1
)

where N (·; mN , PN) denotes a Gaussian density with mean mN and variance
PN , and Ii represents an i order identity matrix. The noise of velocity uses σW = 5 m/s2 and the noise
of turn rate uses σu = π/180 rad/s2. The state transition matrix and noise transition matrix are given
as follows, respectively,

F (w) =


1 sin wT

w 0 − 1−cos wT
w

0 cos wT 0 − sin wT
0 1−cos wT

w 1 sin wT
w

0 sin wT 0 cos wT

 , G =


T2

2 0
T 0
0 T2

2
0 T

 (55)

The state transition model is denoted by (53) and (54). The sampling interval is T = 1 s. The target
survival probability is Ps = 0.99. Newborn targets of each time step is an LMB RFS which can be
represented as πB,t =

{(
r`B,t, p`B,t

)}
`∈B

where B = {`1, `2}, r`1
B,t = 0.02, r`2

B,t = 0.03, and p`i
B,t ∼

N
(
·; m`i

B,t, PB

)
. The mean of track `1 is m`1

B,k = [−1500, 0, 250, 0, 0 ]T , the mean of track `2 is m`2
B,k =

[1000, 0, 1500, 0, 0]T , and the variances of both are PB = diag(50, 50, 50, 50, 6π/180)2. The unit of
position px, py is m, the unit of velocity ṗx, ṗy is m/s , and the unit of the turn rate w is rad/s .

The measurement equation is

zt =

[√
p2

x,t + p2
y,t, arctan

(
py,t

px,t

)]T
+ εt (56)

where the measurement noise is εt ∼ N (·; 0, Pε) with Pε = diag
(
σ2

r , σ2
θ

)
, σr = 10 m, and σθ =

2π/180 rad. The observation region is [ 0,2000] m× [ 0,π] rad with the detection probability pD = 0.98.
The density of the Poisson clutter is κ (·) = 10/(2000π) as the average number of clutter measurements
is 10 per scan.

The number of particles per hypothesized track is set to 1000. We prune the tracks with a weight
smaller than PT = 10−4. The lag of the smoother is Ld = 3. The OSPA metric [40] with cut-off
parameter c = 100 m and order parameter p = 1 is used. We compare the proposed LMB smoother
with the LMB filter [15], the PHD filter [9], the PHD smoother [17], the CBMeMBer filter [12] and the
MeMBer smoother [27] over 100 Monte Carlo trials.

Figures 3 and 4 show the results of the LMB smoother in one trial, in the plane and in x and y
coordinates over time, respectively. The number of targets changes over time due to target birth or
death, and there are at most five targets in the scenario. The track of each target is smoothing.

More specifically, Figures 5–7 show the cardinality estimation for different methods over 100
Monte Carlo trials. We can see from Figure 5 that the estimated cardinality mean converges to the
true cardinality most of time for all methods. Figure 6 shows the errors of the cardinality mean which
is given by the estimated cardinality mean minus the true cardinality. At k = 1 s, 10 s, 40 s and
60 s, there is one or two newborn targets at each time step and the cardinality errors are negative
for the LMB filter, because of newborn target detection delays. At k = 67 s, 81 s and 91 s, one target
disappears and the cardinality errors are positive for the LMB filter, because of the detection delay of
the target death. At k = 64∼66 s, 78∼80 s and 88∼90 s, the cardinality mean errors are negative for
PHD and MeMBer smoother, because of premature deaths of targets. Figure 7 shows the standard
deviation of the cardinality estimate for different methods. The standard deviations of the PHD and
the MeMBer smoother are larger than those of LMB filter and LMB smoother. In short, the LMB
smoother can accurately estimate the cardinality (except for a detection delay at k = 10 s) and yields
the best accuracy.

Figure 8 shows the average OSPA errors of the PHD smoother, the MeMBer smoother, the LMB
filter, and the LMB smoother with 100 Monte Carlo trials. It can be seen that the OSPA of the LMB
smoother is less than those of the other methods almost all the time. We also give the average OSPA
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errors of different methods in Table 1. It can be seen that all three kinds of smoothers can effectively
reduce OSPA localization components as compared with the corresponding filters. However, the PHD
smoother and the MeMBer smoother do not necessarily reduce the OSPA cardinality components,
whereas the proposed LMB smoother can improve the cardinality estimation significantly.
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Figure 3. The true and estimated trajectories of targets. Different trajectories estimated by the LMB
smoother are denoted by different color dots where ‘◦’ denotes the initiations and ‘M’ denotes the
terminations of the trajectories.
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Figure 4. The true and estimated trajectories of targets in x and y coordinates, respectively.

Table 1. Average OSPA miss distances of different methods for all time.

Method Total Localization Cardinality
OSPA (m) Component (m) Component (m)

PHD filter 34.3821 26.4094 7.9727
PHD smoother 27.3199 18.6526 8.6673

CBMeMBer filter 30.2842 22.3566 7.9276
MeMBer smoother 22.0721 14.6664 7.4056

LMB filter 25.6800 22.6574 3.0226
LMB smoother 15.1762 14.4932 0.6830
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Figure 5. The true and estimated cardinalities of the PHD smoother, the MeMBer smoother, the LMB
filter and the proposed LMB smoother.
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Figure 6. The estimated cardinality errors over time.
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Figure 7. The estimated standard deviations of the cardinality over time.
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Figure 8. OSPA errors yielded by different methods.

Figure 9 shows the average execution time of different methods over 100 Monte Carlo trials.
Summing the time of every time step, we get the times per simulation for the PHD smoother,
the MeMBer smoother, the LMB filter, and the LMB smoother which are 1341 s, 1537 s, 156 s and 356 s,
respectively. The proposed LMB smoother have a higher computational complexity than the LMB
filter, but obviously lower than the PHD smoother and the MeMBer smoother. The results comply
with our theoretical analysis.
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Figure 9. The average execution time of each time step for different methods.

6. Conclusions

The paper derives a computationally efficient forward–backward LMB smoother which is closed
under the backward smoothing operation and has the advantages for maintaining the independence
of different tracks and their track outputs. Both numerical and simulation analyses have demonstrated
that the proposed LMB smoother can effectively improve the tracking performance as compared
to the PHD smoother, the MeMBer smoother and the LMB filter and have a lower computational
complexity as compared with the PHD smoother and the MeMBer smoother. We should point out that
our smoother cannot solve the problem of track fragmentation [34] when the label of a track changes
before the track ends. It is our future work to investigate the curve/track fitting approach [19,35,36]
for improving the continuity and smoothness of the estimated tracks.
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Appendix A

Proof of Lemma 1. If Xa and Xb are both LMB RFSs and La
⋂
Lb = ∅, X = Xa

⋃
Xb is an LMB RFS.

The conclusion can be obtained from the fundamental convolution theorem [2] and also from the
independence of the existence probabilities and the densities of different tracks for LMB RFSs [31].

The product of πa (Xa) and πb (Xb) can be denoted as

πa (Xa)πb (Xb) =∆
(

Xa
⋃

Xb

)(
∏

`∈La
⋃
Lb

(
1− r`

))
× ∏

`∈L(Xa
⋃

Xb)

1La
⋃
Lb (`) r`(

1− r`
)

 [p (x, `)]Xa
⋃

Xb

=∆ (X)

∏
`∈L

(
1− r`

)
∏

`∈L(X)

1L (`) r`(
1− r`

)
 [p (x, `)]X

=π (X)

(A1)

where L = La
⋃
Lb represents the label space of X. Note that the computation of (A1) is reversible.

That is, the union of multiple LMB RFSs on the disjoint subspaces can compose a single LMB RFS on
the joint space and vice versa.

Appendix B

Proof of Proposition 1. The proof of Proposition 1 can be summarized as:
Firstly, we can decompose the set integral of the backward smoothing recursion (13) into two

parts as (A4): One relates to the survived targets, and the other relates to the newborn targets.
Then, the second part for the newborn targets is equal to 1 as in (A7). We can conclude that

newborn targets cannot transmit to the time before birth, and the set integral of (13) equals to the set
integral of the first part for the survived targets.

Finally, we prove that the set integral of the first part for the survived targets is an LMB.
From the assumptions, πk|t (Y), πk|k−1 (Y) and πk−1|k−1 (X) are all LMB distributions. πk|t (Y) is

denoted as

πk|t (Y) = ∆ (Y) ∏
`∈L1:k

(
1− r`k|t

)
∏

`∈L(Y)

1L1:k (`) r`k|t pk|t (y, `)(
1− r`k|t

) (A2)

The label space of πk|k−1 (Y) is L1:k. πk|t (Y) is initialized with πt|t (Y) and its label space is L1:k
when k = t. πk|t (Y) keeps the same label space with πk|k−1 (Y) at all other times as to be explained

after (A7). The newborn targets can be denoted by an LMB RFS πB,k|k−1 =
{(

r`B,k|k−1, p`B,k|k−1

)}
`∈Lk

.

The multi-target transition density fk|k−1 (Y|X) can be denoted by (16).
Let Y = Y+ ⋃Y−. Y+ denotes the newborn targets at k and L (Y+) ⊆ Lk. Y− denotes the

surviving targets from k− 1 to k and L (Y−) ⊆ L1:k−1. The backward smoothing recursion (13) can be
reformulated as

πk−1|t (X) = πk−1|k−1 (X)
∫

fB,k|k−1
(
Y+
)

fs,k|k−1
(
Y−|X

) πk|t (Y)
πk|k−1 (Y)

δY (A3)

= πk−1|k−1 (X)
∫

fs,k|k−1
(
Y−|X

) π−k|t (Y
−)

π−k|k−1 (Y
−)

δY−︸ ︷︷ ︸
Survived targets

∫
fB,k|k−1

(
Y+
) π+

k|t (Y
+)

π+
k|k−1 (Y

+)
δY+

︸ ︷︷ ︸
Born targets

(A4)
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where
πk|t (Y) = π−k|t

(
Y−
)

π+
k|t
(
Y+
)

(A5)

πk|k−1 (Y) = π−k|k−1

(
Y−
)

π+
k|k−1

(
Y+
)

(A6)

The decomposition of πk|t (Y) by (A5) as well as πk|k−1 (Y) by (A6) complies with Lemma 1.
The derivation from (A3) to (A4) also applies the Proposition in Section 3.5.3 of [2] that the single
set integral on the joint space can be denoted as a multiple set integral on the disjoint subspaces.
The formula (A4) consists of two parts: One relates to X which involves the smoothing of survived
targets, and the other is the smoothing of the newborn targets. As fB,k|k−1 (Y+) = π+

k|k−1 (Y
+),

the second part of (A4) is equal to 1 and the result can be obtained from

∫
fB,k|k−1

(
Y+
) π+

k|t (Y
+)

π+
k|k−1 (Y

+)
δY+ =

∫
π+

k|t
(
Y+
)
δY+ = 1 (A7)

The formula (A7) can be explained as follows: Newborn targets cannot transmit to the time before
birth, i.e., if a target is born at k, it cannot be alive at k− 1 via backward LMB smoothing. Furthermore,
πk|t (Y) cannot have the targets born after k, and so πk|t (Y) and πk|k−1 (Y) have the same label space
L1:k which is the union of the label space at k− 1 and the label space of newborn targets at k.

Combining (35)–(36) and (A7), the formula (A4) can be further written as

πk−1|t (X) =πk−1|k−1 (X)
∫

fs,k|k−1
(
Y−|X

) π−k|t (Y
−)

π−k|k−1 (Y
−)

δY−

=πk−1|k−1 (X)∆ (X)

(
1− r`k|t

1− r`k|k−1

)L1:k−1(
1− ps,k|k−1 (x, `)

)X ∫
∆
(
Y−
)

× 1L(X)
(

L
(
Y−
))

(
1− r`k|k−1

)
ps,k|k−1 (x, `) r`k|t fk|k−1 (y|x, `) pk|t (y, `)(

1− ps,k|k−1 (x, `)
) (

1− r`k|t
)

r`k|k−1 pk|k−1 (y, `)

Y−

δY−

=πk−1|k−1 (X)

(
1− r`k|t

1− r`k|k−1

)L1:k−1−L(X)(
αs,k|t (x, `)

)X ∫
∆
(
Y−
)

× 1L(X)
(

L
(
Y−
)) ( βs,k|t (x, `)

αs,k|t (x, `)

)L(Y−)( fk|k−1 (y|x, `) pk|t (y, `)
pk|k−1 (y, `)

)Y−

δY−

(A8)

Applying Lemma 3 of [13] (or Lemma 1 in Section 15.5.1 of [2]) and the power-functional identity
in Section 3.7 of [2], we have
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πk−1|t (X) =πk−1|k−1 (X)

(
1− r`k|t

1− r`k|k−1

)L1:k−1−L(X)(
αs,k|t (x, `)

)X

× ∑
L(Y−)⊆L(X)

∏
`∈L(Y−)

∫ βs,k|t (x, `) fk|k−1 (y|x, `) pk|t (y, `)
αs,k|t (x, `) pk|k−1 (y, `)

dy

= πk−1|k−1 (X)

(
1− r`k|t

1− r`k|k−1

)L1:k−1−L(X)(
αs,k|t (x, `)

)X

× ∏
`∈L(X)

(
1 +

∫ βs,k|t (x, `) fk|k−1 (y|x, `) pk|t (y, `)
αs,k|t (x, `) pk|k−1 (y, `)

dy

)

= πk−1|k−1 (X)

(
1− r`k|t

1− r`k|k−1

)L1:k−1−L(X)

× ∏
`∈L(X)

(
αs,k|t (x, `) +

∫
βs,k|t (x, `)

fk|k−1 (y|x, `) pk|t (y, `)
pk|k−1 (y, `)

dy

)

(A9)

Substituting πk−1|k−1 (X) into (A9) yields

πk−1|t (X) =∆ (X) ∏
`∈L1:k−1−L(X)

(
1− r`k−1|k−1

) (
1− r`k|t

)
(

1− r`k|k−1

) ∏
`∈L(X)

(
1L1:k−1 (`) r`k−1|k−1

× pk−1|k−1 (x, `)

(
αs,k|t (x, `) +

∫
βs,k|t (x, `)

fk|k−1 (y|x, `) pk|t (y, `)
pk|k−1 (y, `)

dy

)) (A10)

Let

πk−1|t (x, `) =r`k−1|t pk−1|t (x, `)

=r`k−1|k−1 pk−1|k−1 (x, `)

(
αs,k|t (x, `) +

∫ βs,k|t (x, `) fk|k−1 (y|x, `) pk|t (y, `)
pk|k−1 (y, `)

dy

)
(A11)

We can obtain that
r`k−1|t =

∫
πk−1|t (x, `) dx (A12)

pk−1|t (x, `) =
πk−1|t (x, `)

r`k−1|t
=

πk−1|t (x, `)∫
πk−1|t (x, `) dx (A13)

From (A12), we can obtain (33) and the proof is further given in Appendix C. We can also
obtain (34) by substituting (A11) into (A13).

Substituting (A12) and (A13) (or (33) and (34)) into (A10) yields

πk−1|t (X) =∆ (X) ∏
`∈L1:k−1−L(X)

(
1− r`k−1|t

)
∏

`∈L(X)

(
1L1:k−1 (`) r`k−1|t pk−1|t (x, `)

)

=∆ (X) ∏
`∈L1:k−1

(
1− r`k−1|t

)
∏

`∈L(X)

1L1:k−1 (`) r`k−1|t pk−1|t (x, `)(
1− r`k−1|t

) (A14)
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From (A14), we get the parameter set (32) which indicates that πk−1|t (X) is an LMB where r`k−1|t
and pk−1|t (x, `) are given in (33) and (34), respectively.

Appendix C

Proof. (from (A12) to (33)). Firstly, it is known that the target (x, `) at k is the survived target in (A12),
` ∈ L1:k−1 and ` /∈ Lk. This is because newborn targets cannot transmit to the time before birth via
smoothing from (61) (that is, πk−1/t (X) cannot have the targets born after k− 1). Therefore, we can
apply the labeled single target predicted density formula (the same as (20) and (21) for the survived
target)

r`k|k−1 = r`k−1|k−1

∫
ps,k|k−1 (x, `) pk−1|k−1 (x, `) dx (A15)

pk|k−1 (y, `) =

∫
r`k−1|k−1 pk−1|k−1 (x, `) ps,k|k−1 (x, `) fk|k−1 (y|x, `)dx

r`k|k−1

(A16)

Then, from the definition of (A11) and (A12), we can obtain

r`k−1|t =
∫

πk−1|t (x, `) dx

=
∫

αs,k|t (x, `) r`k−1|k−1 pk−1|k−1 (x, `) dx+

∫∫ r`k−1|k−1 pk−1|k−1 (x, `) βs,k|t (x, `) fk|k−1 (y|x, `) pk|t (y, `)

pk|k−1 (y, `)
dydx

(A17)

where the first term of the right of (A17) can be written as∫
αs,k|t (x, `) r`k−1|k−1 pk−1|k−1 (x, `) dx

=

(
1− r`k|t

)
r`k−1|k−1(

1− r`k|k−1

) ∫ (
1− ps,k|k−1 (x, `)

)
pk−1|k−1 (x, `) dx

=

(
1− r`k|t

)
(

1− r`k|k−1

) (r`k−1|k−1 − r`k|k−1

)
(A18)

The second term of the right of (A17) can be written as

∫∫ r`k−1|k−1 pk−1|k−1 (x, `) βs,k|t (x, `) fk|k−1 (y|x, `) pk|t (y, `)

pk|k−1 (y, `)
dydx

=
∫ ∫

r`k−1|k−1 pk−1|k−1 (x, `) ps,k|k−1 (x, `) fk|k−1 (y|x, `)dx

r`k|k−1

r`k|t pk|t (y, `)

pk|k−1 (y, `)
dy

=
∫

r`k|t pk|t (y, `) dy

= r`k|t

(A19)

Finally, combining (A17)–(A19) yields

r`k−1|t =

(
1− r`k|t

)
(

1− r`k|k−1

) (r`k−1|k−1 − r`k|k−1

)
+ r`k|t = 1−

(
1− r`k−1|k−1

) (
1− r`k|t

)
1− r`k|k−1

(A20)
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