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Abstract: Image-based water level measurement is a visual-sensing technique which automatically
inspects the reading of the water line via image processing instead of the human eye. It can be realized
easily on an existing video surveillance system and has advantages like low cost, non-contact, as
well as results that are verifiable. It has the potential to be widely used in flood and waterlogging
monitoring, while facing the challenge that water-line detection under complex natural or artificial
illumination conditions is quite difficult in field applications. To handle this problem, a method is
proposed assuming that the water line is generally located on the row with the largest local change of
gray or edge features in the image of the water gauge. The water line is determined by coarse-to-fine
detection of the position of the maximum mean difference (MMD) of the horizontal projections of gray
and edge images. Image-based flow-level measurement systems were developed at two measurement
sites. In situ comparative experiments were conducted with the float-type stage gauge and other
image-based methods. The results show that the fusion of gray and edge features can overcome the
shortcomings of single feature methods under complex illumination conditions such as dim light,
glares, shadows and artificial night lighting. A coarse-to-fine strategy utilizes the periodicity of the
surface pattern distribution of the standard bicolor water gauge, which improves the reliability of
water-line detection. The resolution and accuracy of water-level measurement are 1 mm and 1 cm,
respectively. In particular, the MMD value is efficient at identifying extremely unfavorable conditions
and reducing gross errors.

Keywords: water-level measurement; machine vision; image processing; flow-measurement system

1. Introduction

Accurate acquisition of hydrological data of natural rivers during a high flood season is important
for flood and urban water logging alerts. The water level is one of the most basic hydrological elements
in rivers, lakes and reservoirs. The information of water supply, rainstorm, flood discharge, runoff,
sediment, nutrient transport rate in cities and irrigation areas usually needs to be calculated according
to the measured water level [1–3]. All-weather, real-time and automatic water-level monitoring is
essential [4]. According to the principle of measurement, existing water-level gauges can be roughly
divided into the float-type, the pressure-type, the ultrasonic-type and the radar-type [5–7]. However,
float-type gauges have large cumulative measurement errors and need to be re-calibrated frequently.
The measurement precision of pressure-type gauges is affected by the density of water. The precision
of ultrasonic-type gauges is affected by the environment in terms of the temperature, humidity, etc.
The radar-type gauges are expensive, and the measurement process is affected by raindrops and
snowflakes. There are some limitations in the practical use, installation and daily maintenance of
contact equipment, which are easily restricted by external factors such as water quality, temperature
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and sediment content [8,9]. Therefore, exploring non-contact water level measurement technology is
the current research hotspot.

In recent years, a network video surveillance system has gradually become the standard
configuration at all levels of hydrological bureaus and stations [10,11]. Ensuring daily monitoring,
remote dispatching and disaster alert are important measures to make good use of and protect
water resources and water conservancy facilities, which provide favorable conditions for water-level
measurement based on video images [12–14]. There are also some automatic water-level monitoring
systems based on image [15–18]. Image-based methods use image processing instead of human eyes
to detect water line readings automatically, and are divided into the following two kinds:

In methods inspired by human vision, the position of water line is located by detecting graduation
lines and recognizing characters [19–23]. Chen et al. [24] proposed character segmentation according
to the features of a water gauge surface pattern, using a template matching method to realize character
recognition and calculate the water-level reading. But under the condition of insufficient illumination or
low image resolution, this cannot be applied in practice. Zhong [25] proposed water-level measurement
based on the water graduation line. The graduation line is identified by gray transformation, edge
detection, image thinning and K-means clustering analysis. However, the algorithm is sensitive to
interference such as water gauge surface contamination, occlusion and damage. Chen [26] used the
Hough transform to identify the graduation line, but the standard bicolor water gauge also has strong
horizontal characteristics which can easily lead to false detection. The principle of this kind of method
is intuitive, but requires high image quality. It depends on the visibility of graduation lines and
characters, and is affected by factors such as local fouling and damage to the water gauge, low image
resolution, insufficient natural light and the overexposure of artificial light. Under these conditions,
there will be gross errors in measurement.

Methods based on machine vision first detect the position of water line in the image and then
convert the coordinate transformation relationship into a water-level reading to realize water-level
measurement [27–30]. The horizontal projection method is the most widely used method for standard
bicolor water gauge. According to different features, it includes horizontal projection of a gray
image [31,32], horizontal projection of a binary image [33] and horizontal projection of an edge
image [34]. The position of the water line is determined by searching the abrupt points in the horizontal
projection curve. However, under complex illuminations and flow conditions, due to the uneven
distribution of gray value affected by random noise such as glares and shadows on the water surface,
the abrupt points in the horizontal projection curve may be affected by noise, resulting in an error of
the water line position, which makes it difficult to ensure the accuracy of the measurement.

Compared with the method inspired by human vision, this kind of method has the advantage
of no detection of graduation lines and characters. Assuming that the gray value of the water gauge
is higher than the water surface, the Otsu method [35] is suitable for the case of a large difference
in gray distribution. When the gray distribution of the water gauge or water surface is uneven, the
global threshold obtained by the Otsu method is not the local optimal segmentation threshold in the
water line region, which results in large errors of water line segmentation. The order-statistic filtering
(OSF) method [36] sets several sampling points in the water gauge and water-surface image, ascends
through sorting with a bubble sort algorithm, then calculates the adaptive segmentation threshold.
However, these methods based on single threshold may cause the gray value of a water gauge to be
lower than the water surface under complex illumination conditions, which causes the measurement
to be sensitive to the threshold.

In view of this, this paper adopts the method based on machine vision, and mainly focused on
the detection of the water line under complex illumination conditions. This paper abandons the idea
of single threshold image segmentation. Assuming that the water line generally locates on the row
with largest local change of gray or edge features in the image of the water gauge, the water line is
determined by coarse-to-fine detection of the position of the maximum mean difference (MMD) of the
horizontal projections of gray and edge images. Image-based flow level measurement systems were
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developed and deployed at two measurement sites. In situ comparative experiments were conducted
with the float-type stage gauge and other image-based methods. The results show that our system can
realize real-time automatic measurement of the water level. Compared with traditional methods, this
technique can avoid the constraints of external factors. Compared with other image-based methods, it
can solve the measurement problems under complex illumination conditions such as dim light, glares,
shadows and artificial night lighting. Section 2 introduces the measurement site and system. Section 3
introduces the MMD method. Section 4 analyses the in-situ experimental results. Section 5 concludes
the paper.

2. Measurement Site and System

To evaluate the performance of the method and verify that it can be transposed to other measuring
situations, image-based flow level measurement systems were developed and deployed at two
measurement sites with different orientations of the target-camera vis-à-vis the sun.

2.1. Measurement Site 1

Measurement site 1 is located at Qianhancun hydrological station of Jurong River in Nanjing, China,
as shown in Figure 1. The station is a national basic hydrological station for monitoring the water
level and flood process. The Qinhuai River Basin belongs to hilly and mountainous areas, and runoff

is mainly formed by rainfall in the region, mainly in the flood season (May–September). Its runoff

accounts for 60–70% of the whole year. Its upper and middle reaches have a small storage capacity,
and the flood rises rapidly. Its lower reaches converge into the Yangtze River, and the flood level is
affected by the flood and tidal level of the lower reaches of the Yangtze River. There are two inline
structures built downstream, and the water level of the station is greatly influenced by its manual
operation and control. The measurement reach is straight and the slope is low. The section is U-shaped
with a maximum width of 135 m. The station is equipped with a float-type stage gauge (Model NSY
WFH–2 Mechanical Encoding Water Level Meter) and 5 water gauges. The stationary datum is used as
zero elevation in water-level measurement. The measured maximum water level is 11.60 m (1991) and
the measured maximum discharge is 1160 m3/s (2003).

1 

 

 

Figure 1. Measurement system at site 1.

The measuring system is mounted on the north bank of river, as shown in Figure 1. Considering
the existing multilevel water gauges are made of stainless steel, the contrast in image between water
gauge surface pattern and water surface is low, which is not conducive to the detection of the water
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line. Therefore, our water gauge was deployed at about 5 m upstream. A concrete foundation pile is
used to fix a column, on which four monochrome bicolor water gauges of 200 × 1000 mm are installed
vertically. The total length is 4 m, and the reading accuracy is 1 cm. The zero elevation of the water
gauge is 7.752 m measured by a total station. In practice, it is corrected to 7.968 m by comparing
measurement with the float-type stage gauge located at about 10 m downstream. The maximum range
is 11.968 m, which covers the highest water level on record. A 4-mega-pixel web camera is integrated
inside, facing south to the water gauge with a tilt angle of 12.9◦. An optical filter with the pass-band of
850–1050 nm is surface-mounted on the lens to realize near-infrared-imaging. The height from the zero
point of the water gauge is 8.4 m and the straight-line distance is 24 m. A 4G router supporting virtual
private network (VPN) cloud networking is adopted to realize remote access of the client to the system.

The software of the system named Hydroview is developed based on the software development
kit (SDK) of a web camera and the Open Source Computer Vision Library (OpenCV). It is used in
the above hardware system. The graphical user interface (GUI) of the software is shown in Figure 2.
It can automatically execute image processing algorithm to complete the water level measurement,
according to the starting and ending time, measurement interval and measurement duration, etc. Two
measuring modes are designed: (1) The on-line mode works in a “quasi real-time” way that downloads
the local-storaged video files according to a specified time interval from the Micro-SD memory card,
rather than captures the real-time video stream. By this means, the influences of network delay and
frame loss are improved. (2) The off-line mode is designed for analysis of downloaded historical videos,
which is a unique advantage of the image-based method. The measurement output includes not only
the measuring results displayed in the text box, but also the water gauge images for visual verification.
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2.2. Measurement Site 2

The measurement site 2 is a non-gauging site. It locates at the Yanglou Stream of Qinyuan County
in Zhejiang Province of China, which is a mountain stream with a gravel bed, rockfill slope and 40 m
wide cross-section. There is a small hydropower station 500 m upstream, which releases water from
8:30 to 20:30 every day for electricity generation. The water depth varies from 0.1 m to 0.5 m and most
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river beds are bare during the dry season, while the flow can rise up to 3 m and be full of floating
debris during the rainy season. On account of this, an image-based flow level measurement system is
developed to provide on-line video monitoring and real-time hydrologic data for the Lanxi Bridge
Reservoir 5 km downstream.

The measuring system is mounted on the south bank of river, as shown in Figure 3. Three pieces
of standard bicolor water gauge made of an aluminum reflector with the size of 1000 × 80 mm are
vertically installed on a stainless steel pillar fixed on river bed. The zero elevation of the water gauge
is set to 0 m. A near-infrared imaging web camera with 2 mega-pixel complementary metal oxide
semiconductor (CMOS) sensor and 8 mm prime lens is used. As the supplement to the built-in light of
camera, a near-infrared light with a light-emitting diode (LED) array at 850 nm wavelength is used for
night illumination. A set of wind-solar hybrid power supply is adopted to keep the measurement
system continuously running for at least 7 days. See Reference [36] for details.Sensors 2019, 19, x FOR PEER REVIEW 5 of 22 
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3. Water-Level Measurement

3.1. Overview

According to the principle of monocular vision measurement, if the water gauge surface is
approximated to a plane, the physical plane and its image on the sensor plane and orthophoto without
perspective distortion satisfy the mapping homography relationship [37]. Consequently, the basic
idea of water-level measurement based on monocular camera is shown in Figure 4. Firstly, the video
image of river surface is captured by monocular camera, and the coordinates of corners are selected
to calculate the coordinate transformation matrix in the water-level measurement area. Then, the
coordinate transformation matrix is used to correct the image distortion, and the perspective deformed
image is registered in the template image to achieve pixel alignment. Next the orthophoto correction
image is binarized, and the gray value of each row of pixels is accumulated to obtain the horizontal
projection curve. By searching the abrupt change value in the horizontal projection curve, the water
line between water gauge and water surface is determined, and then the water level is obtained [36].
This idea of water-level measurement is a two-step process: one detecting the water level on a pixel
space, and two translate these in real world coordinates. The MMD method focuses on the detection of
the water level on a pixel space, which is the first step.



Sensors 2019, 19, 4141 6 of 22

Sensors 2019, 19, x FOR PEER REVIEW 6 of 22 

 

 

Figure 4. Principle of water-level measurement. (ROI, region of interest). 

3.2. Basis of Water-Line Detection 

The horizontal projection can be divided into three kinds according to different features: gray 
image, edge image and binary image horizontal projection. The horizontal projection curves of water 
gauge orthophotos under three illumination conditions are given below. The edge images are 
generated by a Canny operator and the binary images are generated by the Otsu method, as shown 
in Figure 5. The position of the water line is determined by searching for the abrupt change points 
corresponding to the water line in the horizontal projection curve. The results are shown in Table 1. 

Table 1. Detection results of water line position in water gauge orthophotos under three illumination 
conditions (unit: pixel). 

Illumination Conditions Dim Light Water Glare Artificial Lighting 
Gray Image 2684 1898 1801 
Edge Image 3992 3999 3958 

Binary Image 1990 0 1788 
Manual Reading 1964 1906 1836 

Under dim light conditions, there is little difference in gray value between water gauge and 
water surface. The change of gray value at water line is not obvious. In horizontal projection of the 
edge image, the periodicity of pattern distribution on the surface of the water gauge causes 
fluctuation of the value, and the non-zero value of the water surface only appears at the wave 
position. In the binary image, the E-type patterns and numbers on the surface of the water gauge are 
clearly visible, the binary results of the wave on the water surface are white, and the curve is similar 
to the edge image. 

Under water glare condition, the horizontal projection of the gray image has the largest local 
change at the water line. The horizontal projection of the edge image is similar to that of dim light. 
The adaptive threshold of Otsu method is higher in the binary image due to the appearance of water 
surface flare, which results in the water surface binary value being white. 

Under artificial lighting conditions, the horizontal projection value of the gray image is stable at 
50,000 in the water gauge area, and decreases to 30,000 at the water line, which has the largest local 
change. The change of horizontal projection in the edge image is concentrated in the water surface 
area because the periodicity of the surface pattern distribution of the water gauge is invisible due to 
artificial night lighting. In a horizontal projection of the binary image, the value of the water gauge 

Figure 4. Principle of water-level measurement. (ROI, region of interest).

3.2. Basis of Water-Line Detection

The horizontal projection can be divided into three kinds according to different features: gray
image, edge image and binary image horizontal projection. The horizontal projection curves of water
gauge orthophotos under three illumination conditions are given below. The edge images are generated
by a Canny operator and the binary images are generated by the Otsu method, as shown in Figure 5.
The position of the water line is determined by searching for the abrupt change points corresponding
to the water line in the horizontal projection curve. The results are shown in Table 1.

Under dim light conditions, there is little difference in gray value between water gauge and water
surface. The change of gray value at water line is not obvious. In horizontal projection of the edge
image, the periodicity of pattern distribution on the surface of the water gauge causes fluctuation of
the value, and the non-zero value of the water surface only appears at the wave position. In the binary
image, the E-type patterns and numbers on the surface of the water gauge are clearly visible, the binary
results of the wave on the water surface are white, and the curve is similar to the edge image.

Under water glare condition, the horizontal projection of the gray image has the largest local
change at the water line. The horizontal projection of the edge image is similar to that of dim light.
The adaptive threshold of Otsu method is higher in the binary image due to the appearance of water
surface flare, which results in the water surface binary value being white.

Under artificial lighting conditions, the horizontal projection value of the gray image is stable at
50,000 in the water gauge area, and decreases to 30,000 at the water line, which has the largest local
change. The change of horizontal projection in the edge image is concentrated in the water surface
area because the periodicity of the surface pattern distribution of the water gauge is invisible due to
artificial night lighting. In a horizontal projection of the binary image, the value of the water gauge
area is stable at around 50,000, and the value of the water surface area is all 0. The maximum local
variation is at the water line.
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Figure 5. Horizontal projection curves of water gauge orthophotos under three illumination conditions:
(a) dim light gray image; (b) dim light edge image; (c) dim light binary image; (d) water glare gray
image; (e) water glare edge image; (f) water glare binary image; (g) artificial lighting gray image;
(h) artificial lighting edge image; (i) artificial lighting binary image.

Table 1. Detection results of water line position in water gauge orthophotos under three illumination
conditions (unit: pixel).

Illumination Conditions Dim Light Water Glare Artificial Lighting

Gray Image 2684 1898 1801
Edge Image 3992 3999 3958

Binary Image 1990 0 1788
Manual Reading 1964 1906 1836
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3.3. Maximum Mean Difference (MMD) Method

The MMD method assumes that the water line generally located on the row with largest local
change of gray or edge features in the image of the water gauge. Firstly, the image features are
determined by calculating the gray mean horizontal projection of the gray and edge images of the
water gauge orthophoto. Then, according to the periodicity of the surface pattern distribution of
the standard bicolor water gauge, the position of the maximum mean difference in the horizontal
projection curve is searched for as the water line by using the strategy of coarse-to-fine. Specific
processes include: set region of interest (ROI) with the period of water gauge image as length. Coarse
positioning takes the period of the water gauge image as stepping. The larger observation window can
contain more neighborhood information. The heterogeneous area can be identified by searching for
the position with maximum value of gray mean difference, which is the candidate region of the water
line. After coarse positioning, unfavorable conditions are identified, and fine positioning is carried out
without unfavorable conditions. Fine positioning takes 1 pixel as stepping, searching for the position
with the maximum value of gray mean difference in the candidate region of the water line. Finally, the
physical resolution of the template image can be directly used to convert the water line coordinate
to the actual water level. The random errors of multiple measured values are removed by median
filtering. The method flow chart is shown in Figure 6.
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3.3.1. Image Feature Extraction

The gray image is obtained by gray-scale processing of the water gauge orthophoto with H = 4000
pixel length and W = 200 pixel width, and then the gray image is transformed into the edge image by
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the Canny operator. According to Equations (1) and (2), the gray mean horizontal projection of the
gray image MeanG(r) and edge image MeanE(r) are calculated respectively:

MeanG(r) =
BG(r, 1) + BG(r, 2) + BG(r, 3) + · · ·+ BG(r, W)

W
, (1)

MeanE(r) =
BE(r, 1) + BE(r, 2) + BE(r, 3) + · · ·+ BE(r, W)

W
, (2)

where BG(r, w) is the gray value of the gray image pixel (r, w), BE(r, w) is the gray value of the
edge image pixel (r, w), r is the row coordinate of the pixel, w is the column coordinate of the pixel,
r = 1, 2, 3, · · · , H, w = 1, 2, 3, · · · , W.

3.3.2. Coarse Positioning of Water Line

Coarse positioning ROI is set in the distortion correction image. As shown in Figure 7, the length
is T pixel, the width is W pixel, T = 100 is the period of standard water gauge image. The top-down
ROI number is N, N − 1, N − 2, · · · , 0, N= (H/T) − 1 = 39. According to Equations (3) and (4), gray
mean difference of gray image Di f fG(k) and edge image Di f fE(k) for two adjacent coarse positioning
ROI are calculated respectively:

Di f fG(k) =

∣∣∣∣∣∣∣∣∣∣∣∣
k+T−1∑

r=k
MeanG(r)

T
−

k+2T−1∑
r=k+T

MeanG(r)

T

∣∣∣∣∣∣∣∣∣∣∣∣, (3)

Di f fE(k) =

∣∣∣∣∣∣∣∣∣∣∣∣
k+T−1∑

r=k
MeanE(r)

T
−

k+2T−1∑
r=k+T

MeanE(r)

T

∣∣∣∣∣∣∣∣∣∣∣∣, (4)

where k = 1, T, 2T, · · · , H − 2T represents the coordinates of the pixels, MeanG(r) is the gray mean of
line r of the gray image and MeanE(r) is the gray mean of line r of the edge image.
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The maximum value of the gray mean difference of the gray image Di f fG(k) and edge image
Di f fE(k) for two adjacent coarse positioning ROI is taken as the gray mean difference Di f f (k):

Di f f (k) = max(Di f fG(k), Di f fE(k)). (5)

The maximum value of the gray mean difference Di f f (k) is Di f f (k′), and k′ is the row coordinate
of the pixels corresponding to the maximum value Di f f (k).

3.3.3. Identification of Unfavorable Condition

Set S = 10 as the detection threshold for an unfavorable condition. This detection threshold S is
an empirical threshold based on in situ measurement data under different illumination conditions
at multiple measuring sites. Di f f (k′) < S indicates that the detection condition is not satisfied, the
water level coordinate l is set to 0 and the detection is completed. The gray mean difference of coarse
positioning is calculated under the condition of out range and poor visibility. The result is shown in
Figure 8. The maximum difference of gray mean value of coarse positioning is 8.096, which is less than
the detection threshold. It is judged to be in an unfavorable condition and the water level coordinate
is assigned to 0. In the case of poor visibility, due to extreme weather, it is difficult to distinguish
the water gauge and water surface. Manual reading is also very difficult in this case. The maximum
difference of gray mean value of coarse positioning is 2.117, which is less than the detection threshold,
too. It is also judged to be in an unfavorable condition.
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3.3.4. Fine Positioning of Water Line

Two adjacent coarse positioning ROIs with the largest gray mean difference Di f f (k) are selected
as the coarse positioning ROI of the water line. The length is 2T pixel, the width is W pixel, and the top
row coordinate is k′, as shown in Figure 9. In coarse positioning ROI, feature fusion is used to precisely
locate the water line, and set up fine positioning ROI as shown in Figure 10. The length is 2T pixel and
the width is W pixel. They are divided into upper and lower half areas of the same size. The length is
T pixel and the width is W pixel. They are stepped by a single pixel and numbered n, n− 1, n− 2, · · · , 1
from top to bottom, where n = 2T = 200. According to Equations (6) and (7), the gray mean difference
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of the gray image Di f fG(k1) and edge image Di f fE(k1) in the upper and lower half of fine positioning
ROI is calculated respectively:

Di f fG(k1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
k1+T−1∑

r=k1

MeanG(r)

T
−

k1+2T−1∑
r=k1+T

MeanG(r)

T

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (6)

Di f fE(k1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣
k1+T−1∑

r=k1

MeanE(r)

T
−

k1+2T−1∑
r=k1+T

MeanE(r)

T

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (7)

where k1 = k′ − T + 1, k′ − T + 1, k′ − T + 2, · · · , k′ + T represents the row coordinates of the pixels.
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The maximum value of the gray mean difference of the gray image Di f fG(k1) and edge image
Di f fE(k1) for fine positioning of the upper and lower half of the ROI is taken as the gray mean difference
Di f f (k1):

Di f f (k1) = max(Di f fG(k1), Di f fE(k1)). (8)

The maximum value of gray mean difference Di f f (k1) is Di f f (k1
′), and k1

′ is the row coordinate
of the pixels corresponding to the maximum value Di f f (k1).

3.3.5. Determining Coordinate of Water Line

The coordinate of the water line is determined to be l = k1
′ + T − 1 pixel. Because the distortion

correction image and the template image are in a unified coordinate system, the physical resolution of
the template image ∆d can be directly used to convert the water line coordinate to the actual water
level L = l/∆d, and the measurement process is completed. Here set ∆d as 1 pixel/mm, corresponding
to the water level measurement resolution of 1 mm.

4. Experimental Results

4.1. Experiment in Measurement Site 1

Since the system deployed in July 2018, we have carried out the long-term in situ comparative
experiments. In view of the main research contents of this paper, the most typical 24-h measurements
during the typhoon period are given, which shows that the system can be applied to complex
illumination conditions to verify the effectiveness of the method. The experimental date was
18 August 2018, during which Typhoon Rumbia passed through and increased the water level.
The weather changed from cloudy to sunny, and the wind was a moderate breeze. The measured
data of the float-type stage gauge in the hydrology station are taken as the reference. In order to
verify the uncertainty of the MMD method under complex illumination conditions, the water-level
measurements of images collected under different illumination conditions were carried out, and the
results were compared with two adaptive threshold methods based on Otsu and OSF. The continuous
measurement interval was set to 10 min, and 144 data obtained from 0:00:00 to 23:50:00 were selected.
The measurement results are shown in Figure 11. Hydrological station float-type stage gauge data
recorded the changes of water level in the day, ranging from 9.2 m to 9.8 m. During 7:10:00–15:50:00,
the Otsu method resulted in errors when illumination conditions changed, and the measured value
was significantly lower than the reference value, as shown in Figure 11a. The results of the OSF method
were better than those of the Otsu method, but the measured value was higher than the reference
value, as shown in Figure 11b. During 7:10:00–14:40:00 and 21:50:00–23:50:00, the results of the MMD
method were slightly lower than the reference values, and the errors were about 0.12 m and 0.05 m,
respectively. Looking at the water gauge images, we can see that there are aquatic weeds winding
around the water gauge, which results in errors. This also affects the threshold selection of the Otsu
method and the OSF method.

After removing the winding period of aquatic weed, 85 groups of valid measurement data were
left. The gross errors larger than the 0.1 m number (NE>0.1) and gross errors larger than the 0.02 m
number (NE>0.02) of the Otsu, OSF and MMD methods are shown in Table 2, corresponding effective
data ratios of Otsu, OSF and MMD methods are 55.3%, 52.9% and 90.6%, respectively. The root mean
square error (RMSE) of the MMD method was only 0.0118 m, which was much lower than other two
methods. Due to the camera vibration caused by wind, the error of image registration was ±5 cm,
which was reduced to ±2 cm by median filtering. These errors are related to the conversion of the
actual water level, which can be corrected by a strategy of detecting camera movement and adjusting
the exterior orientation parameters [13].

In order to analyze the applicability under complex illumination conditions, original water
gauge images (left) and visualized water-level measurements of the OSF (middle) and MMD (right)
methods under different illumination conditions at 6 moments were selected, as shown in Figure 12.
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The measuring time is shown in the label 1–6 labeled in Figure 11b. The blue line drawn on the
template image represents the median value of the measured water level, corresponding to the white
line drawn on the 25 corrected water-level ROI. Table 3 gives the ROI and water-level results of the
MMD method under different illumination conditions at 6 moments. Coarse positioning ROI number
(gray image) is the ROI number with the maximum gray mean difference of gray image in the coarse
positioning process and coarse positioning ROI number (edge image) is the ROI number of edge image.
After comparing the former two, the group with the larger values of gray mean difference is selected,
and its ROI number is set as coarse positioning ROI number, which can be seen in Figure 13. Fine
positioning ROI number (gray image) is the ROI number with the maximum gray mean difference of
the gray image in the fine-positioning process and the fine-positioning ROI number (edge image) is the
ROI number of the edge image. After comparing the former two, the group with the larger values of
gray mean difference is selected, and its ROI number is set as the fine positioning ROI number, which
can be seen in Figure 13.
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Table 2. Root mean square errors (RMSEs) and error measurements of Otsu, OSF and MMD methods.

Methods Otsu OSF MMD

RMSE/m 0.4867 0.0818 0.0118
NE>0.1 15 12 0
NE>0.02 38 40 8
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Table 3. ROI and water-level results of the MMD method under different illumination conditions.

Illumination Conditions Dim
Light

Shadow
Projection

Water
Glare

Direct
Sunlight

Lateral
Sunlight

Artificial
Lighting

Coarse Positioning ROI Number
(Gray Image) 20 19 20 19 19 18

Coarse Positioning ROI Number
(Edge Image) 20 19 19 18 19 39

Coarse Positioning ROI Number 20 19 20 19 19 18

Fine Positioning ROI Number
(Gray Image) 129 112 87 133 84 94

Fine Positioning ROI Number
(Edge Image) 137 99 199 158 105 21

Fine Positioning ROI Number 137 99 87 133 84 94

MMD Method Water Level
Result/m 9.729 9.690 9.782 9.644 9.694 9.588

Stage Gauge Result/m 9.74 9.80 9.82 9.75 9.69 9.60

Absolute Error/m 0.011 0.11 0.038 0.106 0.004 0.012
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Figure 13. The result of coarse and fine positioning of the water level by the MMD method under three
illumination conditions: (a) 6:30:00 dim light; (b) 9:50:00 water glare; (c) 19:20:00 artificial lighting.

The dim light corresponds to label 1 in Figure 11b. The illumination condition at the junction of
morning and dusk is poor, and there is no artificial light supplement. The gray values of the water
gauge and water surface are close to each other, which reduces the image contrast and improves the
sensitivity of the adaptive threshold. As a result, the water line detected by the OSF method appears
on the water gauge after binarization of the water gauge image. The MMD method calculates the
gray image mean difference and edge image mean difference of adjacent coarse and fine positioning
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ROI. When gray image features cannot accurately distinguish the water gauge and water body, the
extreme points of mean difference can be accurately detected by using edge image features. As shown
in Figure 13a, the water gauge and water are distinguished effectively. The absolute error is 0.011 m
compared with the result of the stage gauge. This avoids the wrong measurement of water level when
gray values are similar.

The condition of water glare corresponds to label 3 in Figure 11b. The uneven distribution of gray
level caused by the local water glare leads to the higher threshold selected by the OSF method, which
results in the water surface binary value being white. The MMD method detects extreme points in the
gray mean difference of the gray image. As shown in Figure 13b, in fine positioning the maximum of
gray mean difference of the gray image is ROI 87, while the maximum of the edge image is ROI 199.
After taking the maximum of both, the water line is located at ROI 87, which proves that the MMD
method can avoid the problem of false detection of the single feature detection method. Because of the
winding of aquatic weeds, the error of water level measured by MMD method is 0.038 m. The valley
of the gray mean difference of edge image at ROI 64 and 144 is also the texture difference caused by
aquatic weeds.

Artificial lighting corresponds to label 6 in Figure 11b. At night, strong artificial light supplement
forms relatively stable, uniform and high-contrast illumination conditions, which are conducive to the
measurement of water level. As shown in Figure 13c, the gray mean difference of the gray image in
coarse and fine positioning appears at maximum value in ROI 18 and ROI 94 respectively, which is
much larger than the maximum value of the edge image. The MMD method can locate the water line
accurately and the result is stable. The gray mean difference of the edge image appears as the valley
value at ROI 96 because there is strong edge information at the water line, but it does not affect the
result of fine positioning.

Note that the difference between the OSF method and MMD method is that: (1) the reflective
characteristics of water body are different. The water body of OSF application is clear, and the sediment
content of water body measured by MMD method is higher. (2) The material of the water gauge is
different. The water gauge used in OSF is made of aluminium alloy, which has strong reflectivity in the
near-infrared band and invisible characters in daytime. The MMD method water gauge is made of
stainless steel, and the characters are visible in the near-infrared band in daytime. (3) The distance
between the water gauge and the camera is different: OSF is 3 m and MMD is 24 m.

4.2. Experiment in Measurement Site 2

The MMD method was systematically tested at measurement site 2 during 7 days with typical
weather conditions as shown in Table 4. The measuring interval was set as 10 min to capture 144 sets
of data every day. Data missing after 13:00:00 in 18–03–09 was caused by an accidental shutdown of
the remote-monitoring PC. Fortunately, this deficiency was supplemented by data of 18–03–10 with
the same weather condition.

Table 4. Weather conditions during the experiment.

Data 18–03–04 18–03–05 18–03–06 18–03–07 18–03–08 18–03–09 18–03–10

Weather Cloudy Light Rain Light Rain Moderate Rain Overcast Sunny Sunny
Wind Scale Scale 1 Scale 5 Scale 3 Scale 2 Scale 1 Scale 1 Scale 2

As shown in Figure 14, manual observations served as the reference values and the OSF method
is taken for comparison. MMD and OSF measurements in Figure 14a show slight fluctuations during
12:20:00–13:40:00. Through the manual inspection of original videos, we find that it is caused by
shaking of the camera due to gust influence, making water level bias up to 0.05 m. Figure 14b–e
introduce the flow confluence process produced by rain. The influence of light to moderate rain is
found to be almost negligible owing to high signal–noise ratio of near-infrared imaging. Measurements
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in Figure 14f,g show greater uncertainties than others. The reason can be explained that the influence
of ambient lighting to optical imaging in sunny days is larger than that in overcast and rainy days.
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(18–03–09); (g) sunny (18–03–10).

Table 5 indicates NE>0.02 of the MMD method and OSF methods, corresponding to effective data
ratios of 95.86% and 96.39%, respectively. In particular, the gross errors larger than 0.1 m (observed
around 18–03–10 10:40:00) of the OSF method were also induced by shadows of the support frame
projected on the water gauge, but the MMD method effectively solved this problem by fusing gray and
edge features. In the case of shadow interference, the RMSE of the MMD method was around 0.01 m,
while the RMSE of OSF method was around 0.04 m.

Table 5. RMSEs and numbers of error measurements of the MMD and OSF methods.

Methods Data 18–03–04 18–03–05 18–03–06 18–03–07 18–03–08 18–03–09 18–03–10

MMD
RMSE/m 0.009 0.012 0.006 0.008 0.006 0.011 0.009

NE>0.1 0 0 0 0 0 0 0
NE>0.02 7 10 3 4 0 8 7

OSF
RMSE/m 0.008 0.004 0.003 0.004 0.004 0.018 0.040

NE>0.1 0 0 0 0 0 1 2
NE>0.02 7 3 0 1 0 10 13

Compared with site 1, the situation of the camera facing north to the water gauge suffered
more from the influence of direct and lateral sunlight, which created more complicated illumination
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conditions in sunny days. Shadow projection (18–03–10 10:40:00) on the water gauge had similar
grayscale with the water surface, making it difficult to distinguish with segmentation methods based
on a single threshold. These shadows on the water gauge not only interfered with the calculation of
threshold, but also formed residual noises after image segmentation. Strong lateral sunlight (18–03–10
09:10:00) will form horizontal uneven illumination on the water gauge. Glares on water surface and
reflections from floating debris randomly generated by strong direct sunlight (18–03–10 10:50:00) were
the main adverse factors in the sunny day. For better analyzing the suitability of methods, original
water gauge images (left) and visualized water-level measurements of the OSF (middle) and MMD
(right) methods under the above three typical illumination conditions are listed and shown in Figure 15.
Compared with OSF, which relies on a single gray feature, MMD performs better. The location
accuracy of the water line is improved by taking the maximum difference of local image features as the
judging condition.
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Figure 15. The original water gauge images (left) and visualized OSF (middle) and MMD (right)
measurements: (a) strong lateral sunlight (09:10:00); (b) shadow projection (10:40:00); (c) strong direct
sunlight (10:50:00); (d) high velocity flow (16:40:00).

Note that the reason why the MMD’s RMSE is larger than that of OSF in 3 rainy days is that the
water line was inclined due to the high velocity flow against the pillar (18–03–05 16:40:00), as shown in
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Figure 15d. The manual observation takes the midpoint of the inclined water line as reference value,
while the MMD method mainly detects the lower part, which causes gross errors larger than 0.02 m.
In this case, the reference value should be determined by comparison with other water-level gauges.

5. Conclusions

In order to solve the problem of image-based water level measurement under complex illumination
conditions, a water line detection method based on maximum mean difference (MMD) of gray and edge
features is proposed. Systematic experiments were conducted at two measurement sites. The results
show that: (1) The fusion of gray and edge features can effectively overcome the shortcomings of
traditional single-feature detection methods under dim light, water glare, shadow projection and other
complex illumination conditions. (2) The coarse-to-fine strategy of searching the maximum mean
difference in the horizontal projection is designed to detect the water line according to the periodicity of
the surface pattern distribution of the standard bicolor water gauge. The water-level accuracy can reach
1 cm, and effective data ratios up to 90%. (3) The identification of unfavorable conditions is realized.
Future work will focus on the identification of floating debris winding around the water gauge during
the high flood period and reducing the impact of invariable vibration and slight movement of the
camera caused by wind.
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