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Abstract: To dynamically monitor the horizontal well, we studied the oil–water two-phase water
holdup detection method based on transmission lines, and designed a micro-sensor and a sensor-array
water holdup detection tool. We modeled the relationship of the dielectric constant of the transmission
line filling medium and the amplitude and phase shift of the electromagnetic wave signal on the
transmission line by using the time-domain analysis. We proposed a novel method to measure
the water holdup of oil–water mixtures based on the phase shift of signals on the conical spiral
transmission line. Furthermore, we simulated and optimized the structural parameters by software
simulation, and developed a small conical spiral water holdup sensor suitable for arraying. The single
sensor with detection circuits can achieve the full scale (water holdup from 0% to 100%) measurement
with resolution better than 3%. On this basis, 12 sensors are used to develop a clock-like sensor-array
water holdup detection tool, realizing the array detection of the distribution of the cross-section
medium in horizontal wells.

Keywords: oil–water two-phase flow; water holdup; conical spiral transmission line; sensor;
electromagnetic wave; horizontal well

1. Introduction

The rapid expansion of the horizontal well application and the waterflooding technology has
lead to more serious reservoir water problems. The most effective method to measure the distribution
and location of water production is to detect water holdup, which can directly affect the production
efficiency of horizontal wells. Although there are many methods for water holdup detection at present,
only a few tools can really be used to detect water holdup in horizontal wells due to the limitation
of high temperature, high pressure and narrow space. For example, the Flow Scanner [1] produced
by Schlumberger and Capacitance Array Tool [2] and the Resistance Array Tool [3,4] produced by
Sondex. Their detection methods can be basically divided into the conductance method and the
capacitance method.

The conductance method is based on the huge differences in oil and water conductance. Generally,
the water holdup is estimated by the measured conductance of the fluid. In the past 10 years, Jin’s
research team designed conductance sensors with various structures and carried out according
experimental studies [5–8]. However, the conductance method is affected by fluid salinity, and
in particular, it will fail if the water holdup is less than 20% because there is no continuous water
phase between measuring electrodes. The capacitance method [9–12] is based on the monotonically
increasing relationship between water holdup and dielectric constant of oil–water two-phase fluid.
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The fluid flows between the two poles of the capacitor and plays as a filling medium, thus the water
holdup measurement is transformed as the capacitance measurement. The main reasons why the
capacitance method loses the resolution is the influence of groundwater salinity. In fact, the change of
resistance caused by groundwater salinity can be regarded as a resistor parallel to the capacitor sensor.
The increase of salinity will increase the proportion of the conduction current on the resistor, while
the proportion of displacement current on the capacitor caused by oil–water dielectric constant will
decrease. When salinity reaches a certain level, the measurement error of the capacitance method will
increase until the method fails.

According to the theory of electromagnetic wave propagation [13], the propagation characteristics
of a transmission line are related to the dielectric constant and conductivity of the medium between
its conductors. When the dielectric constant or conductivity of the medium changes, the amplitude
and phase of the signal on the transmission line will change accordingly. It can be inferred that if the
downhole fluid is used as a filling medium between the transmission lines, the characteristics of the
signals on transmission lines will change when the water holdup of the fluid changes.

In 1993, Guo et al. [14] measured the water holdup by using the coaxial transmission line (CTL)
with an open terminal. The idea was that the CTL filled with oil and water was regarded as a coaxial
capacitor, and the resonant frequency of the circuit would change with the change of water holdup. The
water holdup could be calculated through the resonant frequency. In 2002, Wang et al. [15] designed a
CTL sensor, the frequency of the electromagnetic wave is 75 MHz, but the influence of salinity still
exists. Meng et al. [16–18] optimized the CTL sensor and pointed out that the attenuation of the
electromagnetic wave signal caused by salinity can be reduced by wrapping an insulating medium on
the surface of the inner conductor of the sensor. On this basis, Yu et al. [19,20] increased the frequency
of the signal appropriately and designed a water holdup detection tool based on CTL. Since the fluid
flows between the inner and outer conductors of the CTL, the size of the sensor cannot be too small to
avoid blockage. Because water holdup at the same cross section in a vertical well is basically the same,
it is feasible to use a single point measurement method with a sensor. Therefore, the CTL sensor is
suitable for water holdup measurement in vertical wells.

Due to gravity, oil and water in horizontal wells form a stratified flow, and thus a single sensor
with a CTL structure can only measure the local area, and cannot obtain global information. Therefore,
we need to use a multiple sensors array to detect the distribution of oil and water, so as to calculate
water holdup. The key to this is the miniaturization of the sensor. Huo et al. [21,22] adopted a double
CTL to measure the water holdup, which reduced the size of the sensor. Mohamed et al. [23] proposed
a coplanar microstrip transmission line sensor with an “n” structure. On this basis, Wei et al. [24–26]
designed a coplanar waveguide (CPW) sensor, using “s” type double-sided wiring to increase the
length of the transmission line in limited space. Although the CPW sensor has good sensitivity, it
easily adheres to liquid on the surface due to the flat structure and the influence of surface tension,
and especially when the plane of the sensor is parallel to the horizontal plane, a measurement error
may be caused.

Based on the above research, it is necessary to further study the propagation characteristics of
signals on transmission lines and optimize the structure of the sensor. In this study, first, a water
holdup detection model based on a general transmission line is established. Then, a novel conical
spiral transmission line sensor (CSTLS) is proposed based on the requirements of the water holdup
array detection in the horizontal well. The CSTLS parameters are optimized by studying the influence
of the structure on the phase shift output. Experimental results show that the sensor can achieve the
full-scale measurement of well water holdup from 0% to 100% with a resolution that is better than 3%.
Finally, a sensor-array water holdup detection tool based on multi-CSTLS is developed, which realizes
the array detection of the fluid distribution of the cross-section in horizontal wells.
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2. Method

2.1. Propagation Characteristics of Signals on the Transmission Line

According to electromagnetic wave propagation theory [27–30], the propagation characteristics
of the signal on the transmission line were determined by the unit resistance and inductance of
transmission line conductors, as well as the unit capacitance and conductance of the medium between
transmission line conductors. If the medium is changed, its dielectric constant and conductivity will
change, causing the change of the distribution parameters of transmission lines, as well as the change
of their transmission signal characteristics. Therefore, when an oil–water mixture is used as the filling
medium between transmission line conductors, the dielectric constant and conductivity information of
the medium can be obtained by measuring the propagation characteristics of the signal, and then the
water holdup of the oil–water mixture can be estimated accordingly. Thus, we studied the propagation
characteristics of signals in transmission lines. The equivalent circuit of the transmission line is shown
as Figure 1 under the transmitting TEM wave.

(a) (b)

Figure 1. Equivalent circuit model of the transmission line: (a) Basic circuit model; (b) Lumped
parameter circuit model.

Figure 1a is the basic circuit model of the transmission line, in which a conductor of infinitesimal
length dz can be simulated by the lumped parameter circuit model in Figure 1b. R is the resistance per
unit length (Ω/m), G is the conductance per unit length (S/m), L is the inductance per unit length
(H/m), and C is the capacitance per unit length (F/m). If the voltage and current at the beginning
of dz (position AA′) are u(z, t) and i(z, t), respectively, and the voltage and current at the end of dz

(position BB′) are u(z + dz, t) and i(z + dz, t), respectively. According to Kirchhoff’s law, there is
d2u(z)

dz2 = ZYu(z) = γ2u(z)

d2i(z)
dz2 = YZi(z) = γ2i(z)

(1)

where, Z = R + jωL, Y = G + jωC, γ is the propagation constant, γ =
√
(R + jωL)(G + jωC) =

α + jβ, α and β are the amplitude attenuation factor and phase shift factor per unit length of the
transmission line, respectively.

The general solution of the differential Equation (1) is:

U(z) = Aeγz + Be−γz (2)

I(z) =
1
Z

dU(z)
dz

=
1

Z0
(Ae−γz − Beγz) (3)

where, Z0 =
√
(Z/Y) =

√
(R + jωL)/(G + jωC)), which is the characteristic impedance of the

transmission line. The undetermined constants A and B need to be determined according to the
port conditions.
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If the voltage U(0) = U2 and current I(0) = I2 are known in the terminal (z = 0), then there are
A = (U2 + Z0 I2)/2, B = (U2 − Z0 I2)/2. Substitute them into Equations (2) and (3), as follows:

U(z) = U+
2 eγz + U−2 e−γz (4)

I(z) =
1

Z0

(
U+

2 eγz + U−2 e−γz) (5)

where, U+
2 = (U2 + I2Z0)/2, U−2 = (U2 − I2Z0)/2.

Equations (4) and (5) are the expressions of voltage and current at any point on the transmission
line when the terminal voltage and current of the transmission line are known. The two equations show
that the voltage and current on the transmission line exist in the form of waves and are composed of
two parts: the transmitting signal and the reflecting signal. If the ratio of the reflected signal voltage to
the transmitted signal voltage at a point z on the transmission line is defined as the reflection coefficient
Γ(z) at that point, then

Γ(z) =
U−

U+
=

(U2 − Z0 I2)e−γz

(U2 + Z0 I2)eγz = Γ2e−2γz (6)

where, Γ2 is the terminal reflection coefficient of the transmission line, and

Γ2 =
U2 − Z0 I2

U2 + Z0 I2
=

ZL − Z0

ZL + Z0
(7)

Therefore, according to the difference of terminal reflection coefficient, there are three different
transmission modes of signals on transmission lines, namely, matching state, standing wave state and
mixed wave state [13].

2.2. General Expressions of the Amplitude and Phase Shift of Signals on Transmission Line in Mixed
Wave Mode

As the dielectric constant of the oil–water mixture fluid flowing between the conductors of the
transmission line varies randomly, the characteristic impedance of the transmission line is a function of
the dielectric constant of the mixture fluid. Therefore, when the terminal load of the transmission line
is constant, the transmission line generally works in the mixed wave state rather than the matching
state, unless the load adaptively matches the characteristic impedance. Therefore, in order to use
the electromagnetic wave characteristics on the transmission line to detect the dielectric constant of
oil–water fluid, it is necessary to study the general expressions of electromagnetic wave amplitude
and phase shift at the end of the transmission line in the mixed wave state.

In order to study the signal characteristics of the transmission line terminals, assuming that the
voltage U(l) = U1 and the current I(l) = I1 at the transmitter are known, the constants A and B can
be determined by Equations (2) and (3), respectively.

A =
U1 + I1Z0

2
e−γl , B =

U1 − I1Z0

2
eγl (8)

Substitute it into Equation (2), the voltage at any point z on the transmission line is

U(z) =
U1 + I1Z0

2
e−γ(l−z) +

U1 − I1Z0

2
eγ(l−z) (9)

Let U+
1 = (U1 + I1Z0)/2, U−1 = (U1 − I1Z0)/2, the terminal voltage (z = 0) can be expressed as

U(0) = U+
1 e−γl + U−1 eγl (10)
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If the reflection coefficient Γ2 is known, the above formula can be expressed as

U(0) = U+
1 e−γl + Γ2U+

1 eγl = U+
1 (e−γl + Γ2eγl). (11)

Equation (11) is the expression of the relationship between the transmitting end voltage and the
receiving end voltage. Therefore, the ratio of the receiving end voltage to the transmitting end voltage
is the transfer function H(jω) of the transmission line, i.e.

H(jω) =
U(0)
U+

1
= e−γl + Γ2eγl = e−(α+jβ)l + Γ2e(α+jβ)l = cosβl(e−αl + Γ2eαl) + jsinβl(Γ2eαl − e−αl).

(12)
Equation (12) can be rewritten as H(jω) = Re(H(jω)) + jIm(H(jω)), where Re(H(jω)) and

Im(H(jω)) are the real and imaginary parts of the transfer function respectively, and

Re(H(jω)) = cosβl(Γ2eαl + e−αl), Im(H(jω)) = sinβl(Γ2eαl − e−αl). (13)

Assuming that the voltage at the transmitting end of the transmission line is A0sin(ωt), the voltage
at the receiving end is U(0) = Aamsin(ωt− φ), then

Aam = |H(jω)| A0 = A0

√
Re2(H(jω)) + Im2(H(jω)) = A0

√
(Γ2eαl + e−αl)2 − 4Γ2sin2βl. (14)

Compared with the transmitting end, the phase shift of the signal at the receiving end of the
transmission line is Φ, and

Φ = arctan
Im(H(jω))

Re(H(jω))
= arctan

sinβl(e−αl − Γ2eαl)

cosβl(e−αl + Γ2eαl)
= arctan

(
tan(βl)

e−αl − Γ2eαl

e−αl + Γ2eαl

)
. (15)

According to the definition of reflection coefficient, Equations (14) and (15) can be rewritten as

Aam = A0

√
(ZL − Z0)2e2αl + (ZL + Z0)2e−2αl + 2(Z2

L − Z2
0)(cos2βl − sin2βl)

(ZL + Z0)2 (16)

Φ = arctan

(
(ZL − Z0)eαl − (ZL + Z0)e−αl

(ZL − Z0)eαl + (ZL + Z0)e−αl tan(βl)

)
. (17)

Equations (16) and (17) are general expressions of the amplitude and phase shift of the terminal
signal when the transmission line is in a lossy mode. When the transmission line is in a lossless
mode, that is, the unit resistance R = 0, the unit conductance G = 0, and the attenuation factor α = 0,
the above equations can be simplified as

Aam =
2A0

√
Z2

Lcos2βl + Z2
0sin2βl

(ZL + Z0)
(18)

tanΦ =
Z0

ZL
tan(βl) =

Z0

ZL
tan(lω

√
LC) =

Z0

ZL
tan(lω

√
LKcεr) (19)

where, L and C are the equivalent inductance and capacitance of the transmission line, respectively; εr

is the dielectric constant of the medium between the conductors of the transmission line and Kc is the
proportional coefficient between C and εr. In particular, when the load impedance is matching with
characteristic impedance, ZL = Z0, then, Aam = A0, Φ = βl = lω

√
LKcεr, and there is only incident

wave and no reflected wave at the end of the transmission line.
In summary, (1). In the matching state, the phase shift of the signal is determined by the factor β.

The larger the β value, the larger the phase shift of the signal on the transmission line. The β is related
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to the conductivity and dielectric constant of the medium; (2). In mixed wave state, the amplitude
attenuation is determined by the factor α. The larger the α, the greater the attenuation of the signal
on the transmission line. The α is related to the conductivity and dielectric constant of the medium;
(3). In mixed wave state, if the terminal load and the length of the transmission line are constant, the
amplitude and phase characteristic of the terminal signal are functions of the attenuation factor α, the
phase shift factor β, and the characteristic impedance Z0.

2.3. Principle of Detecting the Dielectric Constant of an Oil–Water Mixture Based on the Transmission Line

Based on the above discussion, if we can prove that the amplitude or phase shift of the signal
on the transmission line in the mixed wave mode has a monotonic relationship with the dielectric
constant of the medium between transmission lines, we can provide a feasible method to detect water
holdup in oil–water mixtures. Figure 2 is the structure diagram of four commonly used transmission
lines. We assume that the conductivity of oil, water and their mixture is zero under ideal conditions.
Table 1 shows the relationship between the characteristic impedance Z0 and the phase shift factor β of
four transmission lines and the dielectric constant when the oil–water mixture is used as the filling
medium under ideal conditions.

(a) (b)

(c) (d)

Figure 2. Four common transmission lines: (a) Parallel line; (b) Coaxial cable; (c) Microstrip; (d)
Coplanar microstrip lines.

Table 1 shows that Z0 is inversely proportional to
√

ε0εr, and β is proportional to
√

ε0εr. Therefore,
Z0 and β can be rewritten as the following general expressions, respectively:

Z0c =
Cz√
εe f f

, βc = ωCβ
√

εe f f (20)

where, Cz and Cβ are constants, depending on the structure of the transmission line. Substitute (20)
into (18) and (19), there are

Aam =
2A

Cz/
√
(εe f f ) + ZL

√
C2

z sin2(Cβωl
√

εe f f )/εe f f + Z2
Lcos2(Cβωl

√
εe f f ) (21)

Φ = sin−1

 Czsin(Cβωl√εe f f )√
C2

z sin2(Cβωl√εe f f ) + Z2
Lεe f f cos2(Cβωl√εe f f )

 (22)
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In order to further analyze the relationship between the amplitude and phase shift of the terminal
signal on the transmission line and dielectric constant, we carry out digital simulation. When the
load ZL is different, the relationship between amplitude and phase shift and dielectric constant is
numerically simulated by (21) and (22).

Table 1. Relationship between the characteristic impedance and the phase shift factor of the four kinds
of transmission lines and the dielectric constant of the filled medium.

Parameter Parallel Line Coaxial Cable Microstrip Coplanar Microstrip Lines

Z0
acosh(D/d)

√
µ

π
√

ε0εr

ln(b/a)
√

µ

2π
√

ε0εr

s
√

µ

w
√

ε0εr

30πk√
ε0εe f f

β ω
√

µε0εr ω
√

µε0εr ω
√

µε0εr kω
√

µε0εe f f

µ, εr—- Permeability, relative permittivity of the medium around conductor; εe f f —-The effective dielectric
constant of the transmission line; k—-The structure constant of coplanar microstrip lines; ε0 —-The dielectric
constant of air.

Figure 3 shows that the relationship between voltage amplitude and dielectric constant is not
monotonic, regardless of the length of transmission line or the load of transmission line. This
non-monotonicity leads to the uncertainty of water holdup inversion according to the measured
signal voltage amplitude.
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(b)

Figure 3. Relationships between the terminal voltage amplitude and the dielectric constant of two
length transmission lines under different load conditions: (a) The length of the transmission line is
21 cm; (b) The length of the transmission line is 32 cm.

Figure 4 shows that the phase shift of the signal is monotonically increasing with the dielectric
constant of the medium. Therefore, it is theoretically feasible to estimate the dielectric constant of the
medium around the transmission line by detecting the phase shift of the signal on the transmission line.
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Figure 4. Relationships between the terminal signal phase shift and the dielectric constant of two
length transmission lines under different load conditions: (a) The length of the transmission line is
21 cm; (b) The length of the transmission line is 32 cm.

2.4. Sensor Requirements for Sensor-Array Water Holdup Detection Tool in Horizontal Wells

The sensor-array water holdup detection tool has two modes: moving and logging. The moving
mode is mainly the process of lifting and lowering the tool in the casing. Due to different well
conditions, it is sometimes necessary to pass the tool through a 2 and 3/8 inch diameter tubing.
This requires that the maximum diameter of the tool should not be greater than 43 mm when all
sensors are gathered, to ensure that the tool slides freely in the tubing, as shown on the left side of
Figure 5. The logging mode is the measuring state when the tool reaches the target layer. At this point,
the sensor is close to the casing under the action of spring tension, and the maximum diameter of the
tool is slightly less than the inner diameter of the casing. If the outer diameter of the casing is 7 inches,
the diameter of the spring after opening is about 160 mm, as shown on the right side of Figure 5.

Figure 5. Deployment diagram of array water holdup sensors.

According to the structure and stiffness requirement, the radius of the central support rod of
the tool should be greater than 4 mm. If the thickness of the fixed bow spring is 1 mm, the space
reserved for sensors is actually an annular space with an inner radius no less than 4 mm and an outer
radius no more than 20.5 mm. If these sensors are distributed on the same cross-section of the tubing
during the moving mode, they are gathered into a circumscribed circle. Therefore, the maximum outer
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diameter of each sensor should be less than 8 mm. This also minimizes the influence of the sensor
on the flow pattern of the fluid. If the flow direction resolution of the tool is further considered, the
effective length of the sensor should not exceed 80 mm. Therefore, the overall size of the sensor is
limited to a cylindrical space with a diameter of 8 mm and a length of 80 mm.

In summary, the design requirements of the array water holdup sensor are as follows: (1) small
section (diameter 6 8 mm, which is convenient for arranging multiple sensors on the well section
to form a detection array); (2) short length (length 6 80 mm, which makes it easy to improve flow
direction resolution); (3) high precision (resolution up to 3%, for maintaining high precision over the
whole scale).

2.5. Structure and Numerical Simulation of Cstls

Firstly, we discuss whether a common CTL is suitable for sensor design. In order to ensure the
sensor strength, the radius of the inner and outer conductors of the CTL cannot be less than 1 mm.
If the diameter of the sensor is less than 8 mm, then the fluid annulus in the CTL is less than 2 mm.
Such a narrow space can cause fluid flow obstruction. Therefore, the CTL cannot meet the space
requirements, and we should look for other solutions.

CPW is very easy to miniaturize, and we have previously designed an S-type CPW sensor [24–26].
However, because of surface tension, the oil–water mixture easily adheres to sensor surfaces with a
planar structure, thus affecting the sensitivity. In order to reduce liquid adsorption, we propose the
CSTLS, which is changed from a planar structure to a conical spiral structure.

As shown in Figure 6, the basic principle of CSTLS is similar to the parallel line. The specific
design procedure is as follows: First, a cone is machined with PEEK (polyetherether ketone) material,
and four spirals are cut out on the cone. Second, two enameled wires are rotated from the bottom of
the cone to the top of the cone, then passed through two holes on the top of the cone, and then circled
back to the bottom of the cone, thus forming CSTLS.

Figure 6. Schematic of a conical spiral transmission line sensor (CSTLS).

In order to design the sensor reasonably, we need to analyze the influence rule of the sensor
structure on the phase shift to provide theoretical guidance for selecting appropriate structure
parameters. From winding direction (A→B), we can find that the coil diameter first decreases
continuously, and then increases continuously. This irregular structure makes it difficult to model the
distribution parameters of the transmission line using traditional methods. Therefore, even if we have
derived Equation (22), it is difficult to obtain the exact analytical formula for the relative dielectric
constant εrx of the oil–water mixture and the structure parameters with the signal phase shift Φ.
However, the powerful simulation function of COMSOL(a multiphysics modeling software) can help
us determine these irregular physical fields. We have known that the closer the linear relationship
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between Φ and εrx is, the more consistent the sensitivity is; the greater the variation in Φ in the full
scale (not exceeding 2π), the higher the resolution of the sensor. Based on this, we built a model
and simulate it using COMSOL. When investigating the influence of a certain parameter on Φ, four
different values were selected and the rest of the parameters were selected by default as shown in
Table 2. The simulation results are shown in Figure 7.

Table 2. Default simulation parameters table of the CSTLS.

Parameter Equivalent Length Wire Diameter Pitch Signal Frequency Load Impedance

Value 400 mm 0.80 mm 2.00 mm 80 MHz 60 Ω
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Figure 7. Relationship between structural parameters of CSTLS and Φ: (a) Model; (b) The effect of
equivalent length of CSTLS on phase shift; (c) The effect of wire diameter of CSTLS on phase shift;
(d) The effect of pitch of CSTLS on phase shift.

Figure 7a is the simulation model; Figure 7b shows that the longer the transmission line is, the
larger the dynamic range of Φ, but it should be limited within a certain range of the length to ensure
that the maximum phase shift does not exceed 2π, otherwise multiple solutions may occur; Figure 7c
shows that the diameter of the wire has little effect on the phase shift, but a small diameter may reduce
the linearity of the resolution; Figure 7d shows that the effect of pitch on sensitivity is not obvious, and
small pitch has a slight advantage in improving sensitivity.

In summary, the design of CSTLS should follow the following principles: (1). The length of
the transmission line should be larger when space permits; (2). It is advisable to choose wires with
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larger diameter, so that the contact area with the tested liquid is larger and the sensor will be more
sensitive; (3). When the mechanical strength is guaranteed, the pitch can be reduced appropriately,
which ensures that a longer wire is wound in a limited space, and the sensitivity of the sensor can also
be improved.

3. Experiment

According to theoretical analysis, three sensors with different sizes are designed. The actual
sensors are shown in Figure 8. The #1 sensor is the shortest, and the length of its detection part is only
30 mm. Sensors #2 and #3 have the same length but with different enameled wire diameters. All three
sensors are made with the same pitch. The specific parameters are shown in Table 3.

Figure 8. The three kinds of CSTLS.

Table 3. Specific parameters of the three kinds of CSTLS.

CSTLS Equivalent Length Wire Diameter Pitch Number of Turns

#1 192 mm 0.78 mm 2.00 mm 22
#2 544 mm 0.78 mm 2.00 mm 42
#3 544 mm 0.49 mm 2.00 mm 42

3.1. Detection Circuit and Basic Principle

The Detection circuit schematic and equivalent circuit model is shown in Figure 9. In Figure 9a,
two coaxial cables with a diameter of 1.17 mm are used to connect the CSTLS and the detection circuit.
The detection circuit consists of a high-frequency signal source, a demultiplexer and a multiplexer,
and a mixer circuit, as shown in Figure 9b. The 12-channel demultiplexer distributes the 80 MHz high
frequency signal to 12 sensors in a time-sharing manner, and the 12-channel multiplexer multiplex the
output of 12 sensors into the same channel in turn.

Suppose the input signal of the transmission line is si(t) = Asin(2π fct), according to the
equivalent model of Figure 9c, assuming that the phase shift generated after the signal passes through
cable1, CSTLS and cable2 successively is Φ1, Φ, Φ2, respectively, and the total phase shift is Φsum,
then, Φsum = Φ1 + Φ + Φ2, the signal at the output end of the transmission line can be expressed as
so(t) = Bsin(2π fct−Φsum).

This is a multi-branch transmission line model. The lengths of cable1 and cable2 (l1, l2), as well
as the series impedance Zr, and load impedance ZL will affect Φsum, which is more complex than the
single transmission line model. Therefore, we need to carefully adjust these four parameters to expect
the dynamic of Φsum to be the maximum when CSTLS is tested in samples with a water holdup of
0% pure oil to 100% pure water, which means the maximum resolution is obtained. We typically also
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need to take into account the linearity of the curve. In summary, once these parameters are adjusted,
Φ1 and Φ2 are fixed constants, and the value of Φsum indirectly reflects the value of Φ. Therefore, we
transform the detection of water holdup into the measurement of the phase shift difference between
two high frequency signals si(t) and so(t).

(a)

(b)

(c)

Figure 9. Detection circuit schematic and equivalent circuit model: (a) CSTLS connection schematic;
(b) Detection circuit schematic; (c) Equivalent circuit model of the transmission line.(RC: resistor and
capacitor; LPF: low pass filter; FPGA: field programmable gate array; PC: personal computer).

For accurate measurement, the method of differential frequency phase shift measurement is
adopted. The basic principle is as follows. Multiply si(t) and so(t) by a standard sinusoidal signal
p(t) = sin[2π( fc +4 f )t], where4 f << fc, then:

p(t)si(t) = Asin[2π( fc +4 f )t]sin(2π fct) (23)

p(t)so(t) = Bsin[2π( fc +4 f )t]sin(2π fct−Φsum). (24)

According to the trigonometric formula, there is

p(t)si(t) = 0.5Acos[2π4 f t]− 0.5Acos[2π(2 fc +4 f )t] (25)
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p(t)so(t) = 0.5Bcos[2π4 f t + Φsum]− 0.5Bcos[2π(2 fc +4 f )t−Φsum]. (26)

Filter out the high frequency part of the above two equations, and retain the low frequency
part, then

yi(t) = 0.5Acos(2π4 f t) (27)

yo(t) = 0.5Bcos(2π4 f t + Φsum). (28)

The above equations show that although the phase shift does not change, the frequency decreases
greatly due to4 f << fc (4 f = 20 KHz), which enhances the time-domain measurability. It can be
seen that the delay corresponding to the phase shift of the 20 KHz signal is 4000 times larger than that
of the 80 MHz signal. For the two-channel square wave signal with 20 KHz output by the zero-crossing
comparator, the period is 50 µs. If a counter is used and the resolution is 1‰, the counting clock period
should not exceed 50 ns. In other words, the working frequency of the counter should not be less than
20 MHz. In the actual circuit, we use a counter with a clock frequency of 40 MHz, which means that
the resolution of the counter reaches 0.5‰. The circuit can divide the signal with a period of 12.5 ns
into 2000 units, and the time resolution is 0.625 ps.

In order to achieve good electromagnetic compatibility (EMC) and stability, the circuit design
follows the following principles:

1. Analog circuit and digital circuit are designed on different circuit boards. For high-frequency
circuit and low-frequency circuit on analog circuit boards, separate wiring should be carried out
according to region division to minimize the interference between them.

2. Different from the low-frequency circuit, the grounding wire of the high-frequency circuit
should be large-area copper coating, nearby grounding or multi-point grounding. The ground wire
should be short and thick, so as to minimize the impedance of the ground circuit and thus reduce
electromagnetic interference.

3. In order to reduce the size of the circuit board, choose electronic components with small volume
and high integration as far as possible. In order to make the circuit work normally in high temperature
environments, we should select components with high temperature characteristics.

There are two circuit boards in the tool, as shown in Figure 10. Figure 10a is the high
frequency signal transmitting and receiving circuit board, which is mainly composed of a
temperature-compensated crystal oscillator, LC filter circuit, demultiplexer, multiplexer and
mixer. Figure 10b shows the signal processing and communication circuit board, which is mainly
composed of a FPGA minimum system, communication modulation and demodulation circuit, and
high-precision triaxial inclinometer. The two boards have been aged at 175 ◦C for 10 h.

(a)

(b)

Figure 10. Circuit board in the tool based on signal phase shift on the transmission line:
(a) High-frequency signal transmitting and receiving circuit board; (b) Signal processing and
communication circuit board.
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3.2. Sensor Resolution Experiment

In order to detect the resolution of the CSTLS, we designed an experimental device as shown
in Figure 11. The prepared mixture of diesel and water is poured into the mixing container and stirred
into a uniform emulsion flow with a blender. The CSTLS is fixed on the top or side of the measuring
container, and the interface is connected to the detection circuit through a coaxial cable. During the
experiment, the temperature was kept at about 30 ◦C. The phase shift of three sensors was recorded by
21 oil–water samples with water holdup ranging from 0 to 100% and an interval of 5%. During the
experiment, since the accuracy of the measurement system and the uniformity of oil–water mixing will
change with time, in order to better evaluate the overall performance of the sensor and measurement
system, the sampling frequency of the system is 10 times/second, and data were recorded continuously
for 60 s for each different sample. In data processing, we will average 600 data and regard the average
as the response value of the sensor in the sample. Meanwhile, we use the error bars to indicate the
magnitude of the error.

Figure 11. Experimental device.

Figure 12 shows the signal phase shift of three sensors in different samples. The conclusions are as
follows: (1). The signal phase shift of CSTLS sensor has a good monotonically increasing relationship
with water holdup. They are close to a linear relationship when the water holdup is 0~30% and
70~100%. The sensor sensitivity reaches its maximum when the water holdup is 30~40%, which may
be related to the oil–water mixing state. (2). The length difference between the #1 and #2 sensors
indicates that a longer sensor (#2) has a higher resolution, and the diameter difference between #2 and
#3 sensors shows that larger diameter sensor (#2) has a higher resolution. These are consistent with
previous simulation results. (3). The signal transmitter and the receiver of the CSTLS are on the same
side, different from the structure of the transmitter and the receiver of the coaxial transmission line
sensor on both sides, which is more conducive for wiring and sealing, and reduces the difficulty of
engineering implementation.
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Figure 12. Experimental results of CSTLS.

Although the dynamic range of the #1 sensor is not the largest, the #1 sensor is the smallest of
the three sensors. The sensitivity of #1 sensor is 1.4~44, and the unit is counting number/1% water
holdup. This means that the counter in the measuring system changes by at least 1.4 units when
the water holdup of the measured oil–water mixture changes by 1%. Considering the noise of the
measurement system and the influence of the actual logging environment, we conservatively believe
that the measurement system has a full-scale resolution better than 3%. Therefore, we decided to
use 12 sensors of this type to design the sensor-array water holdup detection tool. According to the
electronic characteristics of the sensor, we developed a multi-channel detection circuit and assembled
a CSTLS-based sensor-array water holdup detection tool, as shown in Figure 13. The tool length is
1600 mm, with 12 spring-fixed sensor array in the middle. When the spring sheet is closed, the tool
diameter is about 43 mm, ensuring the smooth passage of the tubing in the moving mode. When
the spring sheet is opened, the maximum tool diameter is about 180 mm. Owing to the spring sheet
tension, the sensor is close to the inner wall of the casing.

3.3. Simulating a Horizontal Well Experiment

In order to test the overall performance of the tool, a test was carried out on the oil-gas-water
three-phase flow experimental device at Yangtze university. The experimental device consists of an
oil–water circulation system, control system and simulated casing, as shown in Figure 13.

3.3.1. Experimental Parameters and Procedure

We use #10 industrial white oil and tap water as the experimental media. The oil density is
0.856 g/cm3 and the water density is 1 g/cm3. By adjusting the flow rates of the oil and the water
pumps, flow conditions with water cut (100%, 80%, 60%, 40%, 20%, and 0%) can be obtained. By
adjusting the angle of the simulated casing, any deviation from the vertical well to the horizontal
well can be obtained. The simulated casing is 12 m long plexiglass with an outer diameter of 140 mm
(5.5 in.) and an inner diameter of 120 mm (4.7 in).

Since the responses of each sensor on the tool are slightly different, the tool should be calibrated
before the experiment. For each sensor, the tool scans 10 times per second, and records about 60 s
in each well condition. Since the stratified (ST) flow is more representative, the following analysis is
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based on the measurement results when the flow rate is 20 m3/d and ST flow. In order to obtain the
actual water holdup in the simulated casing, the position of sensors and the current distribution of
oil and water in the casing were photographed with a digital camera, and the height of the oil–water
interface was recorded.

Figure 13. Schematic diagram of a horizontal well experimental device.

3.3.2. Data Analysis Method

1. Calculation of the actual water holdup in casing.
Assuming that the height of the oil–water interface in the casing is h and the inner radius of the

casing is r, according to the geometric principle, the ratio of the bow area formed by the water below
the interface to the whole circular area is the actual water holdup in the casing, Yreal , which can be
expressed as [31,32]

Yreal =



arccos((r− h)/r)r2 − (r− h)
√

2rh− h2

πr2 h < r

0.5 h = r

arccos((r− h)/r)r2 + (r− h)
√

2rh− h2

πr2 h > r.

(29)

2. Calculation of the water holdup in casing based on tool measurement results.
1© Distance Inverse Ratio Weighted Interpolation (DIRWI) Method
Assuming that Pi(xi, yi) is the point coordinate on the casing section, Dij is the distance from

the ith sensor point to the non- sensor point Pj(xi, yi) on the casing section, Yi is the water holdup
measured by the ith sensor, and Yj is the predicted water holdup at the non-probe point Pj(xi, yi) on
the casing section. The principle of DIRWI is that the correlation between points on the casing section
decreases continuously with the increase of distance. The weight coefficient is related to the distance
between the insertion point and the sensor in the region, and is the reciprocal of the square of the
distance. The predicted water holdup is the weighted sum of all the sensor measurements in the casing
area [33,34]. Namely:

Yj =

12
∑

i=1

Yi
D2

ij

12
∑

i=1

1
D2

ij

. (30)
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2© Gauss Radial Basis Function Interpolation (GRBFI) Method.
Gaussian radial basis function is a weight coefficient calculation function related to the distance

with continuous first-order and second-order reciprocals. Its characteristic is that the influence degree
of the source points on the surrounding points decreases steadily with the increase of distance. When
the influence degree of source point on the surrounding points exceeds a certain range, it decreases
rapidly with the increase of distance. This characteristic is consistent with the structure characteristics
of the sensor-array water holdup detection tool. The Gaussian radial basis function φ(r) is

φ(r) = e
−r2

σ2
ij (31)

where, r is the distance between the point to be inserted and the sensor, σij is the decreasing control
coefficient between the two points i, j.

The predicted water holdup of the interpolated points on the casing section is [35]

Yj =
12

∑
i=1,i 6=j

Yi · e
−[(xi−xj)

2+(yi−yj)
2 ]

σ2
ij . (32)

3.3.3. Experimental Results

In order to visually reflect the water holdup measured by each sensor, the results ofthe normalized
detection values are displayed in pseudo-color. A palette with a gradual change from dark brown to
pale yellow is designed, corresponding to the change of water holdup in the range of 0~100%. Dark
brown indicates crude oil with 0% water holdup, while pale yellow represents 100% water holdup.
Therefore, a mapping table from water holdup to the pseudo-color is established. When the water
holdup changes, the color of the sensor image changes accordingly.

Figure 14a shows the water holdup curve measured by each sensor under the condition of water
cut 80%. The precision triaxial inclinometer in the tool shows that the No. 12 sensor is deflected by
-60.9° from the default direction, so the No. 10 sensor is moved 0.9° clockwise above the tool. Therefore,
according to the sensor response and the inclinometer indication, we can obtain the sensor distribution
and the oil–water interface as shown in Figure 14b.
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Figure 14. The sensors response: (a) Response curve; (b) Sensor distribution and the oil–water interface.

On this basis, we changed the water cut in the casing and obtained a number of experimental
data as shown in Figure 15.
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(a) (b) (c)

(d) (e) (f)

Figure 15. The distribution of oil and water in casing reconstructed from the measured data(horizontal
well/ inclination: 90°, flow rate: 20m3/d): (a) Water cut 100%; (b) Water cut 80%; (c) Water cut 60%;
(d) Water cut 40%; (e) Water cut 20%; (f) Water cut 0%.

According to the water holdup measured by the sensor and the orientation information of the
tool under current well condition, the measured water holdup can be calculated by the DIRWI method
and the GRBFI method. The difference between the measured and the actual water holdup is the tool
measurement error, as shown in Table 4.

Table 4. Measured and actual water holdup, and error by using different calculate method.
Distance inverse ratio weighted interpolation (DIRWI), and Gauss radial basis function interpolation
(GRBFI) methods.

Water Response Values of Sensors Actual DIRWI Method GRBFI Method

Cut No. 1–12 (Normalized: %) Yreal Ypre Error Ypre Error

100% 98.4 99.1 98.9 98.9 98.7 97.8 97.3% 97.1% −0.2% 96.1% −1.2%96.3 97.2 94.2 75.3 93.5 98.8

80% 97.7 98.5 98.8 97.1 95.3 96.8 68.0% 70.6% 2.6% 66.2% −1.8%95.6 25.8 7.4 1.3 11.7 33.6

60% 76.5 97.4 98.7 99.0 98.5 97.3 57.9% 60.6% 2.7% 58.5% 0.6%78.4 11.2 7.8 0.9 10.7 9.7

40% 58.8 97.6 98.7 98.8 98.5 97.5 50.2% 53.8% 3.6% 53.2% 3.0%55.9 8.6 3.6 1.1 8.5 6.7

20% 1.7 91.3 98.5 98.8 98.5 97.5 38.5% 36.0% −2.5% 39.8% 1.3%2.3 3.9 2.4 0.7 8.7 4.5

0% 4.2 3.7 44.6 89.5 40.1 4.5 12.7% 9.1% −3.6% 14.0% 1.3%1.9 1.7 2.5 1.1 6.4 3.3

In order to investigate the applicability of the tool under different flow patterns, we conducted
experiments under three other flow patterns: stratified wavy flow (SW), dual continuous flow (DC),
and dispersed oil-in-water and water flow (DO/W&W). The responses of array CSTLS under different
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flow patterns were recorded experimentally. Figure 16 shows the measurement results of the tool
under different flow patterns. The average relative errors for the water holdup prediction are 2.63%,
3.58%, 6.69% and 11.21% for ST, SW, DC and DO/W&W flow, respectively. The results indicate that
the CSTLS-based sensor-array water holdup detection tool is effective in measuring the water holdup
of horizontal oil–water two-phase flow. We can see that in the quiet ST flow, the tool responses show
good linearity and minimum measurement error and reflect the position of the oil–water interface
clearly. In the SW flow, although some of the sensors are sometimes immersed in oil and sometimes
in water, we can still obtain relatively small measurement errors by integration. Although the flow
stuctures of DC and DO/W&W are extremely nonuniform, the tool response still shows good linearity
and sensitivity to water holdup changes.

0 10 20 30 40 50 60 70 80 90 100

Real Water holdup (%)

0

10

20

30

40

50

60

70

80

90

100

M
ea

su
rm

en
t 

W
at

er
 h

o
ld

u
p
 (

%
)

+15%

-15%

+5%

-5%

ST

SW

DC

DO/W&W

Figure 16. The measurement results of the tool under different flow patterns.

4. Discussion

1. The basic principle of water holdup measurement based on the transmission line method is
discussed in detail. The results show that the phase shift increases monotonously while the amplitude
changes non-monotonously with the increase of the water holdup of the fluid as the filling medium
between transmission lines. Therefore, it is feasible to measure the water holdup through the phase
shift characteristics, but not through the amplitude characteristics.

2. Four common transmission lines are analyzed, and a novel design scheme of water holdup
sensors based on a conical spiral transmission line is proposed. The sensor has a size of 30 mm × 6 mm
(height × cone base diameter). Its volume is 0.28 cm3, only 1/160 of the current coaxial transmission
line sensor volume, and only 1/3 of the current smallest capacitance and conductance water holdup
sensors, realizing the senor miniaturization.

3. The transmission line method is an effective method to measure water holdup in the whole
range of 0%~100%. By using the CSTLS-based sensor-array water holdup detection tool, we can get
less than 3.6% measurement error in the ST and SW flows, but more than 5% measurement error in
DC and DO/W&W flows, which may be related to fluid nonuniformity. In addition, we currently
calculate the water holdup of a single probe by averaging the response over a period of time. This may
not be the most reasonable data processing method for uneven flow patterns, and we need to improve
the algorithm in subsequent studies.
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4. Temperature will change the dielectric constant of oil–water mixture and salinity will change
liquid conductivity. Therefore, how to reduce the measurement error caused by temperature and
salinity will be the future research direction.

5. Conclusions

To measure the water holdup in horizontal wells, we analyzed the water holdup measurement
theory based on transmission line and proposed an innovative design method of water holdup sensors
based on conical spiral transmission lines. By winding parallel double lines on a spiral cone, a longer
length is achieved in a limited space, which solves the problem that traditional coaxial transmission
lines are easy to block and not easy to miniaturize. Moreover, the conical spiral structure reduces
the adhesion of liquid surface tension effectively, contacts the measured liquid directly, and finally,
improves the resolution of detection to 3%. Our developed CSTLS-based sensor-array water holdup
detection tool achieves full range (0%~100%), array (12-point), and high precision (3.6% error in ST
and SW flow) water holdup detection.

6. Patents

Chen, Q.; Liu, G.; Yu, H.; Guo, Y.; Wei, Y.; Qu, F. The invention relates to a cylindrical water holdup
detection probe based on electromagnetic waves. China Patent 201610663697. X, 12 December 2016.
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