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Abstract: Face recognition using depth data has attracted increasing attention from both academia and
industry in the past five years. Previous works show a huge performance gap between high-quality
and low-quality depth data. Due to the lack of databases and reasonable evaluations on data quality,
very few researchers have focused on boosting depth-based face recognition by enhancing data quality
or feature representation. In the paper, we carefully collect a new database including high-quality 3D
shapes, low-quality depth images and the corresponding color images of the faces of 902 subjects,
which have long been missing in the area. With the database, we make a standard evaluation protocol
and propose three strategies to train low-quality depth-based face recognition models with the help of
high-quality depth data. Our training strategies could serve as baselines for future research, and their
feasibility of boosting low-quality depth-based face recognition is validated by extensive experiments.

Keywords: depth-based face recognition, deep models, data quality, database

1. Introduction

Three-dimensional (3D) face recognition (FR) has been studied for several decades with a wide
variety of methods proposed [1–5]. It is believed that 3D face data have intrinsic advantages over 2D
face images in detecting presentation attacks and in providing additional discriminative features for
FR [6,7]. Yet, 3D FR had not gained popularity in real-world applications until Apple Inc. released
its iPhone X [8] with TrueDepth camera and Face ID in 2017. One reason is due to the fact that the
scanners used for acquiring 3D face in previous studies are often bulky and expensive, so they are
thus not feasible in practical scenarios, though previous studies [1–3] obtained very high recognition
accuracy by using the captured high-quality 3D face data (see Table 1). Here we categorize these
methods into high-quality depth-based FR.

The emergence of low-cost RGB-D sensors, such as Kinect [9] and RealSense [10], makes it possible
to capture 3D faces more efficiently and more cost-effectively. Many attempts [11–16] have been made
in recent years to develop practical FR systems based on RGB-D sensors. As shown in Table 1, in some
RGB-D FR scenarios, with depth images as auxiliary information, researchers [13,15] show that FR
accuracy can be improved compared with using only RGB images. However, the accuracy achieved
by using depth images captured by low-cost RGB-D sensors [11–13,15] is still much lower than that
by using 3D faces captured by 3D scanners [1,3]. This should be attributed to that the quality of
the depth images captured by low-cost RGB-D sensors is generally poor, and we call such data as
low-quality depth data (see Figure 1). In contrast to the aforementioned high-quality depth-based FR,
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we categorized these methods into low-quality depth-based FR. In Figure 1, depth images captured
by different sensors are shown, which naturally cause the difference between two kinds of data on
resolution and precision. Here, resolution (also known as density) refers to the density of the 3D face
point clouds, defined by the number of points used to represent the 3D faces. Higher resolutions mean
more details captured on the 3D faces. Precision refers to the minimum measurement error of depth
values in unit of millimeters. Thus, smaller values indicate higher precisions.

Figure 1. Depth images captured by different devices or under different conditions show different
quality levels. From left to right: (a) Facial depth images captured by SCU 3D scanner [17] (in our
collected database), (b) Konica Minolta Vivid 910 [18] and (c) 3dMD [19] in lab, (d) Kinect II in lab [20],
(e) RealSense in lab (in our collected database) and (f) in the wild [14].

In the past, regarding low-quality depth-based FR, it was usually an auxiliary of 2D FR. Most
researchers focused on how to design a feature extractor or network to gain discriminative feature
different from the color images, while very few works care about how the data quality and feature
representation of such low-quality data can be enhanced for improving FR accuracy. This is due to two
reasons: (1) A database containing both high- and low-quality depth data is lacked; (2) A reasonable
and quantitative evaluation on how depth data quality influence the FR performance is underexplored.
Please note that essentially, the former will astrict the latter. Therefore, the purpose of our work is
to solve the two problems and then propose strategies to boost the performance of the low-quality
depth-based FR by improving data quality and feature representation.

In the paper, to solve the data limitation, we extend our Multi-Dim [21] to a large-scale face database
called Extended-Multi-Dim database, which consists of: (1) Subjects’ color images, (2) the corresponding
low-quality depth images captured by RealSense, and (3) the corresponding high-quality 3D shapes
captured by a 3D scanner. The data is captured under varying pose, illumination and expression.
We believe that the advent of such a database could boost the research on not only depth-based FR
but also other face-related tasks including RGB-D face recognition, 3D face reconstruction and so on.
The details about the database will be introduced in Section 3: Extended-Multi-Dim.

Before this work, we did a related evaluation work, which was accepted on CVPR 2019 Biometrics
Workshop [22]. In [22], we delved into how depth data quality influences depth-based face recognition
and especially two aspects are focused on: precision and resolution. We conducted evaluation on
generated high-quality depth images from existing datasets including FRGC V2 [18], BU3D-FE [19],
Lock3DFace [20], RGBD-W [14], as well as part data of the Extended-Multi-Dim database which we
introduce in this paper. Several significant observations were obtained in [22], demonstrating that
precision and resolution are indeed two important factors influencing the recognition accuracy of
depth-based FR. In contrast, motivated by the observations in [22], this paper further investigates
how to improve the quality of low-quality depth data and identity feature representation with the
assistance of high-quality data.

As previously mentioned, with the extended database and the activation of reasonable evaluation,
we can focus on how to improve the quality of low-quality depth data, which should cause an
improvement on performance of depth-based FR. Here, rather than enhancing data quality through
data preprocessing as in [23,24], we expect to extract more discriminative identity feature from
low-quality depth face images with the models which are guided by some constraints from high-quality
depth data in training phase. This is because the former enhances data quality visually without
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definitely preserving necessary identity information. In contrast, we focus on how to use the guidance
of high-quality data to train a better model for low-quality depth-based FR. In this paper, three
strategies are proposed where the high-quality depth data participants and guides the training of
low-quality depth-based FR models: image-based strategy, feature-based strategy and fusion of the
former two.

Table 1. Benchmark databases and state-of-the-art recognition accuracy on them when using depth
images only, RGB images only, or both depth and RGB images.

Databases No. of
Subjects Devices Resolution Precision

(mm)
Rank-1 Identification Rate Using

Depth RGB Depth+RGB

FRGC v2 [18] 466 Vivid 910 60K 0.1 99.6% [1] – –
BU-3DFE [19] 100 3dMD 8K 0.2 99.3% [3] – –

Lock3DFace [20] 509 Kinect II 20K ≥ 2 66.0% [15] 92.5% [15] 93.2% [15]
RGBD-W [22] 2239 RealSense 45K ≥ 2 64.0% 94.7% –

IIIT-D [25] 106 Kinect I 13K 2–4 [9] 26.8% [11] 99.0% [15] 98.7% [11]
CurtinFaces [12] 52 Kinect I 13K 2–4 72.5% [12] 87.0% [12] 91.3% [12]

Eurecom [13] 52 Kinect I 13K 2–4 69.7% [13] 94.6% [13] 96.3% [15]

The image-based strategy can be formulated as Equation 1, where xl and xh represent the pairs of
low and high-quality depth images of the same person, El(·) represents a low-quality depth-based
extractor, G(·) represents the image generator whose input and output are identity feature of a
low-quality image and a produced high-quality image, F(·) is an extractor for generated or true
high-quality image. In this scheme, it is the high-quality data images that guide the low-quality
depth-based models training. The Equation (2) can formulate the feature-based strategy, where Eh(·)
represents an identity feature extractor for high-quality depth images, and the meanings of the other
indicators are the same with the Equation (1). In this scheme, it is the identity feature of high-quality
data images that guides the models training. Finally, the fusion strategy means that both high-quality
depth image and its corresponding identity features guide to train a low-quality depth-based FR
model. The specific proposed methods of the three strategies will be introduced in Section 4.

F(G(El(xl))) ≈ F(xh) (1)

F(El(xl)) ≈ F(Eh(xh)) (2)

To sum up, the contributions of this paper are summarized as follows:

(1) We present a large-scale and multi-modality database Extended-Multi-Dim for FR. It has
902 objects which is the largest public RGB-D database, with the high-quality 3D depth data.

(2) We adopt a series of preprocessing methods for the collected databases including labeling
51 landmarks of 3D shapes and labeling 5 landmarks for RGB-D images.

(3) We design a standard experimental protocol for the collected database. Motivated by some
conclusions of previous evaluation, we propose some methods based on three strategies to use
the information of high-quality depth data to train a better network for low-quality depth-based
FR. The results can be as the benchmarks for other researchers.

The rest of this paper is organized as follows. Section 2 introduces some related works including
some public databases and approaches. Section 3 introduces in detail the Extended-Multi-Dim database.
Section 4 presents the details of the proposed methods based on three strategies. Section 5 shows the
experimental results of the approaches and corresponding analysis about low-quality depth-based FR.
Section 6 will conclude the work.
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2. Related Works

2.1. Databases

There are no large-scale public database containing both high- and low-quality face depth data of
each object. The databases consisting of depth data are usually used for high-quality depth-based FR
or RGB-D FR, which can only capture one kind of depth data.

The common databases used in high-quality depth-based FR are FRGC v2 [18] and BU3D-FE [19],
and the databases often used in RGB-D FR are Lock3DFace [20], CurtinFace [12], Eurecom [13] and so
on. Regarding the former and taking the FRGC v2 as an example, it consists of 4007 3D facial scans
of 466 subjects acquired by using a laser 3D scanner, i.e., Konica Minolta Vivid 910. These 3D scans
have relatively high resolution and precision. Specifically, their resolution ranges from 50 K to 170 K,
and their precision is about 0.1 mm.

Moreover, as mentioned in Section 1, we proposed a database named Multi-Dim [21] in 2017
which contains 124 subjects and in total 124 3D high-quality 3D face shapes. To study boosting face
recognition by 3D reconstruction, that database also collected 124 high definition 2D photos, 4305 still
face images of acted poses and expressions, and 496 surveillance video clips of varying illuminations
and spontaneous poses and expressions.

The Lock3DFace is the largest public database in RGB-D face recognition, which captures face data
by using the low-cost RGB-D sensor Kinect II in lab. It contains totally 5711 RGB-D video sequences of
509 Chinese subjects, and the resolution and precision of the obtained 3D face data are 20K and≥ 2 mm.
We can see it that the quality of two kind of data have a relative gap. There are also some databases
containing both RGB and low-quality depth images, such as CurtinFaces [12], Eurecom [13] and IIIT-D
[25]. They are all often used in RGB-D FR research. In addition, another RGB-D databases such as
HRRFaceD [26], Biwi [27] and Pandora [28] can be also used in depth-based FR research, though they
were originally proposed for pose estimation.

Here, in Table 1, we list the main informations of some databases mentioned above and the latest
rank-1 identification performance on them. We omit several databases (i.e., HRRFaceD, BIWI and
Pandora) and the reasons are (1) the numbers of subjects are less than 50, and the scales of them
are small; (2) the researchers made verification mode on them, and we do not find the identification
performance of them.

2.2. Methods

2.2.1. High-Quality Depth-Based FR

With the high-quality depth information, the performance is very high, and in this scenario, the 3D
shapes are usually used. The [1] used a simulated annealing-based approach (SA) for range image
registration with the surface interpenetration measure (SIM), as similarity measure to match two face
images, which obtained 99.6% in FRGC v2. In [3], the authors presented an approach for computing a
compact and highly discriminant biometric signature for 3D face recognition using linear dimensionality
reduction techniques, which accessed 99.3% rank-1 identification accuracy on BU3D-FE.

2.2.2. Low-Quality Depth-Based FR

low-quality depth-based FR is usually as a part of RGB-D FR, which uses texture and depth
images at the same time to do FR. The [15] proposed an approach for RGB-D face recognition that
is able to learn complementary features from multiple modalities and common features between
different modalities, which had the rank-1 accuracy about 66.0% on Lock3DFace only using depth
data. In [12], Li et al. extracted multiple features and fuses them at the feature level, which achieved
72.5% recognition rate only using low-quality depth data. In all of the works, the researchers paid
more attention to cross-modality FR than low-quality depth-based FR, and paid more attention to
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tricks and methods on extractor network than data quality. Meanwhile, the depth images are used in
this kind of FR, which is a single-view map of depth 3D shapes [29], therefore these methods were not
very robust to pose variation. In addition, there was a work [30] based on traditional method focusing
on only depth-based work. The authors proposed a descriptor to depth image especially, and it can
increase its capacity to distinguish different depth patterns.

2.2.3. Depth Data Enhancement

There is rare work to enhance depth data quality to improve depth-based FR. The [23] proposed
some preprocess method including nose tip detection, face cropping, pose correction and symmetric
filling for hole filling and smoothing of the depth images by Kinect, and used sparse coding for
RGB-D-based FR. However, the purpose of the method was to solve large pose variation. In [24],
Kinect fusion was used to fuse several low-quality 3D shapes to obtain a relatively high-quality shape,
but the method depended on camera calibration and needed at least two other sensors, which was
usually adopted in depth estimation rather than FR. Meanwhile, the two works improved the data
quality in data preprocessing, with which visually the data quality had been enhanced, but it was not
definitely useful for preserving more identity information for FR. Therefore, our work is to focus on
only low-quality depth-based FR, and aims to improve recognition rate by enhancing the depth data
quality including both density and precision as well as preserving identity information.

3. Extended-Multi-Dim Database

As aforementioned, there is no large-scale public database containing both high and low-quality
depth data, which limits the development of depth-based FR, so we extended a multi-modality face
database based on Multi-Dim database, namely the Extended-Multi-Dim database. To the best our
knowledge, the database is currently the first public database with color and corresponding depth
images captured by RealSense and high-quality 3D face shapes scanned by high-quality 3D scanner.
Another motivation in creating this database is to solve cross-modality FR, and it is the largest database
for RGB-D FR, which consists of 902 objects. Next, we will in detail introduce the proposed database
from acquisition details, data process and statistics.

3.1. Acquisition Details

When capturing RGB and low-quality depth data, the Intel RealSense SR300 was used,
and low-quality 3D faces captured by it have a resolution of 45K and a precision of ≥ 2 mm. Rather
than released SDK, we used the tools of a dynamic link library called librealsense [31] to capture
RGB and depth videos simultaneously. The RealSense recorded the objects’ videos, and with the
librealsense, the videos could be parsed into images when capturing. To align the color faces and
their corresponding depth faces, the capturing speed is 22 frames per second, and the resolution of
all the images is 960× 540. SCU 3D scanner [17] was used to scanning 3D faces, and the 3D faces
captured by it have a resolution of 100K and a precision of 0.1 mm. The diagram of data acquisition
procedure is shown in Figure 2, where it shows how to record the multi-modal data via Intel RealSence
SR300 camera and SCU scanner. The extended database has two versions, which were captured in two
different places. The version I consists of 228 subjects, and the Version II has 705 subjects. There are
31 subjects overlapping between the two versions. In previous work [22], when we evaluated how
the depth quality influences the depth-based FR, we first extended the Multi-Dim to 228 subjects and
captured RGB-D data with RealSense covering three expression variations and yaw direction pose
variation. Later, in Version II we further expanded complexity of the pose and expression variations
and enlarged the scale of the data set to better simulate a real scene.

To comprehensively evaluate FR methods, especially to simulate complex conditions in the real
world, when capturing RGB-D data, volunteers were required to present different expressions, poses
under different illumination conditions forming four categories of frontal neutral, expression, pose
and illumination. The four parts are introduced in detail respectively in the following:
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1. The illumination variations are shown in Table 2.
2. The volunteers were scanned in the frontal pose without any expression (referred to as NU for

short) for a few seconds in both versions.
3. The subjects were asked to rotate their heads in yaw direction by −90◦ to +90◦ (referred to as P1

for short) in version I. Apart from these actions, subject’s head was clockwise around the inverse
(referred to as P2 for short) in Version II.

4. In version I, the participants were asked to perform neutral, happy and surprise expressions in
the frontal pose, while in Version II, eyebrow lifting, eyes closing, mouth opening, nose wrinkling
and teeth barring were asked to be done by volunteers (referred to as FE for short).

When scanning 3D shapes, the performers only sit still about 0.5 m from the 3D camera under
natural light (all lamps are off), no actions were needed. Table 3 displays the overall base information
on the database and Figure 3 shows some visual examples.

Figure 2. The cameras and lamps were located about 1 m and 1.5 m from the floor respectively and
0.5 m from the subject, while the subject was asked to sit on a chair so that his/her face is about 1 m
from the floor.

Table 2. The illumination variations for Extended-Multi-Dim database. The L represents the lamp in
Figure 2, and there are four and three illumination variations in version I and Version II, respectively.

Variations 01 02 03 04

Version id (The conditions of each light in each variation.)
version I All off. L2 on. L1 on L3 and L4 on.
version II All off L2 on. L1 and L2 on. –

3.2. Data Processing

After the original data are collected, we took some measures to process the data including
labeling landmarks, images aligning for FR or other face-based tasks. Regarding the RGB-D data,
face and landmarks are hard to be detected with depth images by some open source methods such
as MTCNN [32], therefore their aligned color images were either automatically detected by using
MTCNN or manually marked (if MTCNN fails). When dealing with 3D shapes, first, we used a
commercial application called Geomagic Studio [33] to crop face region manually, then with an open
source tool CloudCompare [34], we marked manually 51 landmarks of the cropped shapes whose
resolution is between 38K and 89K. Then, we used the 5 landmarks of left and right eye centers, left and
right mouth corners, and nose tip of low-quality depth images and corresponding five 3D landmarks
to compute the transfer matrix, with which the cropped shapes can be rotated to the requested location.
Finally, these rotated faces were projected to 2D planes via weak perspective projection, resulting in
high-quality depth images aligned to the low-quality depth images, which created pairs of different
quality depth data for training FR models later. The Figure 4 shows the procedure how to use original
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shapes and low-quality depth images with five landmarks to generate corresponding high-quality
depth images. Meanwhile, the Figure 3 shows some examples of aligned high- and low-quality depth
images with different pose variations.

Figure 3. Visual examples in the proposed database. The first line shows the different light conditions
where the girl and boy are in version I and II, respectively. The second line shows the different facial
expression variations, including 3 expressions of version I and 5 FEs of Version II. The last three lines
show the different poses of color, low-quality depth and high-quality depth images, and the first six
images belong to P1 while others belong to P2 in each line.

Figure 4. Procedure of generating high-quality depth images.

3.3. Statistics and Protocol

For other researchers expediently using the database and compare the performance, we design a
standard experimental protocol for the collected database. Table 3 presents the main statistics of the
Extended-Multi-Dim database. In the paper, we focus on how different depth data quality influences
the depth-based FR performance and how to improve identification rate by enhancing the depth data
quality. Therefore, the whole database can be divided two parts: Training set and Testing set. The former
includes pairs of depth images for training FR models, while the latter is for identification (1 to N) FR
task, so the Testing set consists of Gallery and Probe. We also care about how depth quality effects the
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FR performance under different external challenges including pose and face expression variation, so the
probe can be divided into four categories: NU, PS1, PS2 and FE. Details are shown below:

1. Training set: The training data are all from Version II, and except for 31 subjects with Version
I, Version II has 674 subjects. We randomly select 430 subjects of the 674 subjects as training
sets. In training models, after shuffling training images, the first 20% images are separated into
validation sets.

2. The Testing set are divided into A and B parts, where the remaining 275 subjects in Version
II make of the Testing set A and the all data in Version I make of the Testing set B. In Sec V,
in different experiments, the specific dividing of galleries and probes can be displayed.

3. Resolved from original videos and face cropping, there are about 299K, 80K, 318K frames in total
for training, validation, and Testing sets, respectively. Owing to the huge amount of data and
especially the similarity in joint images, when testing, we select one frame out of every 10 frames
in Test set A and every 6 frames in Test set B.

Table 3. Statistical information of the proposed Extended-Multi-Dim database. The numbers of objects,
videos, originally resolved images and cropped and sampled images are shown in training and testing
data sets.

Source # Obj. # Videos # Ori. img. # Crop. Samp. img.

Training Version II 430 1290 299K 299K
Testing A Version II 275 825 256K 40K
Testing B Version I 228 912 60K 10K

All subjects are Chinese people, and the information of gender statistics are that the ratio of female
is 28.1% (64 of 228) while the ratio of male is 72.9% (164 of 228) in version I and that the ratio of female
is 43.3% (305 of 705) while the ratio of male is 56.7% (400 of 705) in Version II. In addition, due to the
database collecting in the campus, the age of all the subjects is range from 18 to 24 years old.

4. Proposed Approaches

The purposes of the work are further to analyze the influence of depth data quality for depth-based
FR based on the previous work and meanwhile to improve recognition performance by enhancing the
data quality and feature representation. Therefore, we propose three strategies including image-based,
feature-based and fusion-based. With the guidance of high-quality of data, we can transfer some
knowledge for training a better low-quality depth-based FR model. In this section, we first show our
proposed method based on different strategies in detail, and then introduce the backbone models used
in the methods.

4.1. Image-Based Boosting Strategy

The Figure 5 shows the workflow of the image-based boosting approach. The base purpose of the
strategy is to access the identity feature (ID Feature) of low-quality depth image IL through a feature
extractor EL

θEl
, which is a convolution network parameterized by θEl . Generally, ID Feature, the output

of EL
θEl

, is usually used for classification task with the cross-entropy loss LL
cross−entropy.

To make the ID Feature more discriminative, we simply think that we generate a fake depth
face image IF with this ID Feature. If the more similar the produced image and the corresponding
high-quality image are, the more discriminative the ID Feature is. So, when training, a generator GθG

is adopted to ID Feature for production. The generator is a deconvolution network GθG to generate
a fake image that is parameterized by θG with a constraint Lsyn. Also, with the experience from [35],
we add a random noise with identity feature to GθG , and the noise models facial appearance variations
other than identity or data quality.
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Figure 5. The workflow for image-based strategy. The blue extractors and green generator are needed
to be trained and red extractor has been pretrained. The feature represented by ID Feature is finally
used for matching. Although the all losses are shown in figure, in different specific methods, the parts
of them are used, and details are shown in Section 4.1.

In addition, we think that if the generated fake images IF also preserve identity information as
corresponding ground truth IH , the probability distribution of ID Feature is further similar to the one
of the high-quality image and the feature is more discriminative. Therefore we conduct two measures:
(1) as Equation (3) shows after generating the images, we used the pretrained high-quality depth-based
models EH

θEh
to extract the identity feature of pairs of IF and IH , then used loss L f eat as a constraint

to make the two features similar; (2) from Equation (4), we straightly add another extractor EF
θE f

and

another cross-entropy loss LF
cross−entropy after IF.

The network’s parameters θEl , θG or θE f are optimized by minimizing the aforementioned
synthesis loss Lsyn, LL

cross−entropy and L f eat or LF
cross−entropy. For a Training set with N training pairs of

{IL
n , IH

n }, the optimization problem can be formulated as follows:

(θ̂El , θ̂G) =
1
N

argmin
θEl ,θG

N

∑
n=1
{LL

cross−entropy(E
L
θEl

(IL
n), yn) + λ1 ∗ Lsyn(GθG (E

L
θEl

(IL
n)), IH

n )

+λ2 ∗ L f eat(E
H
θEh

(GθG (E
L
θEl

(IL
n))), EH

θEh
(IH

n ))}
(3)

or

(θ̂El , θ̂G, θ̂E f ) =
1
N

argmin
θEl ,θG ,θE f

N

∑
n=1
{LL

cross−entropy(E
L
θEl

(IL
n), yn) + λ1 ∗ Lsyn(GθG (E

L
θEl

(IL
n)), IH

n )

+λ3 ∗ LF
cross−entropy(E

F
θE f

(GθG (E
L
θEl

(IL
n))), yn)}

(4)

where λs are weighting parameters, Lsyn is defined as L1 loss that jointly constrains a produced image
to similar to the high-quality one, and superscript L, H, F represents the low or high-quality images
or fake produced images. L f eat is Euclidean distance loss (L2 loss). We will postpone the detailed
description of all the individual loss functions in Section 5.1.

4.2. Feature-Based Boosting Strategy

Figure 6 shows the workflow of the feature-based boosting approach. The base purpose of the
strategy is same with the one of image-based boosting strategy. Furthermore, in this strategy, we aim to
transfer the knowledge of high-quality depth-based extractor EH

θEh
to learn a corresponding low-quality

extractor EL
θEl

. We expect that the EL
θEl

can extract the ID Feature with the similar probability distribution
compared with the ones of high-quality images. In this part, inspired by some ideas from the transfer
learning [36], we directly and indirectly use constraints to make the two probability distributions similar.



Sensors 2019, 19, 4124 10 of 19

Generally, the last two outputs of a deep FR model or classification model are the logits and ID
Feature, and here let us denote the final score output as Z. Here, the EH

θEh
and EL

θEl
have the same

structure. The EH
θEh

is first pretrained base on high-quality data. When training the EL
θEl

, as shown

in Figure 6, the input is a pair of images {IH , IL}, and with the pretrained model, we transfer the
knowledge by some losses.

Figure 6. The workflow for feature-based strategy. The blue extractor and orange converter are needed
to be trained and red extractor has been pretrained. The feature represented by ID Feature is finally
used for FR task. Although the all losses are shown in figure, in different specific methods, the parts of
them are used, and details are shown in Section 4.2.

For direct constraints, formulated by Equation (5), we recognize the features from two models as
two distributions, and use multi-kernel maximum mean discrepancy (MK-MMD) loss which is often
used in many transfer learning works [37] to make the two features similar.

Regarding the indirect constraints, we adopt two methods: (1) formulated by Equation (6), we use
MK-MMD loss on margin distribution (Z), conditional distribution (so f tmax(Z)) of the two models
as hint to guarantee the features similar; (2) based on feature space transformation, as Equation (7)
shows, we transform the ID Feature from low-quality model to the high-quality feature space with
a sample converter (T(·)) which consists of two fully connected layers with ELU, then add a L2 loss
L f eat on two features. Finally, the parameters θEl is optimized by minimizing an overall loss Loverall :

Loverall = LL
cross−entropy + λ4 ∗ LMMD( f eatL, f eatH) (5)

or

Loverall = LL
cross−entropy + λ5 ∗ LMMD(ZL, ZH) + λ6 ∗ LMMD(so f tmax(ZL), so f tmax(ZH)) (6)

or
Loverall = LL

cross−entropy + λ7 ∗ L f eat(T( f eatL), f eatH) (7)

The Equationa (5)–(7) represent the losses for directly and indirectly constraints respectively,
where f eat represents the ID Feature, λs are weighting parameters, the T(·) is the feature converter
and the subscript L and H represents the vectors from low or high-quality models. We will postpone
the detailed description of all the individual loss functions in Section 5.1. Here, MMD is widely used as
a distribution distance to measure the discrepancy between two domains. It compares the distributions
in the Reproducing Kernel Hilbert Space (RKHS) [38]. The equation for MMD can be formulated as:

LMMD(x, y) = ‖ 1
N

N

∑
i=1

ϕ(xi)− 1
M

M

∑
j=1

ϕ(yj)‖ (8)
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In the Equation (8), ϕ(·) is an explicit mapping function. xi and yj represent two samples from
distributions of high- and low-quality models. Generally, N and M are the total numbers of samples,
so in our experiments, they are same. By expanding Equation (8), the equation can be reformulated as:

LMMD(x, y) =
1

N2

N

∑
i=1

N

∑
i′=1

κ(xi, xi ′) +
1

M2

M

∑
j=1

M

∑
j′=1

κ(yj, yj ′)− 2
NM

N

∑
i=1

M

∑
j=1

κ(xi, yj ′) (9)

From Equation (9), we can see that MMD loss use kernel method to project the sample vectors into
higher dimension. In our experiment, we choose the Gaussian RBF kernel, which is considered to be a

universal approximator, with the kernel function as κ(x, y) = exp(− ‖x−y‖2

2σ2 ), where σ is the bandwidth.

4.3. Fusion-Based Boosting Strategy

In the part, the main idea is using information of both high-quality image and the feature to
guide the low-quality depth-based models training simultaneously. Concretely, we combine some
losses of image-based or feature-based methods in the strategy with a simple principle that this
combination should improve the FR accuracy relatively obviously. Therefore, according to the results
of image-based and feature-based methods, we select some ones with good performance and combine
them together.

According to the results, and with a sample purpose that combine the outstanding methods from
the two strategies to make the best performance, we finally decide to combine three groups in this part:
(1) the methods represented by Equations (4) and (6); (2) The methods represented by Equation (3) and
(6); (3) The methods represented by Equations (4) and (7). Here, before adding constraints for two
identity features, the normalizations are adopted.

In all combinations, the feature extractor EL
θEl

are shared for both image-based and feature-based
boosting strategies to gain identity feature for matching, and other methods in image-based or
feature-based boosting modules are fused to guide the EL

θEl
to extract more discriminative feature.

4.4. Backbone Models

In our experiments, the base network has two functions: (1) The performance of the models trained
directly severs as the baseline for the models trained based on another strategies, (2) This network
structure will be as different part to be assembled for the overall structures of proposed methods.

Here, two deep face recognition models, CASIA-Net [39] and Resnet [40], are considered to be
base networks. All are relatively light-weight models. This enables us not only to assemble overall
structures together easily but also to train them from scratch by using relatively small data sets of facial
depth images that are available to us. Therefore, we do not employ complex or very deep models such
as VGG [41] and GoogleNet [42].

For CASIA-Net, motivated by [35], we add batch normalization [43] and exponential linear
unit [44] after each convolutional layer. The input image size is changed from 100× 100 to 128× 128,
and the 320-dimensional output of Pool5 layer is taken as the extracted feature.

For Resnet, we employ Resnet-18 as defined in [40]. Its input image size is changed from 256× 256
to 128× 128, and we also add batch normalization and exponential linear unit after each convolutional
layer. Finally, the 512-dimensional output of FC1 is taken as the extracted feature.

In the experiments, either of the two networks is used as feature extractor. Meanwhile the
symmetric structure of CASIA-Net is employed as the generator in all image-based schemes. Table 4
shows the specific structure of the networks. For all the deep models, cosine similarity is employed to
measure the similarity between the extracted features of different facial depth images.



Sensors 2019, 19, 4124 12 of 19

Table 4. Network Configuration of Base Model. The format to represent the kernel is ’kernel size, the
number of kernels’. For CASIA-Net, downsampling is performed by conv2.1, conv3.1, conv4.1 and
conv5.1 with a stride of 2. In Resnet-18, building blocks are shown in brackets, with the numbers of
blocks stacked. Here, downsampling is performed by conv3.1, conv4.1, and conv5.1 with a stride of 2.

Conv1.x Conv2.x Conv3.x Conv4.x Conv5.x #feat.

CASIA-Net 3× 3.32
3× 3.64

3× 3.64
3× 3.64

3× 3.128

3× 3.128
3× 3.96

3× 3.192

3× 3.192
3× 3.128
3× 3.256

3× 3.256
3× 3.160
3× 3.320

320

ResNet-18
7× 7, 64/2
(max pool.)

3× 3/2

[
3× 3, 64
3× 3, 64

]
×2

[
3× 3, 128
3× 3, 128

]
×2

[
3× 3, 256
3× 3, 256

]
×2

[
3× 3, 512
3× 3, 512

]
×2

512

5. Experiments and Results

5.1. Experiment Setting

5.1.1. Testing Data Organization

As in Section 3.3, the Extended-Multi-Dim database is divided into training and Testing data sets.
In Testing data set which consists of A and B parts, to explore how quality of depth data influence the
FR performance under external variations, we select one frontal neutral face image of each subjects
in set A as gallery named gallery-A and the remaining images belong to probe. According to the
variations, the probe can be divided as probe-A-NU, probe-A-FE, probe-A-PS1 and probe-A-PS2,
which consist of the frontal neutral face images, the face images with face expression, the face images
with pose variation in yaw direction and the face images with pose variation in all directions.

Regarding set B, straightforward, the gallery-B has the one frontal neutral face image of each subject,
and the other images belong to probe-B-all. The details of data organization are shown in Table 5.

5.1.2. Implementation Details

We implement all deep models on TensorFlow [45]. When training them from scratch, the model
is initialized by a zero-centered normal distribution with a standard deviation of 0.02, and optimized
by using the Adam optimizer [46]. The learning rate is first set as 1e− 2 and updated to 1e− 4 when
the training is saturated. All batch sizes are 64, and we train all models for 10 epochs, and save
the models whose accuracy on validation subset is the highest (mostly the accuracy is as high as
to 100%). Both baseline models and pretrained high-quality-based models adopt the same setting.
Additionally, in image-based strategy, the hyper-parameters λ1, λ2, λ3 are set as 50, 1, 1 respectively
and in feature-based strategy, the hyper-parameters λ4, λ5, λ6, λ7 are set to 10, 10, 10, 10 and the
bandwidth σ is [1, 2, 5, 10, 20, 40]. We evaluate the depth-based face recognition performance of these
deep models in identification mode, and compare their rank− 1 identification rates.

Additionally, in image-based strategy, the hyper-parameters λ1, λ2, λ3 are set as 50, 1, 1
respectively and in feature-based strategy, the hyper-parameters λ4, λ5, λ6, λ7 are set to 10, 10, 10, 10
and the bandwidth σ is [1, 2, 5, 10, 20, 40]. We evaluate the depth-based face recognition performance
of these deep models in identification mode, and compare their rank− 1 identification rates.
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Table 5. The standard protocol of low-quality depth-based FR for different scenarios on the
Extended-Multi-Dim database. The scales of objects and images and the variations in each part
are also shown, where N, I, P, E indicate neutral and frontal, illumination, pose and expression. Notice,
I1 is natural light and Iall contains the all illumination variations shown in Table 2.

Datasets # Objects. # Images. Variations

Gallery-A 275 275 N, I1
Probe-A-NU 275 15K N, Iall
Probe-A-PS1 275 7K N, Iall , P1
Probe-A-PS2 275 7K N, Iall , P2
Probe-A-FE 275 10K N, Iall , E
Gallery-B 228 228 N, I1
Probe-B 228 10K N, Iall , E, P1

5.2. Evaluation of Proposed Approaches

5.2.1. The Performance on the Base Models

Here, we train two base networks (CASIA-Net and Resnet-18) on low- and high-quality training
data and the high-quality models will be used when training image/feature-based deep models.
With the performance shown in Table 6, we observe that while the model structures are different,
the performance on models trained on high-quality data is much more outstanding than ones trained
on low-quality data. In addition, we notice an interesting phenomenon that the performance gaps
between two models trained on two quality data are different under different external variations, i.e.,
the identification rate gaps on probe-A-NU are much smaller than gaps on probe-A-PS1/PS2 (e.g.,
for CASIA models, the gaps in NU, PS1, PS2 are 11.7%, 48.0% and 57.4%). We think the main cause is
that while there are some self-occlusion in face images with pose variation, the identity information
preserved in high-quality images is more accurate than the low-quality images, and with only part
of the accurate identity information, the deep model can still extract the effective and discriminative
feature for FR. These all show that the data quality is indeed a significant factor influencing the
recognition rates for depth-based FR, and demonstrate that it is reasonable to improve FR performance
by enhancing depth data quality. Maybe enhancing the data quality can make the data more robust to
environmental variations.

Table 6. Rank-1 identification rates (%) of CASIA-Net and ResNet-18 in face recognition on high-quality
and low-quality data sets under variations. Pro. represents Probe.

Network Quality Pro.-A-NU Pro.-A-FE Pro.-A-PS1 Pro.-A-PS2 Pro.-A-Avg

CASIA-Net High 99.6 99.2 94.0 87.8 96.6
Low 87.9 80.1 46.0 30.4 70.3

ResNet-18 High 96.9 94.0 67.7 57.0 84.4
Low 85.6 75.6 37.7 25.0 65.9

5.2.2. The Performance of the Image-based Boosting Models

In the image-based strategy, when we train an extractor for low-quality images, in the rear of
the extractor we add a generator and we use L1 loss Lsyn as a constraint between produced one
and ground truth. In addition, to make the produced image discriminative, we adopt two means:
directly adding another classifier or comparing the two features extracted from produced one and
ground truth by well-trained high-quality deep model. For the later, we use L2 loss for features or
normalized features to make a constraint. For feature normalizing, the features are normalized as
x/‖x‖ to make them have the same scale, and with [47], the optimization of normalized feature L2 loss
L f eatN orm becomes consistent with cosine similarity compared with the feature L2 loss L f eat, which can
make an performance improvement. In all evaluations, only the identity features extracted from
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low-quality images are used to match. Table 7 shows the results of proposed image-based methods,
which demonstrates the feasibility of the strategy that when training, the later constraint for similarity
of ground truth and produced image from low-quality images can boost the front extractor to gain
a more discriminative feature. Additionally, the more identity information the produced images
preserve, the more effective this method is. However, we observe that although the performance
on data with pose variation has some improvement, there is also a huge gap compared with the
performance of high-quality models. Probably, this is because the low-quality depth images are not so
accurate originally and under pose variation, so much identity is lost. Therefore, while the high-quality
information gives good guidance, it is hard to make up the loss from both internal noisy and external
identity lacking.

Table 7. Rank-1 identification rates (%) of image-based network in face recognition on low-quality data
sets under variations. The results in ’Pro.-A-Avg’ are the average rates of specific methods, and the
best accuracy is made bold.

EL Methods Pro.-A-NU Pro.-A-FE Pro.-A-PS1 Pro.-A-PS2 Pro.-A-Avg

CASIA-Net

Baseline 87.9 80.1 46.0 30.4 70.3
+Lsyn 91.5 84.1 51.0 33.0 74.1
+Lsyn + L f eat 92.4 86.1 55.0 36.2 76.1
+Lsyn + L f eat−Norm 93.2 88.3 58.4 38.5 78.0
+Lsyn + LF

Cross−entropy 94.0 89.7 58.9 35.2 79.0

ResNet-18

Baseline 85.6 75.6 37.7 25.0 65.9
+Lsyn 87.9 76.2 40.1 26.5 67.8
+Lsyn + L f eat 88.2 77.3 41.0 26.5 68.1
+Lsyn + L f eat−Norm 87.7 78.8 41.9 27.3 68.7
+Lsyn + LF

Cross−entropy 86.5 78.0 43.2 28.0 68.2

5.2.3. The Performance of the Feature-Based Boosting Models

In the feature-based strategy, we define the strategy as learning how to make the two probability
distributions similar. Here, we add multi-kernel MMD loss on identity feature directly or output of
marginal and conditional distributions, which aims to indirectly make the two kind of identity feature
distributions approximate. Also, we use the feature transformation to make the two features in the
same feature space.

As shown in Table 8, the results show that the guidance of high-quality feature, is indeed useful
for improving FR accuracy. However, directly adding the constraint on the high and low-quality
features slightly hurts the accuracy, which may be caused that roughly making two features similar
may loss some identity information on the produce where the low-quality feature is trying to
modeling the distribution of the high-quality one. Meanwhile, with relatively soft methods, it makes a
balance between preserving identity information and modeling the high-quality feature distribution.
In addition, in both image/feature-based methods, feature normalization makes some sense and
especially under pose variations, using feature normalization is much effective.

5.2.4. The Performance of the Fusion Models

As Table 9 shows, there are general improvement on performance compared with the baseline,
but some combinations have negative effect. We make the positive results bold and underline the
negative results in Table 9. Notice that the negative combinations are not regular, and a possible
cause is that simply adding numbers of constraints with different feature extractors or converter,
the parameters are increased sharply. When training such a network from scratch, the models have
some risk to be confused in optimization, i.e., it is hard to make a balance between different tasks
represented by different losses. Certainly, the positive combinations make an obvious improvement,
such as about 9% on CASIA-Net model.
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Table 8. Rank-1 identification rates (%) of feature-based network in face recognition on low-quality
data sets under variations. The results in ’Pro.-A-Avg’ are the average rates of specific methods, and
the best accuracy is made bold.

EL Methods Pro.-A-NU Pro.-A-FE Pro.-A-PS1 Pro.-A-PS2 Pro.-A-Avg

CASIA-Net

Baseline 87.9 80.1 46.0 30.4 70.3
Equ-(5) 87.5 78.0 42.7 28.4 68.7
Equ-(6) 91.3 84.1 56.7 37.7 75.6
Equ-(7) 92.3 87.4 51.7 34.5 75.6

Equ-(7)Norm 92.0 87.0 55.0 36.0 76.2

ResNet-18

Baseline 85.6 75.6 37.7 25.0 65.9
Equ-(5) 85.0 75.8 38.3 25.4 66.3
Equ-(6) 87.4 77.8 40.4 27.4 68.0
Equ-(7) 86.6 77.4 40.0 26.6 67.0

Equ-(7)Norm 86.9 77.6 42.0 28.0 68.2

Table 9. Rank-1 identification rates (%) of fusion-based network in face recognition on low-quality data
sets under variations. The results in ’Pro.-A-Avg’ are the average rates of specific methods in Test set A,
and the results of the positive combinations are made bold, but the negative ones are added underline.
The last column gives the overall performance in Test set B.

EL Methods Pro.-A-NU Pro.-A-FE Pro.-A-PS1 Pro.-A-PS2 Pro.-A-Avg Pro.-B

CASIA-Net

Baseline 87.9 80.1 46.0 30.4 70.3 56.7
Equ-(4) + (6) 94.2 90.7 60.8 42.3 80.0 66.4

Equ-(4) + (7)Norm 94.3 89.7 60.8 41.6 79.6 66.2
Equ-(3)Norm+(6) 91.7 85.1 52.3 34.7 74.8 59.3

ResNet-18

Baseline 85.6 75.6 37.7 25.0 65.9 47.5
Equ-(4) + (6) 86.6 76.4 41.3 28.0 67.5 50.8

Equ-(4) + (7)Norm 88.1 78.5 43.6 28.7 69.3 54.2
Equ-(3)Norm+(6) 87.5 76.3 39.5 26.5 67.4 49.0

5.2.5. The Experiment Analysis

The experimental results of all strategies demonstrate that it is feasible to improve depth FR
performance by enhancing the depth data quality. In other words, with the methods of three strategies, a
more discriminative feature can be acquired under the guidance of the information of high-quality images.
In this part, the distributions of the first two dimensions from Principal Component Analysis (PCA)
projections of the object’s features that are extracted from the nine models based on CASIA-Net from three
strategies and are shown in Figure 7. In all figures, the huge red point means the feature from gallery, and
the other green, blue, and black points represent the features from NU, FE and PS of probe. Meanwhile, the
mean Euclidean distance between all features of probe and the feature of gallery is displayed. This group
of figures straightly show with the proposed methods, intra-class distance is shortened, which means the
proposed methods indeed help extractor to acquire more discriminative features.

We believe Figure 7 can relatively explain the results of proposed methods. These methods can
effectively deal with the challenge from expression variation, because in Figures 3–5 the samples’
features of FE are aggregated and parts of them are close to the one of gallery compared with the first
figure. However, even in high-quality result, though the mean discrepancy is small, the pose variation
still causes the difference. Therefore, in most methods, while parts of samples in PS are close to the
gallery’s and overall discrepancy is decreased, the challenge from pose variation is not solved well by
enhancing data quality.
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Figure 7. The distribution of the first two dimensions from PCA projections of the same person’s
features that are extracted from the proposed methods, where the red point means sample of gallery,
the green, blue, black points mean samples of NU, FE, PS in probe, and MeanDist means the Euclidean
distance between all features of probe and the one of gallery. The figures in the blue box show the
features extracted from low- and high-quality images without any strategies. The features extracted
from low-quality images with one of methods on image-based, feature-based and fusion boosting
strategies are shown in red box.

6. Conclusions

This paper focuses on using low-quality depth data in face recognition, and we believe that with
the knowledge from high-quality data, there will be an improvement on performance of low-quality
depth-based models. For the purpose, we collect the first and largest database Extended-Multi-Dim,
which includes color, depth images and 3D point clouds of each object at present. Based on this
database together with the observations from our previous evaluation, we propose three strategies
to use both feature and image information from high-quality data when training a deep model for
low-quality depth-based FR. We set a standard protocol of the collected database, based on which we
conduct extensive experiments. The results further demonstrate the feasibility of improving depth
FR performance by enhancing the depth data quality. Finally, we believe our Extended-Multi-Dim
database with the standard protocol will help other researchers, and meanwhile the experimental
results and analyses may provide useful clues for camera and sensor manufactures.
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