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Abstract: Coverage and network lifetime are two fundamental research issues in visual sensor
networks. In some surveillance scenarios, there are some critical locations that demand to be
monitored within a designated period. However, with limited sensor nodes resources, it may
not be possible to meet both coverage and network lifetime requirements. Therefore, in order to
satisfy the network lifetime constraint, sometimes the coverage needs to be traded for network
lifetime. In this paper, we study how to schedule sensor nodes to maximize the spatial-temporal
coverage of the critical locations under the constraint of network lifetime. First, we analyze the
sensor node scheduling problem for the spatial-temporal coverage of the critical locations and
establish a mathematical model of the node scheduling. Next, by analyzing the characteristics of the
model, we propose a Two-phase Spatial-temporal Coverage-enhancing Method (TSCM). In phase
one, a Particle Swarm Optimization (PSO) algorithm is employed to organize the directions of sensor
nodes to maximize the number of covered critical locations. In the second phase, we apply a Genetic
Algorithm (GA) to get the optimal working time sequence of each sensor node. New coding and
decoding strategies are devised to make GA suitable for this scheduling problem. Finally, simulations
are conducted and the results show that TSCM has better performance than other approaches.

Keywords: visual sensor network; spatial-temporal coverage; sensor node scheduling; two-phase
coverage-enhancing method

1. Introduction

A visual sensor network (VSN) is commonly comprised of a large number of sensor nodes with
limited energy and has been widely applied in many areas such as environment monitoring, traffic
surveillance, physical security and so forth [1–3].

In many surveillance scenarios, such as battle field, there are some known critical locations where
the events of concern are expected to occur. A common goal in such applications is to use sensor
nodes to monitor these critical locations with sufficient quality of surveillance with lifetime constraint.
However, due to the limited energy of sensor node, it may not be possible to meet both coverage
and lifetime requirements. Therefore, how to schedule sensor nodes reasonably to maximize the
spatial-temporal coverage of the critical locations and ensure the specified network lifetime is of great
research significance.

Figure 1a illustrates a surveillance scenario in a visual sensor network. We assume that four
sensor nodes s1 ∼ s4 are randomly deployed to monitor six critical locations p1 ∼ p6 for 10 h
(Figure 1a). According to the importance of each critical location, the set w = {w1, w2, w3, w4, w5, w6}
is used to represent the important factors of the critical locations, in which each important factor is
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a random value from 0 to 1. It is supposed that the important factor set of the critical locations is
w = {0.1, 0.2, 0.1, 0.15, 0.25, 0.2}. Each critical location is modeled as a target, and then the critical
location spatial-temporal coverage problem can be regarded as discrete target coverage problem.
Different from traditional target coverage, the spatial-temporal coverage of a critical location is defined
as the product of the important factor of the location and the length of time during which the location
is covered [4]. Since the battery life of each sensor node can only last for 6 h, the network coverage
and lifetime requirements can not be satisfied at the same time. Now, the spatial-temporal coverage
optimization problem is how to schedule sensor nodes to meet the maximum global spatial-temporal
coverage. There are two different schedules in Figure 1b, based on the spatial-temporal coverage
metric, the spatial-temporal coverage in Schedule 1 can be calculated as w1 × 10 + w2 × 0 + w3 × 6 +
w4 × 6 + w5 × 6 + w6 × 6 = 0.1× 10 + 0.2× 0 + 0.1× 6 + 0.15× 6 + 0.25× 6 + 0.2× 6 = 5.2, and the
spatial-temporal coverage in Schedule 2 is 5.6. Obviously, Schedule 2 is better than Schedule 1 for
maximizing the spatial-temporal coverage. The results show that different schedules have a great
influence on the spatial-temporal coverage.

Figure 1. A surveillance scenario in a virtual sensor network (VSN).

In this paper, our goal is how to schedule sensor nodes to maximize the total spatial-temporal
coverage with constrained network lifetime, to improve the quality of network monitoring. Due to
the limited field-of-view (FOV) of sensor nodes, it is almost inevitable that some critical locations
cannot be covered by any sensor node with random deployment. Based on the definition mentioned
above , the spatial-temporal coverage of a critical location is determined by the number of sensor
nodes covering the critical location and the effective time for the critical location to be covered. Thus,
we propose a TSCM to maximize the total spatial-temporal coverage. In TSCM, two optimization
models are established, one of which is for maximizing the number of critical locations and the
other is for maximizing the spatial-temporal coverage of critical locations with constrained network
lifetime. Then, in the first phase, the goal of PSO algorithm is to optimize the sensing directions
of sensor nodes, so that sensor nodes can cover more critical locations. And in the second phase,
a GA with new coding and decoding strategies is applied to schedule sensor nodes to get the optimal
working time sequence of each sensor node, which contributes to enhancing the spatial-temporal
coverage. Finally, the experimental results show that TSCM has better performance in aspect of the
spatial-temporal coverage.

The rest of paper is organized as follows. Related works are summarized in Section 2. Section 3
introduces the network model and problem formulation. Section 4 describes the proposed method.
Simulation results for evaluating the proposed method are presented in Section 5. Finally, Section 6
describes the conclusion of the work.
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2. Related Works

The coverage and network lifetime issues are basic problems in VSN [5,6]. Some solutions have
been proposed to enhance the network coverage or the network lifetime, including deterministic
deployment [7,8], sensing range or direction adjustment [9–12], sensor node scheduling [13,14] and
mobile strategy [15,16]. In these strategies, sensor node scheduling is a major technique which can
better weigh the network coverage and lifetime.

In the current research works, the maximum target coverage with a minimum number of sensor
nodes is an important issue in directional sensor networks. In order to improve the coverage,
three local coverage optimization algorithms are proposed to address the coverage problem in
Reference [9]. To tackle the issue that how to select the minimum number of sensors to guarantee
the full-view coverage for the given region of interest, the authors of Reference [10] propose two
different deployment strategies for camera sensor networks. In Reference [11], the authors design
distributed clustering and target coverage algorithms to address the problem in an energy-efficient
way. In order to extend the network lifetime while satisfying the coverage requirement, the authors of
Reference [12] propose an improved genetic algorithm based scheduling for wireless sensor networks.
However, in mission-driven applications, the network has constrained lifetime and the objective is
to improve the network coverage while meeting the lifetime constraint [17–19]. Thus, according to
different application scenarios, the goals of the sensor node scheduling can be roughly divided into the
following two categories: the network lifetime extension with coverage requirement and the network
coverage maximization with a lifetime requirement [20,21].

In terms of sensor node scheduling for the network lifetime extension with coverage requirement,
many works focus on how to schedule the directions of sensor nodes into multiple subsets [13,14,22,23]
or select a minimum subset of sensor nodes [24–26] and each subset that satisfies the coverage
requirement performs monitoring task in turns. In Reference [23], the authors address the scheduling
problem as a Maximum Set Covers problem and propose a greedy algorithm and a genetic algorithm
to obtain the optimal subsets for prolong the network lifetime while ensuring the full target coverage.
Based on Reference [23], the authors of [14] also consider the network connectivity and present a
greedy algorithm to solve the network lifetime extension problem. Considering the importance of
different targets in realistic monitoring scenarios, a learning automata-based algorithm is presented in
Reference [24] to select a minimum subset to be activated successively.

However, the problem of how to schedule sensor nodes to maximize the network coverage with
lifetime constraint has not been well investigated. This problem was first studied in Reference [27]
and a centralized heuristic algorithm and a distributed parallel optimization protocol are proposed to
schedule sensor nodes’ activity after they have been deployed. In Reference [4], each critical location is
modeled as a discrete target and then a distributed algorithm is proposed to schedule sensor nodes
with the objective of maximizing the spatial-temporal coverage while meeting the network lifetime
requirement. The sensing models in these above works are all based on traditional omni-directional
sensor network, but they are not applicable in visual sensor network. The authors of Reference [28]
consider the spatial-temporal coverage with 3D sensing model and propose a distributed sensor node
scheduling to obtain the network spatial-temporal coverage optimization.

The sensor node scheduling problem has been proved as NP-hard [29], but the existing methods
focus on a finite number of solution spaces and cannot truly achieve global optimization.

Our main contributions can be summarized as follows.
(1) We study how to deal with scheduling sensor nodes for spatial-temporal coverage problem in

visual sensor networks, and a TSCM to maximize the spatial-temporal coverage is designed.
(2) We establish two optimization models in TSCM, one of which is for maximizing the number

of critical locations and the other is for maximizing the critical location spatial-temporal coverage with
constrained network lifetime.
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(3) We propose new coding and decoding strategies to make GA suitable for the scheduling
problem aiming at maximizing the spatial-temporal coverage under the requirement of the
network lifetime.

3. Network Model and Problem Formulation

3.1. Network Model

To simplify the problem analysis, our discussion is built upon the following assumptions:
(1) All sensor nodes are homogeneous, including the same initial battery, angle of view (AoV),

sensing radius and communication ability.
(2) All sensor nodes could guarantee the network connectivity.
We consider a visual sensor network with n sensor nodes S = {s1, ..., si, ..., sn} randomly deployed

to monitor m critical locations P = {p1, ..., pj, ..., pm} in a 2D area with a size of I× J. We use a common
2D standard model (Figure 1a) for sensor node si expressed by 5-tuple:

si = (αi, ϕi, (xi, yi), ti, R) (1)

where (xi, yi) is the coordinate of the sensor node, αi is the angle of view (AoV), and R is the sensing
radius. In addition,

−→
V is the working direction.

Figure 2 shows the coverage situation of a critical location in monitoring area, it can be observed
that the critical location pj can be covered by the sensor node si if it satisfies the following two
conditions (Figure 3):

(1) The distance dij between si and pj must be smaller than or equal to the sensing radius R,

dij =
√
(xi − xj)

2 + (yi − yj)
2 ≤ R (2)

(2) The absolute included angle between and working direction must be smaller than or equal to
the half of the AoV,

ϕi= arccos
−→si pj ·

−→
V∣∣−→si pj
∣∣ ≤ αi

2
(3)

Figure 2. Network Model.
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Figure 3. Sensing model.

3.2. Problem Formulation

3.2.1. Definitions

Definition 1. A variable matrix D = [dij] (i = 1, 2 ... n, j = 1, 2 ... m) represents the coverage relationship
between the sensor nodes and the critical locations which can be given by

dij =

{
1 pj coverd by si
0 otherwise

(4)

Definition 2. The coverage state of critical location pj can be given by

uj =

 1 ∑
i∈S

dij 6= 0

0 otherwise
(5)

If target pj is covered by at least one sensor node, the value of uj is 1, otherwise, the value is 0.

Definition 3. Assume that the required network lifetime L is divided into N rounds and the duration time of
each round is l. A variable matrix xik(i = 1, 2...n, k = 1, 2...N) indicates whether or not the sensor node si is
active in k-th round which can be given by

xik =

{
1 si is active in k-th round
0 otherwise

(6)

Then, the coverage state of critical location pj in k-th round can be represented by the binary
variable vjk. If critical location pj is covered by at least one sensor node in k-th round, the value of vjk
is 1, otherwise, the value of vjk is 0. It can be expressed as follows:

vjk =

 1 ∑
i∈S

xik × dij 6= 0

0 otherwise
(7)

3.2.2. Problem Formulation

The spatial-temporal coverage of a critical location is defined as the product of the important
factor of the location and the length of time during which the location is covered, and then within
the specified network lifetime, the total spatial-temporal coverage can be calculated as the sum of
each critical location’s spatial-temporal coverage. Assume that the subset Xk ⊂ S is activated in k-th
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round, then for any critical location pj, the value of spatial-temporal coverage during the N rounds
duty process can be calculated as follows:

Cov(pj) = ∑
k∈N

wj × vjk × l (8)

Thus, the total spatial-temporal coverage is expressed by:

C̄ = ∑
j∈P

Cov(pj) (9)

Now, the scheduling optimization problem is

max C̄ (10)

s.t.
N

∑
k=1

xik × l ≤ ti (11)

n

∑
i=1

xij ≥ 1 (12)

In this expression, (11) means that, for each sensor node, its total activation time during the N
rounds should be less than the survivable time . The constraint (12) indicates that at least one sensor
node is in an active state during each round to ensure that the specified network lifetime requirement.

4. Two-Phase Spatial-Temporal Coverage-Enhancing Method

Based on the spatial-temporal coverage metric, whether a critical location is covered by sensor
nodes is the primary factor determining the spatial-temporal coverage value of it. But the limited
FOV and random deployment of sensor nodes would make some critical locations not covered by any
sensor node. Thus, we propose a TSCM to maximize the spatial-temporal coverage. In phase one,
to maximize the number of critical locations covered by sensor nodes, a particle swarm optimization
(PSO) algorithm is employed to adjust the sensing directions of sensor nodes to change the initial
coverage relationship between sensor nodes and critical locations gotten by random deployment.
In phase two, we apply a genetic algorithm (GA) to schedule sensor nodes to obtain the optimal
working time sequence of each sensor node. Then, the spatial-temporal coverage maximization with
the network lifetime constraint can be achieved by the operations above mentioned. Algorithm 1
describes the proposed method.

Algorithm 1 TSCM

1: Input: Sensor node set S, critical location set P, round N, duration time l
2: Output: The value of spatial-temporal coverage
3: Deploy S and P randomly
4: Go into Phase-I: Adjust sensor nodes’ directions using PSO algorithm such that

the number of critical location covered is maximum
5: Go into Phase-II: Design sensor node schedule using GA for sensor node scheduling

such that the spatial-temporal coverage is maximum

4.1. Phase I: Maximize the Number of Covered Critical Locations Based on Particle Swarm
Optimization Algorithm

Seen from the Equations (8)–(10), the spatial-temporal coverage value for a critical location is
determined by whether it is covered and the effective covered time. But when the sensor nodes is not
enough in monitoring area, the limited FOV and random deployment of sensor nodes would make
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some critical locations not covered by any sensor node. To maximize the number of covered critical
locations, we use particle swarm optimization algorithm to optimize the sensing directions of sensor
nodes. PSO [30] is a population-based search algorithm, where each particle represents a potential
solution. It has the advantage with simple and good convergence so that PSO can be used for a wide
variety of design and optimization tasks.

(1) Coding and Initialization

The PSO algorithm uses the following real number vector to denote the solution to the problem:

βi = (βi1, βi2, ..., βin) , 1 ≤ i ≤ num (13)

where βi represents position of i-th particle and num is the size of the population, n is the number of
sensor nodes. All particles are randomly generated in the n-dimension space.

(2) Fitness

Mathematically, fitness is considered as an objective function used to evaluate the particles in a
population. In the PSO, a fitness function has a non-negative value. For an individual, the larger the
value is, the more suitable the solution is. The objective of the problem is to maximize the number
of covered critical locations which is equal to maximize the total important factor. So, we define the
fitness of a particle as

f =
m

∑
j=1

uj × wj (14)

After calculating the fitness of each particle, the algorithm should select the personal best value
Pbest and the global best value Gbest.

(3) Velocity and Position Update

The particle position of i-th particle is represented as βi, and its velocity is represented as
εi = (εi1, εi2, ..., εin), that is, the change difference of the sensing directions. Then, the particles
are manipulated according to the following two equations [29]:

εid (t + 1) = ω · εid (t) + k1 · b1 · (Pbest − βid (t)) + k2 · b2 · (Gbest − βid (t)) (15)

βid (t + 1) = βid (t) + εid (t + 1) (16)

where k1 and k2 (0 ≤ k1, k2 ≤ 4) are learning factors, b1 and b2 (0 ≤ b1, b2 ≤ 2) are random values.
The constants k1 and k2 determine the speed that a particle would accelerate towards the personal best
value and the global best value. Usually, k1 and k2 are equal to 2 [29], but other values can also be
taken . Generally speaking, k1 = k2, and the range is between 0 and 4 [30].

The inertia weight coefficient w can be fixed or linear decrease. Researches have shown that bigger
inertia weight coefficient contributes global search, while smaller inertia weight coefficient contributes
local search. Moreover, the experiments show that when w is between 0.4 and 0.9, the PSO algorithm
has faster convergence speed, yet, when w is over 0.9, it is also easy to fall into local minimum [30].
Therefore, the linear decrement inertia weight coefficient is as follows.

w(t) = wmax −
wmax − wmin

tmax
· t (17)

where tmax is the maximum number of iterations, t is the current iteration, wmax and wmin are the
maximum and minimum values of the inertia weight coefficient w, respectively. In this paper, wmax is
0.9 and wmin is 0.4, as in Reference [30].
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(4) Termination Condition

The termination condition of our PSO is simply checking whether the algorithm has been running
for a fixed number of generations. When the algorithm terminates, it will output the optimal sensing
directions of the sensor nodes. According to the sensing model, the relationship matrix dij can be
calculated, which is going to be the input of the second phase in our method.

4.2. Phase II: Sensor Node Scheduling for Maximizing the Spatial-Temporal Coverage

As forward mentioned, the spatial-temporal coverage value for a critical location is determined by
whether it is covered and the effective covered time. To maximize the effective covered time for a critical
location, we need to get the optimal working time sequence of each sensor node. GA [31] has several
advantages, such as fast convergence and simplicity, and is widely used in sensor network scheduling
problems. Thus, we employ a GA to solve the sensor scheduling problem. In GA, each solution is
encoded in a finite length string, called an individual, based on certain rules. A fitness function is used
to evaluate the fitness of each individual. Three operations are performed on the current population to
create the next generation: selection, crossover, and mutation.

(1) Coding and Initialization

We use a GA based on two-dimensional binary coding to denote the solution to the problem:

Xz =

 xz
11 ... xz

1N
... xz

ik ...
xz

n1 ... xz
nN

 , 1 ≤ z ≤ popsize (18)

where Xz represents i-th individual and popsize is the size of the population, n is the number of sensor
nodes, N is the number of rounds. All individuals are randomly generated.

(2) Matrix-based Decoding Algorithm

The process of decoding involves applying the Algorithm 2 to an individual to generate a schedule.
The Algorithm 2 calculates the value in the coverage relationship dij according to Equations (2) and (3),
and then judges the rounds for the covered critical locations.

Algorithm 2 Matrix-based Decoding Algorithm

1: Input: S, P, N, l, Xm

2: Output: Set of rounds for covered critical location Lj
3: Initialize Aij = [ ], Lj = [ ]

4: Calculate the values in Aij according to Equations (2) and (3)
5: for j=1,2,...,m do
6: for k=1,2,...,N do
7: for i=1,2,...,n do
8: dijk = dij × xik
9: end for
10: if dijk ≥ 1
11: Lj ← Lj ∪ k
12: end if
13: end for
14: end for
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For example, the individual randomly generated by genetic algorithm is as follows.

X =


1 0 1 1 1 0 1 0 1 0
1 0 1 0 1 1 0 1 1 0
0 1 1 1 0 0 1 0 1 1
0 1 0 1 1 0 1 1 0 1

 (19)

According to Figure 1a and Equation (4), we can get the coverage relationship between the sensor
nodes and the critical locations:

D =


0 0 1 0 0 0
1 0 0 0 0 1
1 0 0 1 0 0
0 0 0 0 1 1

 (20)

After using the matrix-based decoding method, we can get the set of rounds for each covered
critical location L1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], L2 = [ ], L3 = [1, 3, 4, 5, 7, 9], L4 = [2, 3, 4, 7, 9, 10],
L5 = [2, 4, 5, 7, 8, 10], L6 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

(3) Fitness

The objective of the problem is to maximize spatial-temporal coverage. So, we define the fitness
of a particle as

f = C̄ (21)

According to (8), (9) and (21), the total spatial-temporal coverage for the above example can be
calculated as w1 × 10 + w2 × 0 + w3 × 6 + w4 × 6 + w5 × 6 + w6 × 10 = 0.1× 10 + 0.2× 0 + 0.1× 6 +
0.15× 6 + 0.25× 6 + 0.2× 10 = 6.

(4) Operator Operation

GA searches in the iterative process of “generating” and “detecting”. It takes the individual in
the population as the object, and achieves evolution by basic genetic operator operations. Generally,
new populations can be generated by selection, cross, and mutation. Considering the characteristics
of 0_1 encoding, we use tournament selection and two-points crossover operation to complete the
intersection. Meanwhile, a multi-point mutation operator is designed to carry out the mutation
operation process.

5. Simulation Results

To reduce the errors caused by randomness, the experimental results take the average of 10 runs.
The size of monitoring region is 10 × 10 , the number of sensor nodes and targets is 10 to 50.
The important factor of each target is equal to 1. The sensing range varies from 1 m to 5 m and the ratio
of battery/network lifetime is ν that varies from 1/5 to 3/5. We conduct experiments by changing
the number of sensor nodes, the number of targets, sensing range and the ratio of battery/network
lifetime to compare the performance of TSCM, Distributed ECT [4], STCOS algorithm [26], MinRedancy
algorithm [25] and RndScheduling algorithm [19].

Distributed ECT: The distributed algorithm uses the point coverage model to model the critical
location coverage problem to maximize the effective coverage time by scheduling sensors while
meeting the network lifetime requirement.

STCOS algorithm: The spatial-temporal coverage optimization scheduling algorithm is an
optimization method to find the most desired scheduling scheme of each node according to the relative
position of its neighbor’s on-period to maximize the spatial-temporal coverage of the whole network.
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MinRedancy algorithm: It is a distributed heuristic scheduling algorithm that chooses the sensor
who has minimum overlapping area with the determined scheduling sensor node to determine its
scheduling preferentially.

RndScheduling algorithm: This is a random schedule algorithm. Each node generates a random
schedule. Then the redundant nodes are turned off, and only the nodes which can contribute to the
coverage will remain power on.

We now fix the number of targets to 20, sensing range to 5 m and the ratio of battery/network
lifetime to 0.2. Figure 4 compares the performance of TSCM ,Distributed ECT, STCOS algorithm,
MinRedancy algorihtm and RndScheduling algorithm with changing the number of sensor nodes.
The simulation result indicates that increasing the number of sensor nodes contributes to the
improvement of the spatial-temporal coverage by all algorithms. Because the more sensors there are,
the more targets can be covered, which helps to improve the spatial-temporal coverage. Meanwhile,
as the number of sensor nodes increases, the differences between TSCM and other algorithms are
gradually narrowed. Compared to Distributed ECT, STCOS algorithm, MinRedancy algorihtm and
RndScheduling algorithm, the result shows that the maximum improvement is 48.2%, 48.4%, 47.4%,
74.6% and the average improvement is 30.3%, 29.2%, 28.0%, 66.6% by TSCM, respectively.
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Figure 4. The average spatial-temporal coverage versus different number of sensor nodes.

Next, we set the number of sensor nodes at 50, sensing range at 5 m and the ratio of
battery/network lifetime at 0.2. Figure 5 compares the performance of TSCM, Distributed ECT,
STCOS algorithm, MinRedancy algorihtm and RndScheduling algorithm with changing the number of
targets. The result indicates that when the number of targets increases, the number of covered targets
will also increase, which contributes to the spatial-temporal coverage. Compared to Distributed ECT,
STCOS algorithm, MinRedancy algorihtm and RndScheduling algorithm, the result shows that the
maximum improvement is 20.7%, 14.2%, 15.0%, 59.9% and the average improvement is 11.8%, 12%,
12.3%, 58.4% by TSCM, respectively.
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Figure 5. The average spatial-temporal coverage versus different number of targets.

Then, we fix the number of sensor nodes and targets to 50 and 20 respectively, and the ratio of
battery/network lifetime to 0.2. The simulation result displayed in Figure 6 shows that when the
sensing range in the range of [1, 5], the TSCM can obtain 77.4%, 77.2%, 77.0%, 89% maximum increase
and 39.3%, 37.4%, 35.9%, 70.2% average increase, respectively. Moreover, with the increase of sensing
range, more targets can be covered, so increasing the sensing range of each sensor node is effective for
maximizing the spatial-temporal coverage.
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Figure 6. The average spatial-temporal coverage versus different sensing range.

Finally, we set the number of sensor nodes and targets at 50 and 20 respectively, and sensing range
at 1 m. The simulation result shown in Figure 7 indicates that increasing the ratio of battery/network
lifetime is positive correlation by all algorithms. Because the effective time of covered targets is become
longer. Compared to Distributed ECT, STCOS algorithm, MinRedancy algorihtm and RndScheduling
algorithm, the result shows that the maximum improvement is 77.1%, 76.8%, 76.8%, 94.1% and the
average improvement is 73.3%, 72.2%, 71.8%, 92.0% by TSCM, respectively.
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Figure 7. The average spatial-temporal coverage versus different number of targets.

In a word, TSCM has more advantages in spatial-temporal coverage than other four methods in
terms of changing the number of sensor nodes, the number of targets, sensing range and the ratio of
battery/network lifetime. The results of the comparison are listed in Table 1.

Table 1. Algorithm Comparison Results.

Distributed ECT STCOS MinRedancy RndScheduling

Number of sensor nodes
Maximum 48.2% 48.4% 47.4% 74.6%

Average 30.3% 29.2% 28.0% 66.6%

Number of targets
Maximum 20.7% 14.2% 15.0% 59.9%

Average 11.8% 12% 12.3% 58.4%

Sensing range
Maximum 77.4% 77.2% 77.0% 89%

Average 39.3% 37.4% 35.9% 70.2%

The ratio of battery/network liftime
Maximum 77.1% 76.8% 76.8% 94.1%

Average 73.3% 72.2% 71.8% 92.0%

6. Conclusions

The coverage and network lifetime are two key issues in visual sensor networks. In this study,
we analyze the relationship between the coverage and network lifetime and devise a TSCM to maximize
the spatial-temporal coverage within a constraint network lifetime.

To verify the effectiveness of the method, we design and implement simulation experiments
by changing the number of sensor nodes, the number of targets, sensing range and the ratio
of battery/network lifetime. The results indicate that TSCM is confirmed to exceed Distributed
ECT, STCOS algorithm, MinRedancy algorihtm and RndScheduling algorithm for maximizing the
spatial-temporal coverage in a situation where the number of sensor nodes is small.

However, more efforts are still needed to further this study and they include considering the
network connectivity and coverage redundancy.
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