
sensors

Article

3D-GIoU: 3D Generalized Intersection over Union for
Object Detection in Point Cloud

Jun Xu 1,*, Yanxin Ma 2,*, Songhua He 1 and Jiahua Zhu 2

1 College of Information Science and Engineering, Hunan University, Changsha 410082, China;
hesonghua@hnu.edu.cn

2 College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073,
China; zhujiahua1019@hotmail.com

* Correspondence: junxu714@163.com (J.X.); mayanxin@nudt.edu.cn (Y.M.)

Received: 3 August 2019; Accepted: 18 September 2019; Published: 22 September 2019
����������
�������

Abstract: Three-dimensional (3D) object detection is an important research in 3D computer vision with
significant applications in many fields, such as automatic driving, robotics, and human–computer
interaction. However, the low precision is an urgent problem in the field of 3D object detection. To solve
it, we present a framework for 3D object detection in point cloud. To be specific, a designed Backbone
Network is used to make fusion of low-level features and high-level features, which makes full use of
various information advantages. Moreover, the two-dimensional (2D) Generalized Intersection over
Union is extended to 3D use as part of the loss function in our framework. Empirical experiments
of Car, Cyclist, and Pedestrian detection have been conducted respectively on the KITTI benchmark.
Experimental results with average precision (AP) have shown the effectiveness of the proposed network.

Keywords: 3D object detection; point cloud; voxel; convolutional neural networks; 3D generalized
intersection over union

1. Introduction

The task of object detection is to find the objects of interest in a given scene and determine their
category and location. In the past few years, deep learning has made substantial progress in many fields
due to its powerful feature learning ability, ranging from object recognition [1,2] to natural language
processing [3,4]. Deep learning-based object detection methods have achieved a really high detection
accuracy and are widely used in various practical applications, such as autonomous driving [5–9],
mobile robots [10,11], video surveillance [12–14], and so forth.

There are some three-dimensional (3D) object detection techniques based on RGB images [6,7].
However, due to the loss of sophisticated spatial structure information in the process of projecting a
3D scene into a two-dimensional (2D) image, the performance of 3D object detection in RGB image
is poor. As a result, this is limited for autonomous driving and robot vision, since these applications
pay more attention to the 3D positional information of an object. Compared with RGB images, point
cloud contains 3D spatial and structural information of the given scene. In addition, with the rapid
development of LIDAR, the acquisition of point cloud is becoming more and more convenient. Therefore,
point cloud-based 3D object detection has become an important component in many 3D applications.

Currently, deep learning-based 3D object detection in point cloud algorithms has a main challenge:
the low detection precision. To solve this problem, some technologies [5,15] use a 2D detection
algorithm in an image to locate the object, then use bounding box regression to achieve 3D object
detection. According to the detection results of a KITTI data set [16], they have achieved good results
thanks to the accurate 2D detection in images. However, these methods have two problems: they are
highly dependent on 2D object detection technology and have an expensive time cost. To solve these

Sensors 2019, 19, 4093; doi:10.3390/s19194093 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-6296-2307
http://www.mdpi.com/1424-8220/19/19/4093?type=check_update&version=1
http://dx.doi.org/10.3390/s19194093
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 4093 2 of 16

problems, we propose our solutions: 1. Only point cloud is used for 3D object detection to reduce
the time cost, 2. Feature maps of different layers are aggregated to improve the expressive ability
of features, 3. A new loss function, 3D Generalized Intersection over Union (GIoU) is proposed to
optimize the alignment of 3D prediction and ground truth bounding box, so as to improve the precision
of 3D object detection.

In the 3D object detection network, as the depth of the network increases, the size and receptive
field of the feature map also change. The lower-level feature map has high resolution and contains
smaller receptive field and more detailed texture information. The high-level feature map has low
resolution and contains larger receptive field and more semantic information. The integration of
different levels of feature maps can improve the comprehensive expression ability of feature maps.
Based on this observation, this paper proposes a Backbone Network, in which the low-resolution
feature map is spliced with the high-resolution feature map after the up-sampling. Features with
stronger expression ability are obtained after the fusion of features of different levels.

As we know, object detection is a multitask learning problem, which consists of object classification
and object localization. Actually, bounding box regression plays an important role in object localization.
Many superior object detectors rely on accurate bounding box regression to locate objects, such as
VoxelNet [17], SECOND [18], and Complex-YOLO [19]. Although optimizing the architecture of
deep neural network is a trend to improve the accuracy of bounding box, designing a reasonable
regression loss function is also an important way. Consequently, various regression loss functions
have been proposed. Among the current popular object detectors, the l1-smooth and l2-norm are the
mainstream of loss functions used to optimize bounding box, where the l2-norm is also known as the
mean square error (MSE). Nevertheless, these functions cannot represent the core evaluation criteria
(i.e., Intersection over Union (IoU)). However, there is a problem with the IoU as a loss function, that is,
when the two bounding boxes are completely out of coincidence, optimization cannot be performed.
In addition, IoU cannot reflect the alignment of two bounding boxes. To solve these problems, Hamid
et al. [20] proposed 2D Generalized Intersection over Union (GIoU) for 2D object detection, which
solved the problem of unification of loss function and evaluation criteria and improved the accuracy of
2D object detection.

However, one of the drawbacks of 2D GIoU is that it only applies to 2D object detection. To break
this dilemma, this paper proposes a 3D GIoU regression loss function for 3D object detection. The
ablation experiments show that the use of 3D GIoU can actually improve the detection performance.

In particular, the main contributions of this paper can be summarized as follows:
A Backbone Network is designed to aggregate the low-level features and high-level features for 3D

object detection, which improves the performance of detection and enhances the robustness of the network.
3D GIoU loss function is proposed to optimize bounding box regression.
The proposed detection pipeline is evaluated on a KITTI benchmark dataset, which demonstrates

that the proposed network is superior to other algorithms in average precision (AP).

2. Related Work

3D object detection methods can be divided into three categories by the representations of input
data, therefore, monocular image-based, point cloud-based, and multimodal fusion-based methods.

2.1. Monocular Image-Based Detection

Monocular image-based 3D detection is the most challenging for the lack of 3D space information,
but there are still some studies [6,7] that have focused on it, mainly for two reasons. On the one hand, it
is a fundamental problem with great impact; on the other hand, the equipment for obtaining monocular
image is more convenient and much cheaper. Considering the fact that the objects should be on the
ground plane, to obtain 3D proposal from monocular image, Mono3d [6] exhaustively obtained 3D
proposals from several predefined 3D regions. To select the best candidates, each candidate box is
scored via encoding several intuitive potentials, such as contextual information, typical object shape,

Sensors 2019, 19, 4093 3 of 16

size, and location priors. The expensive computing cost of 3D sliding windows in Mono3d [6] brings a
serious problem of inefficiency. To solve this problem, GS3D [7] first predicted the position, category,
and orientation of 2D bounding box in a monocular image. Then it estimated the size of 3D box and
roughly calculated the position of 3D candidate box in camera coordinates. The resulting 3D bounding
box is projected as a front view (FV), a bird’s eye view (BEV), and a side view. Next, the 3D structural
features extracted from projected surface regions and the texture information extracted from 2D box
were merged. Finally, to improve the performance of detection, the fused features were used to refine
the 3D bounding box. Compared with other monocular image-based 3D object detection methods,
GS3D [7] achieves superior performance. However, the detection accuracy is far from meeting the
requirements of automatic driving and other applications.

2.2. Point Cloud-Based Detection

Compared with monocular images, point cloud is regarded as an important information source
for 3D object detection, since it directly reflects the real-world scenes. However, due to 3D point cloud
being irregular, deep learning cannot be directly applied to object detection in point cloud. There are
two popular methods to transform point cloud to regular data, and then input the transformed data to
a 3D object detection network. The first method is projecting a point cloud to 2D plane to achieve 2D
images [19,21,22]. To utilize the 3D data more efficiently, Complex YOLO [19] and PIXOR [21] projected
point cloud to a BEV and applied 2D detection on the projected image. Although the processing
method of the projection was efficient, it lost the spatial structure information of the point cloud, which
led to poor detection performance.

Instead of projecting point cloud to 2D planes, an alternative method is transforming point cloud
to 3D voxel grids, and then processing them with 3D convolution [17,18,23]. For the VoxelNet [17] and
SECOND [18], both are one-stage detectors, a simplified PointNet [24] is applied to each non-empty voxel
for extracting voxel-wise feature. After that, the entire point cloud is represented as a four-dimensional
(4D) tensor. Then the 4D tensor is processed by a series of 3D convolutional layers, followed by region
proposal network (RPN) [25], where RPN is used to predict the classification score and the bounding
box regression map. In this paper, we use voxelization to convert point clouds into regular data for 3D
object detection.

2.3. Multimodal Fusion-Based Detection

Several 3D object detection techniques [26–31] used a combination of RGB image and depth map.
For example, Liu et al. [27] used convolutional neural networks (CNN) to extract color features from
RGB image, and used convolutional deep belief networks (CDBN) to extract geometric features from
depth map. Then, advanced visual features and geometric features were extracted with deep belief
networks (DBN). Next, the learned features were fused to obtain a 3D multimodality feature for object
detection. Deng et al. [28] used CNN to extract the appearance and geometric features from RGB
and depth images respectively, and obtained 2D detection results from RGB image. Then these 2D
bounding boxes were combined with geometric features, and classification results were converted into
3D space. Finally, the bounding box regression was used to refine these 3D boxes. Slightly different
from [28], Luo et al. [29] concatenated the appearance and geometric features directly, and then the
concatenated features were used for determining the final detection results. These methods have a
large amount of computation cost, which leads to a slow detection speed, since these methods used
different branches to extract the appearance features and geometric features, respectively.

In addition, some methods [5,15,32–34] fused RGB image and point cloud for 3D object detection.
Typically, MV3D [5] converted point cloud into a BEV representation. To obtain more scene information,
a BEV and FV of point cloud were fed into the detection network with RGB image. 3D candidate
proposals were obtained from BEV of point cloud with CNN, since BEV suffers less occlusion. Then,
candidate proposals were projected to FV and RGB image. Finally, features learned from the three 2D
views were fused for object classification and bounding box regression. F-PointNet [15] is a two-stage

Sensors 2019, 19, 4093 4 of 16

3D object detector that used RGB image to detect in the first stage, resulting in 2D detection boxes. In
the second stage, the 2D detection results were projected into point cloud to form point cloud frustum,
which was segmented by PointNet [24]. Finally, the 3D bounding boxes were calculated. Obviously,
the prediction of 3D bounding box in these studies relies heavily on the 2D region proposal network,
although they have achieved better detection performance. Different from these approaches, we only
use point cloud data to achieve higher accuracy of 3D object detection.

3. Method

In this section, the network proposed is introduced, which is named 3D-GIoU. The whole detection
network is shown in Figure 1, which includes four main components: (1) Data Preprocessing; (2)
Point-Voxel Feature Encoder; (3) Sparse Convolution Middle Layers; (4) Region Proposal Network,
which consist of Backbone Network and Header Network.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 16

[15] is a two-stage 3D object detector that used RGB image to detect in the first stage, resulting in 2D
detection boxes. In the second stage, the 2D detection results were projected into point cloud to form
point cloud frustum, which was segmented by PointNet [24]. Finally, the 3D bounding boxes were
calculated. Obviously, the prediction of 3D bounding box in these studies relies heavily on the 2D
region proposal network, although they have achieved better detection performance. Different from
these approaches, we only use point cloud data to achieve higher accuracy of 3D object detection.

3. Method

In this section, the network proposed is introduced, which is named 3D-GIoU. The whole
detection network is shown in Figure 1, which includes four main components: (1) Data
Preprocessing; (2) Point-Voxel Feature Encoder; (3) Sparse Convolution Middle Layers; (4) Region
Proposal Network, which consist of Backbone Network and Header Network.

Classification

Regression

Sparse
Convolution

Middle
Layers

Data
Preprocessing

Point-Voxel
Feature
Encoder

Backbone
Network

3D GIoU
Loss

Conv2d
(S=1)

Conv2d
(S=1)

Header Network

I/2×J/2×896

Region Proposal Network

Detection results

Ground truths

I/2×J/2×14

I/2×J/2×2
Point cloud

Figure 1. Three-Dimensional Generalized Intersection over Union (3D-GIoU) Architecture. The
network takes point cloud as input. After the point cloud is discretized into 3D voxel grids, Point-
Voxel Feature Encoder is used to learn voxel-wise features. Then, these features are processed by
Sparse Convolution Middle Layers and sent to the Region Proposal Network to predict the
classification score and the bounding box regression map. Last, the detection results and ground truth
bounding boxes are used to calculate 3D GIoU loss, and 3D GIoU loss is used for optimizing the
bounding box regression.

3.1. Data Preprocessing

Since 3D point cloud is irregular and the data input to CNN must be regular, point cloud is
firstly transformed into regular data by discretizing them into 3D voxel grids. For a given point cloud,
we only deal with a point cloud scene of size L × W × H mଷ in the directions of X, Y and Z axes, and
points beyond this range are discarded. In addition, according to the coordinate transformation
matrix of the LIDAR to the left camera in KITTI benchmark [16], we remove points beyond the field
of view of left camera. Then, the cropped point cloud is discretized into voxels of size D୶, D୷, and D୸ along the three coordinate axes. Therefore, a total of I × J × K voxels are obtained, where I =L D୶⁄ , J = W D୷⁄ , and K = H D୸⁄ .

Original point cloud Cropped point cloud 3D voxel grids

Figure 1. Three-Dimensional Generalized Intersection over Union (3D-GIoU) Architecture. The
network takes point cloud as input. After the point cloud is discretized into 3D voxel grids, Point-Voxel
Feature Encoder is used to learn voxel-wise features. Then, these features are processed by Sparse
Convolution Middle Layers and sent to the Region Proposal Network to predict the classification score
and the bounding box regression map. Last, the detection results and ground truth bounding boxes are
used to calculate 3D GIoU loss, and 3D GIoU loss is used for optimizing the bounding box regression.

3.1. Data Preprocessing

Since 3D point cloud is irregular and the data input to CNN must be regular, point cloud is firstly
transformed into regular data by discretizing them into 3D voxel grids. For a given point cloud, we
only deal with a point cloud scene of size L×W×H m3 in the directions of X, Y and Z axes, and points
beyond this range are discarded. In addition, according to the coordinate transformation matrix of the
LIDAR to the left camera in KITTI benchmark [16], we remove points beyond the field of view of left
camera. Then, the cropped point cloud is discretized into voxels of size Dx, Dy, and Dz along the three
coordinate axes. Therefore, a total of I× J×K voxels are obtained, where I = L/Dx, J = W/Dy, and
K = H/Dz. The voxelization process of point cloud is shown in Figure 2.

A cropped 3D point cloud contains about 17,000 points and is unevenly distributed, which may
bias the detection. To address this, a fixed number of points N in each voxel are obtained to alleviate
the sampling deviation between voxels. Specifically, when the number of points in a voxel is greater
than N, N points will be obtained by random down-sampling. On the contrary, points with all 0 are
filled to the voxel when the number is less than N.

3.2. Point-Voxel Feature Encoder

Same to the previous work, PVFE [35] is used to obtain a voxel feature with high expressive ability.
PVFE is composed of two full connection layers and one max-pooling layer. To be specific, each full
connection layer is followed by Batch Normalization (BN) and Rectified Linear Unit (ReLU).

Sensors 2019, 19, 4093 5 of 16

Sensors 2019, 19, x FOR PEER REVIEW 4 of 16

[15] is a two-stage 3D object detector that used RGB image to detect in the first stage, resulting in 2D
detection boxes. In the second stage, the 2D detection results were projected into point cloud to form
point cloud frustum, which was segmented by PointNet [24]. Finally, the 3D bounding boxes were
calculated. Obviously, the prediction of 3D bounding box in these studies relies heavily on the 2D
region proposal network, although they have achieved better detection performance. Different from
these approaches, we only use point cloud data to achieve higher accuracy of 3D object detection.

3. Method

In this section, the network proposed is introduced, which is named 3D-GIoU. The whole
detection network is shown in Figure 1, which includes four main components: (1) Data
Preprocessing; (2) Point-Voxel Feature Encoder; (3) Sparse Convolution Middle Layers; (4) Region
Proposal Network, which consist of Backbone Network and Header Network.

Classification

Regression

Sparse
Convolution

Middle
Layers

Data
Preprocessing

Point-Voxel
Feature
Encoder

Backbone
Network

3D GIoU
Loss

Conv2d
(S=1)

Conv2d
(S=1)

Header Network

I/2×J/2×896

Region Proposal Network

Detection results

Ground truths

I/2×J/2×14

I/2×J/2×2
Point cloud

Figure 1. Three-Dimensional Generalized Intersection over Union (3D-GIoU) Architecture. The
network takes point cloud as input. After the point cloud is discretized into 3D voxel grids, Point-
Voxel Feature Encoder is used to learn voxel-wise features. Then, these features are processed by
Sparse Convolution Middle Layers and sent to the Region Proposal Network to predict the
classification score and the bounding box regression map. Last, the detection results and ground truth
bounding boxes are used to calculate 3D GIoU loss, and 3D GIoU loss is used for optimizing the
bounding box regression.

3.1. Data Preprocessing

Since 3D point cloud is irregular and the data input to CNN must be regular, point cloud is
firstly transformed into regular data by discretizing them into 3D voxel grids. For a given point cloud,
we only deal with a point cloud scene of size L × W × H mଷ in the directions of X, Y and Z axes, and
points beyond this range are discarded. In addition, according to the coordinate transformation
matrix of the LIDAR to the left camera in KITTI benchmark [16], we remove points beyond the field
of view of left camera. Then, the cropped point cloud is discretized into voxels of size D୶, D୷, and D୸ along the three coordinate axes. Therefore, a total of I × J × K voxels are obtained, where I =L D୶⁄ , J = W D୷⁄ , and K = H D୸⁄ .

Original point cloud Cropped point cloud 3D voxel grids
Figure 2. Voxelization of point cloud. Firstly, the original point cloud is cropped according to the fixed
size L×W×H m3, and then the cropped point cloud is further transformed into 3D voxel grids.

In details, points in voxel are input to PVFE in sequence. Here, we assume that there are
M points (M ≤ N) in the voxel A, represented as point set P =

{
p1, p2, · · · , pM

}
∈ R4. For point

pi (i = 1, 2, · · · , M), to obtain an expressive feature, it is necessary to comprehensively consider its
own information, the spatial relationship with other points pj (j , i), and the spatial relationship
with voxel A. Therefore, the feature of each point is encoded as a (ten-dimensional) 10D vector
f =

(
x, y, z, r, x− ∆x, y− ∆y, z− ∆z, x− xc, y− yc, z− zc

)
, where, (x, y, z) are the coordinates of pi,

r is the received reflectance, (∆x, ∆y, ∆z) are the mean coordinates of all unfilled points in the voxel A,
and

(
xc, yc, zc

)
represents the center of the voxel A. Then, point features F = {f1, f2, · · · , fM} ∈ R10 in

each voxel are fed into PVFE, and then a 128-D voxel-wise feature is outputted. Consequently, the
whole point cloud is mapped into a 4D tensor with a shape of I× J×K× 128.

3.3. Sparse Convolution Middle Layers

Since the output tensor of PVFE has high dimensionality, computational efficiency becomes the
major problem. To improve the efficiency of 3D CNN and make a more objective comparison with
SECOND [18], we inherit the sparse convolutional middle layers (SCML) of SECOND [18]. SCML is
used to process the voxel-wise features learned by PVFE, it achieves small computational cost with a
certain number of parameters. SCML ensures that the output spatial structure remains unchanged
while improving the data processing speed, the details of SCML can be referred to in [18].

3.4. Region Proposal Network

Region Proposal Network (RPN) [25] is an important part of the 3D object detection framework.
The RPN proposed in this paper is composed of two parts: The Backbone Network and the Header
Network. The Backbone Network consists of three components: top-bottom, bottom-top, and multiscale
fusion. The structure of the Backbone Network is shown in Figure 3, where the size of tensors in the
Figure 3 is marked according to the parameters of the car detection.

The top-bottom branch consists of three convolution blocks, which are named CB_1, CB_2, and
CB_3 in turn. More specifically, CB_1 is composed of four convolutional layers, while CB_2 and CB_3
are both composed of six convolutional layers. Each convolution layer is followed by BN and ReLU.
In addition, for car detection, the stride of the first convolution layer in CB_1, CB_2, and CB_3 is 2,
and the stride of other convolution layers is 1. For cyclist and pedestrian, only the stride of the first
convolutional layer in CB_2 and CB_3 is 2. The bottom-top branch consists of three deconvolution
layers with a stride of 2, which are represented as three yellow lines in Figure 3. In addition, the
2D convolution of the blue line, the deconvolution layers indicated by the purple lines, and the
concatenation of the last step constitute the multiscale fusion structure.

The input of the Backbone Network is a spatial feature with shape of I × J × 128, which is the
output of SCML. The output of the Backbone Network is a multichannel feature map with size of
I/2× J/2× 896, which incorporates multiscale features. Because the concatenated feature aggregates
more detailed texture features and richer semantic information, the expression ability is stronger,

Sensors 2019, 19, 4093 6 of 16

which is important for predicting high-precision 3D bounding boxes. Finally, the output is fed into the
Header Network to predict the classification score and bounding box regression map.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 16

which is important for predicting high-precision 3D bounding boxes. Finally, the output is fed into
the Header Network to predict the classification score and bounding box regression map.

Cat

Cat

Cat

4 ×

2 ×

1 ×

Cat

: Deconv2d 2×

: Deconv2d

: Concatenation

Cat

: Conv2d (s=2)

: Conv2d (s=1)
Backbone Network

: Transmission

CB_2

I×J×128

I/2×J/2×128

I/4×J/4×128

I/8×J/8×128 I/2×J/2×256

I/2×J/2×256

I/2×J/2×256

I/2×J/2×128

I/4×J/4×256

I/2×J/2×256

I×J×256

 CB_3

 CB_1

I/2×J/2×896

2 ×

2 ×

2 ×

: Conv2d s=2

Figure 3. The architecture of Backbone Network. The meanings of lines and two-dimensional (2D)
shapes with different colors in figure are given in the legend. Green 3D boxes represent feature maps
with different sizes.

Different levels of feature maps examples are given in Figure 3. As shown in Figure 3, the four
feature maps from top to bottom represent the input of the Backbone Network, the output of CB_1,
the output of CB_2, and the output of CB_3, respectively. Obviously, the degree of abstraction of
features deepens as the network hierarchy deepens, which means that the feature map contains more
semantic information.

4. Loss Function

The loss of object detection pipeline proposed in this paper consists of three parts: (1)
Classification loss; (2) bounding box regression loss; (3) 3D GIoU loss. In addition, to balance the
relative importance, we add different weights to different parts. As shown in Equation (1), where wଵ = 1, wଶ = 2, wଷ = 1. L = wଵLୡ୪ୱ + wଶL୰ୣ୥ + wଷLଷୈృ౅౥౑ , (1)

4.1. Classification Loss

Since most of the bounding boxes predicted by RPN belong to negative samples, there is a large
imbalance between positive samples and negative samples. This deviation makes the negative loss
far greater than the positive loss during training, which is not conducive to the training of network.
Therefore, the focal loss function proposed by Lin et al. [36] is adopted to obtain an effective pipeline,
as shown in Equation (2). Lୡ୪ୱ = FLሺp୲ሻ = −α୲ሺ1 − p୲ሻ୰logሺp୲ሻ, (2)

Specifically, p୲ represents the evaluation probability value of the model for the corresponding
bounding box, and the scale factor is set as α୲ = 0.25, γ = 2. Essentially, the focal loss function is a
dynamically scaled cross entropy loss. When the confidence of the correct class increases, the weight ሺ1 − p୲ሻஓ decays to zero. On the contrary, the weight increases.

4.2. 3D Bounding Box Regression Loss

For the bounding box regression, the 3D ground truth bounding box is parameterized as ൫x୥, y୥, z୥, l୥, w୥, h୥, θ୥൯ while the matching anchor is ሺxୟ, yୟ, zୟ, lୟ, wୟ, hୟ, θୟሻ , where ሺx, y, zሻ denote

Figure 3. The architecture of Backbone Network. The meanings of lines and two-dimensional (2D)
shapes with different colors in figure are given in the legend. Green 3D boxes represent feature maps
with different sizes.

Different levels of feature maps examples are given in Figure 3. As shown in Figure 3, the four
feature maps from top to bottom represent the input of the Backbone Network, the output of CB_1,
the output of CB_2, and the output of CB_3, respectively. Obviously, the degree of abstraction of
features deepens as the network hierarchy deepens, which means that the feature map contains more
semantic information.

4. Loss Function

The loss of object detection pipeline proposed in this paper consists of three parts: (1) Classification
loss; (2) bounding box regression loss; (3) 3D GIoU loss. In addition, to balance the relative importance,
we add different weights to different parts. As shown in Equation (1), where w1 = 1, w2 = 2, w3 = 1.

L = w1Lcls + w2Lreg + w3L3DGIoU , (1)

4.1. Classification Loss

Since most of the bounding boxes predicted by RPN belong to negative samples, there is a large
imbalance between positive samples and negative samples. This deviation makes the negative loss
far greater than the positive loss during training, which is not conducive to the training of network.
Therefore, the focal loss function proposed by Lin et al. [36] is adopted to obtain an effective pipeline,
as shown in Equation (2).

Lcls = FL
(
pt

)
= −αt

(
1− pt

)r
log

(
pt

)
, (2)

Specifically, pt represents the evaluation probability value of the model for the corresponding
bounding box, and the scale factor is set as αt = 0.25, γ = 2. Essentially, the focal loss function is a
dynamically scaled cross entropy loss. When the confidence of the correct class increases, the weight(
1− pt

)γ
decays to zero. On the contrary, the weight increases.

4.2. 3D Bounding Box Regression Loss

For the bounding box regression, the 3D ground truth bounding box is parameterized as(
xg, yg, zg, lg, wg, hg, θg

)
while the matching anchor is

(
xa, ya, za, la, wa, ha, θa

)
, where (x, y, z) denote

the center coordinate, (l, w, h) is the length, width, and height of the 3D box, and θ is the yaw rotation

Sensors 2019, 19, 4093 7 of 16

around Z axis. Then, we define vector r∗ ∈ R7, which encodes the regression targets. Finally, r∗ is
computed as:

xr =
xg−xa

da
, yr =

yg−ya
da

, zr =
zg−za

ha
,

lr = log
(

lg
la

)
, wr = log

(wg
wa

)
, hr = log

(
hg
ha

)
,

θr = θg − θa,

(3)

Then, bounding box regression loss is defined as following:

Lreg =
∑

e∈(x,y,z,l,w,h)
SmoothL1(er) + SmoothL1(sin θr), (4)

4.3. 3D GIoU Loss

Currently, the regression loss of the bounding box (mean squared error loss, l1-smooth loss) is
the mainstream method to optimize the bounding box in the object detection. However, IoU is the
most commonly used metric for comparing the similarity between two arbitrary shapes, which is also
known as Jaccard index. In fact, two shapes can overlap in different ways to get the same l1 or l2-norms
values, but when they overlap in different ways, the IoU value is different [20], which indicates that
the l1 and the l2-norms cannot effectively reflect the detection effect. However, IoU not only reflects
the distance between the predicted and ground truth bounding box, but also has scale invariance.
Therefore, some object detection techniques [37,38] adopt IoU loss to optimize the bounding box. Here,
given two arbitrary shapes A, B ∈ Rn, the IoU and IoU loss are defined follows:

IoU =
|A∩ B|
|A∪ B|

, (5)

LIoU = 1− IoU, (6)

It cannot be neglected that there are two shortcomings of IoU loss in optimizing bounding box:

(1) When the predicted and ground truth bounding box do not coincide completely, the gradient of
loss function is 0, which makes it impossible to optimize;

(2) Two shapes can overlap in different ways to get the same IoU value, that is, the IoU does not
reflect how overlap between two objects occurs (see Figure 4).

Sensors 2019, 19, x FOR PEER REVIEW 7 of 16

the center coordinate, ሺl, w, hሻ is the length, width, and height of the 3D box, and θ is the yaw rotation
around Z axis. Then, we define vector r∗ ∈ R଻, which encodes the regression targets. Finally, r∗ is
computed as: x୰ = ୶ౝି୶౗ୢ౗ , y୰ = ୷ౝି୷౗ୢ౗ , z୰ = ୸ౝି୸౗୦౗ ,

l୰ = log ቀ୪ౝ୪౗ቁ, w୰ = log ቀ୵ౝ୵౗ቁ, h୰ = log ቀ୦ౝ୦౗ቁ, (3)

θ୰ = θ୥ − θୟ,

Then, bounding box regression loss is defined as following: L୰ୣ୥ = ∑ SmoothL1ሺe୰ሻୣ∈ሺ୶,୷,୸,୪,୵,୦ሻ + SmoothL1ሺsinθ୰ሻ, (4)

4.3. 3D GIoU Loss

Currently, the regression loss of the bounding box (mean squared error loss, lଵ-smooth loss) is
the mainstream method to optimize the bounding box in the object detection. However, IoU is the
most commonly used metric for comparing the similarity between two arbitrary shapes, which is also
known as Jaccard index. In fact, two shapes can overlap in different ways to get the same lଵ or lଶ-
norms values, but when they overlap in different ways, the IoU value is different [20], which indicates
that the lଵ and the lଶ-norms cannot effectively reflect the detection effect. However, IoU not only
reflects the distance between the predicted and ground truth bounding box, but also has scale
invariance. Therefore, some object detection techniques [37,38] adopt IoU loss to optimize the
bounding box. Here, given two arbitrary shapes A, B ∈ R୬, the IoU and IoU loss are defined follows: IoU = |୅∩୆||୅∪୆|, (5)

 L୍୭୙ = 1 − IoU, (6)

It cannot be neglected that there are two shortcomings of IoU loss in optimizing bounding box:
(1) When the predicted and ground truth bounding box do not coincide completely, the gradient

of loss function is 0, which makes it impossible to optimize;
(2) Two shapes can overlap in different ways to get the same IoU value, that is, the IoU does not

reflect how overlap between two objects occurs (see Figure 4).

(a) (b) (c)

Figure 4. Three different ways of overlap between two rectangles with the exact same IoU values, (i.e.
IoU = 0.50), but different GIoU values (i.e., from the left to right GIoU = 0.50, 0.45, and 0.09,
respectively). For the case with better aligned orientation, the GIoU value will be higher.

To solve these issues, Hamid et al. proposed a 2D GIoU loss for optimizing the bounding box in
2D object detection [20]. Motivated by [20], we propose a 3D GIoU loss function for 3D object
detection, which contributes to align 3D predicted and ground truth bounding boxes.

In this paper, the optimization of the bounding box adopts two losses of lଵ- smooth and 3D
GIoU. In particular, lଵ-smooth is firstly used to optimize all 3D bounding boxes, and then the 3D

Figure 4. Three different ways of overlap between two rectangles with the exact same IoU values,
(i.e., IoU = 0.50), but different GIoU values (i.e., from the left to right GIoU = 0.50, 0.45, and 0.09,
respectively). For the case with better aligned orientation, the GIoU value will be higher.

To solve these issues, Hamid et al. proposed a 2D GIoU loss for optimizing the bounding box in
2D object detection [20]. Motivated by [20], we propose a 3D GIoU loss function for 3D object detection,
which contributes to align 3D predicted and ground truth bounding boxes.

In this paper, the optimization of the bounding box adopts two losses of l1- smooth and 3D GIoU.
In particular, l1-smooth is firstly used to optimize all 3D bounding boxes, and then the 3D GIoU is

Sensors 2019, 19, 4093 8 of 16

used to optimize those bounding boxes that are judged to be positive samples. The algorithm of 3D
GIoU loss is defined as Algorithm 1.

Algorithm 1: 3D Generalized Intersection Over Union Loss

Input: The information of the predicted Bp and ground truth Bg bounding box:
Bp =

(
xp, yp, zp, lp, wp, hp, θp

)
, Bg =

(
xg, yg, zg, lg, wg, hg, θg

)
Output: L3D_GIoU

1. Calculating projections B′p and B′g of box Bp and Bg on the bird’s eye view, respectively.

B′p =
(
x1

p, y1
p, x2

p, y2
p, θ′p

)
, B′g =

(
x1

g, y1
g, x2

g, y2
g, θ′g

)
2. B′c =

(
x1

c , y1
c , x2

c , y2
c , θ′c

)
← the information of smallest enclosing box;

3. Ap ← the area of the 2D box B′p;

4. Ag ← the area of the 2D box B′g;

5. Ac ← the area of the 2D box B′c;
6. I2D ← intersection between B′p and B′g;

7. U2D ← union between B′p and B′g;

8. Ih ← the height of the intersection of Bp and Bg;
9. Uh ← the height of the union of Bp and Bg;
10. Vp ← the volume of the 3D box Bp;
11. Vg ← the volume of the 3D box Bg;
12. Vc ← the volume of the 3D box Bc, where Bc represents the smallest 3D enclosing box;
13. Calculating intersection Iv of Bp and Bg:

if I2D ≤ 0 :
Iv = 0;

else:
if Ih ≤ 0:

Iv = 0;
else:

Iv = I2D × Ih;

14. IoU3D = Iv
Uv

, where Uv = Vp + Vg − Iv;

15. GIoU3D = IoU3D −
(Vc−Uv)

Vc
;

16. L3D_GIoU = 1−GIoU3D;

To better understand the calculation of the smallest enclosing box Bc in 3D GIoU, we give 2D and
3D examples in (a) and (b) of Figure 5.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 16

GIoU is used to optimize those bounding boxes that are judged to be positive samples. The algorithm
of 3D GIoU loss is defined as Algorithm 1.

Algorithm 1: 3D Generalized Intersection Over Union Loss

Input: The information of the predicted B୮ and ground truth B୥ bounding box: B୮ = ൫x୮, y୮, z୮, l୮, w୮, h୮, θ୮൯, B୥ = ൫x୥, y୥, z୥, l୥, w୥, h୥, θ୥൯
Output: Lଷୈ_ୋ୍୭୙

1. Calculating projections B୮ᇱ and B୥ᇱ of box B୮ and B୥ on the bird's eye view, respectively. B୮ᇱ = ൫x୮ଵ, y୮ଵ, x୮ଶ, y୮ଶ, θ୮ᇱ ൯, B୥ᇱ = ൫x୥ଵ, y୥ଵ, x୥ଶ, y୥ଶ, θ୥ᇱ ൯
2. Bୡᇱ = ሺxୡଵ, yୡଵ, xୡଶ, yୡଶ, θୡᇱ ሻ ← the information of smallest enclosing box;
3. A୮ ← the area of the 2D box B୮ᇱ ;
4. A୥ ← the area of the 2D box B୥ᇱ ;
5. Aୡ ← the area of the 2D box Bୡᇱ ;
6. Iଶୈ ← intersection between B୮ᇱ and B୥ᇱ ;
7. Uଶୈ ← union between B୮ᇱ and B୥ᇱ ;
8. I୦ ← the height of the intersection of B୮ and B୥;
9. U୦ ← the height of the union of B୮ and B୥;
10. V୮ ← the volume of the 3D box B୮;
11. V୥ ← the volume of the 3D box B୥;
12. Vୡ ← the volume of the 3D box Bୡ, where Bୡ represents the smallest 3D enclosing box;
13. Calculating intersection I୴ of B୮ and B୥:
if Iଶୈ ≤ 0:
 I୴ = 0;
else:
if I୦ ≤ 0:
 I୴ = 0;
 else:
 I୴ = Iଶୈ × I୦;
14. IoUଷୈ = ୍౬୙౬, where U୴ = V୮ + V୥ − I୴;

15. GIoUଷୈ = IoUଷୈ − ሺ୚ౙି୙౬ሻ୚ౙ ;

16. Lଷୈ_ୋ୍୭୙ = 1 − GIoUଷୈ;

To better understand the calculation of the smallest enclosing box Bୡ in 3D GIoU, we give 2D
and 3D examples in (a) and (b) of Figure 5.

Bg

Bp

Bc

I2D

Bg

Bc

Bp

I3D

(a) 2D (b) 3D

Figure 5. Different ways of overlap between bounding boxes in case of 2D and 3D, respectively. For
(a) and (b), cyan and pink represent the predicted bounding box B୮ and ground truth B୥ ,
respectively, and yellow represents the intersection of them. In addition, the green bounding box
represents the smallest enclosing box Bୡ.

5. Experiments

The KITTI benchmark dataset [16] was employed to evaluate our proposed method. It contains
7481 training and 7518 testing point clouds, including three categories: car, cyclist, and pedestrian.

Figure 5. Different ways of overlap between bounding boxes in case of 2D and 3D, respectively. For (a)
and (b), cyan and pink represent the predicted bounding box Bp and ground truth Bg, respectively, and
yellow represents the intersection of them. In addition, the green bounding box represents the smallest
enclosing box Bc.

Sensors 2019, 19, 4093 9 of 16

5. Experiments

The KITTI benchmark dataset [16] was employed to evaluate our proposed method. It contains
7481 training and 7518 testing point clouds, including three categories: car, cyclist, and pedestrian.
The training dataset was divided into a training set (3712) and a validation set (3769), since the ground
truth of the testing dataset is not publicly available.

5.1. Network Details

5.1.1. Car Detection

For the car detection task, the range of point cloud taken into consideration was L ×W ×H =

[0, 70.4] × [−40, 40] × [−3, 1] m3 along X, Y, and Z axis, respectively. The 3D voxel dimension was set
to be Dx ×Dy ×Dz = 0.2 × 0.2 × 0.4 m3, which led to I × J ×K = 352 × 400 × 10. In addition, N = 35
was set as the maximum number of points for random down-sampling within the voxel. Following the
SECOND [18], the set of anchors was a 3D box with measurement of l×w× h = 3.9× 1.6× 1.56 m3,
which is the mean size of car and centered at z = −1m. As to the orientation, θ = 0

◦

or θ = 90
◦

was
considered in our experiments.

5.1.2. Cyclist and Pedestrian Detection

For cyclist and pedestrian detection, the range of point cloud was set to L×W×H = [0, 48] ×
[−20, 20] × [−2.5, 0.5] m3, and the size of 3D voxel was Dx ×Dy ×Dz = 0.2× 0.2× 0.3 m3, which led
to I× J×K = 240× 200× 10. As with car detection, N = 35 was taken for random down-sampling of
points in voxels. For the detection of cyclist, the set of anchors was a 3D box with size l ×w × h =

1.76× 0.6× 1.73 m3, while the size was l×w× h = 0.8× 0.6× 1.73 m3 for pedestrian. Besides, all the
anchors were centered at z = −0.6 m.

5.2. Training

In the experiments of this paper, there were only 3712 point clouds in the training set, which
would inevitably lead to the overfitting of our network. To solve this problem, we introduced three
different forms of data augmentation in SECOND [18]: (1) Motion; (2) global scaling and rotation; (3)
sample ground truths from the database. The proposed framework was trained for 200k iterations
using the Adam optimizer [39]. The initial learning rate was 0.002, the exponential decay rate was 0.8,
and there was a decay every 18,750 iterations. For the detection of car, cyclist, and pedestrian, the batch
size of 3 was used, distributed on a GTX 2080 Ti GPU, and the whole network took about 22 h to train.

5.3. Comparisons on the KITTI Validation Set

The 3D detection performance of our network on the KITTI verification set is shown in Table 1. In
order to demonstrate the superior performance of the proposed detector, we compared it with other
detectors, such as the MV3D [5], AVOD [33] and F-PointNet [15] which used both RGB image and
point cloud, and VoxelNet [17], SECOND [18], PointPillars [40], and PVFE [35] which only used point
cloud. Besides, the performance of our method for BEV object localization is given in Table 2.

Compared with 2D object detection, 3D object detection is more challenging, since it requires
higher localization accuracy of 3D bounding box in space. As shown in Table 1, we can see that
3D-GIoU proposed in this paper is more suitable for 3D object detection. Specifically, for car and
cyclist, 3D-GIoU significantly outperformed other approaches across all difficulty levels. Moreover, in
the cyclist detection, our method achieved an AP of 63.51% in the Hard level, which is 7.72% higher
than the result of SECOND [18]. In addition, in the performance for BEV object localization, which is
shown in Table 2, 3D-GIoU achieved better results with respect to AP compared with other methods,
although it was slightly inferior in pedestrian detection task.

Sensors 2019, 19, 4093 10 of 16

In addition, as shown in Figure 6, it is easy to find that the AP of 3D-GIoU was significantly higher
than that of other methods across three difficulty levels. In addition, the AP of 3D-GIoU decreased
more slowly with the difficulty level from Easy to Moderate, then to Hard, which further demonstrates
that our network has better robustness.

Table 1. 3D detection performance: Average precision (AP) (%) for 3D box in the KITTI valuation set.

Method Modality Car Cyclist Pedestrian

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MV3D Img. & Lidar 71.09 62.35 55.12 N/A N/A N/A N/A N/A N/A
AVOD Img. & Lidar 81.94 71.88 66.38 64.00 52.18 46.61 50.80 42.81 40.88

F-PointNet Img. & Lidar 81.20 70.39 62.19 71.96 56.77 50.39 51.21 44.89 51.21
VoxelNet Lidar 77.47 65.11 57.73 61.22 48.36 44.37 39.48 33.69 31.50

PointPillars Lidar 86.96 76.35 70.19 77.75 58.55 54.85 67.07 58.74 55.97
PVFE Lidar 87.32 77.12 68.87 81.58 62.41 56.33 58.48 51.74 45.09

SECOND Lidar 85.99 75.51 68.25 80.47 57.02 55.79 56.99 50.22 43.59

3D-GIoU Lidar 87.83 77.91 75.55 83.32 64.69 63.51 67.23 59.58 52.69

Table 2. Bird’s Eye View (BEV) detection performance: AP (%) for BEV box in the KITTI valuation set.

Method Modality Car Cyclist Pedestrian

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MV3D Img & Lidar 86.02 76.90 68.48 N/A N/A N/A N/A N/A N/A
AVOD Img & Lidar 88.53 83.79 77.90 68.09 57.48 50.77 58.75 51.05 47.54

F-PointNet Img & Lidar 88.07 84.00 75.33 75.38 61.96 54.68 58.09 50.22 47.02
PIXOR Lidar 89.38 83.70 77.97 N/A N/A N/A N/A N/A N/A

VoxelNet Lidar 89.35 79.26 77.39 66.07 54.76 50.55 46.13 40.74 38.11
PointPillars Lidar 90.12 86.67 84.53 80.89 61.54 58.63 73.08 68.20 63.20

PVFE Lidar 89.98 87.03 79.31 84.30 64.72 58.42 61.93 54.88 51.93
SECOND Lidar 89.23 86.25 78.95 82.88 63.46 57.63 60.81 53.67 51.10
3D-GIoU Lidar 90.16 87.92 86.55 85.35 66.91 65.06 70.16 62.57 55.52

Sensors 2019, 19, x FOR PEER REVIEW 10 of 16

Table 2. Bird’s Eye View (BEV) detection performance: AP (%) for BEV box in the KITTI valuation
set.

Method Modality
Car Cyclist Pedestrian

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard
MV3D Img & Lidar 86.02 76.90 68.48 N/A N/A N/A N/A N/A N/A
AVOD Img & Lidar 88.53 83.79 77.90 68.09 57.48 50.77 58.75 51.05 47.54

F-PointNet Img & Lidar 88.07 84.00 75.33 75.38 61.96 54.68 58.09 50.22 47.02
PIXOR Lidar 89.38 83.70 77.97 N/A N/A N/A N/A N/A N/A

VoxelNet Lidar 89.35 79.26 77.39 66.07 54.76 50.55 46.13 40.74 38.11
PointPillars Lidar 90.12 86.67 84.53 80.89 61.54 58.63 73.08 68.20 63.20

PVFE Lidar 89.98 87.03 79.31 84.30 64.72 58.42 61.93 54.88 51.93
SECOND Lidar 89.23 86.25 78.95 82.88 63.46 57.63 60.81 53.67 51.10
3D-GIoU Lidar 90.16 87.92 86.55 85.35 66.91 65.06 70.16 62.57 55.52

Compared with 2D object detection, 3D object detection is more challenging, since it requires

higher localization accuracy of 3D bounding box in space. As shown in Table 1, we can see that 3D-
GIoU proposed in this paper is more suitable for 3D object detection. Specifically, for car and cyclist,
3D-GIoU significantly outperformed other approaches across all difficulty levels. Moreover, in the
cyclist detection, our method achieved an AP of 63.51% in the Hard level, which is 7.72% higher than
the result of SECOND [18]. In addition, in the performance for BEV object localization, which is
shown in Table 2, 3D-GIoU achieved better results with respect to AP compared with other methods,
although it was slightly inferior in pedestrian detection task.

In addition, as shown in Figure 6, it is easy to find that the AP of 3D-GIoU was significantly
higher than that of other methods across three difficulty levels. In addition, the AP of 3D-GIoU
decreased more slowly with the difficulty level from Easy to Moderate, then to Hard, which further
demonstrates that our network has better robustness.

.

Figure 6. The AP of different methods on KITTI validation set with the different difficulty level (car
detection).

In order to compare the performance between our structure and the basic network SECOND
[18] more intuitively, the training detection results on the KITTI verification set with 3D and BEV are
shown in Figure 7. As shown in Figure 7, the 3D detection performance of 3D-GIoU significantly
outperformed that of SECOND [18], although the BEV detection performance was not visually
different from SECOND [18].

Additionally, we can see from Figure 7 that the AP of our architecture was significantly lower
than SECOND [18] at the beginning of training. However, after training about 15 epochs, the
performance of our network reached the level of SECOND [18] with both of 3D and BEV, and then

Figure 6. The AP of different methods on KITTI validation set with the different difficulty level (car
detection).

In order to compare the performance between our structure and the basic network SECOND [18]
more intuitively, the training detection results on the KITTI verification set with 3D and BEV are
shown in Figure 7. As shown in Figure 7, the 3D detection performance of 3D-GIoU significantly
outperformed that of SECOND [18], although the BEV detection performance was not visually different
from SECOND [18].

Sensors 2019, 19, 4093 11 of 16

Sensors 2019, 19, x FOR PEER REVIEW 11 of 16

far exceeded SECOND [18]. Obviously, the results fully demonstrate that our structure is easier to
train.

(a) 3D (b) BEV

Figure 7. 3D-GIoU vs. SECOND for the detection performance of 3D and BEV evaluation on the KITTI
validation set across three difficulty levels (i.e., Easy, Moderate and Hard). In (a) and (b), the solid
line represents 3D-GIoU, while the dotted line represents SECOND.

5.4. Analysis of the Detection Results

Some detection results on the KITTI validation set of our network are shown in Figure 8. As
shown in the RGB images in Figure 6, 3D bounding boxes were also projected into corresponding
images of the point cloud, resulting in 2D bounding boxes and 3D bounding boxes on the image.

(a) Car

Figure 7. 3D-GIoU vs. SECOND for the detection performance of 3D and BEV evaluation on the KITTI
validation set across three difficulty levels (i.e., Easy, Moderate and Hard). In (a) and (b), the solid line
represents 3D-GIoU, while the dotted line represents SECOND.

Additionally, we can see from Figure 7 that the AP of our architecture was significantly lower than
SECOND [18] at the beginning of training. However, after training about 15 epochs, the performance
of our network reached the level of SECOND [18] with both of 3D and BEV, and then far exceeded
SECOND [18]. Obviously, the results fully demonstrate that our structure is easier to train.

5.4. Analysis of the Detection Results

Some detection results on the KITTI validation set of our network are shown in Figure 8. As
shown in the RGB images in Figure 6, 3D bounding boxes were also projected into corresponding
images of the point cloud, resulting in 2D bounding boxes and 3D bounding boxes on the image.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 16

far exceeded SECOND [18]. Obviously, the results fully demonstrate that our structure is easier to
train.

(a) 3D (b) BEV

Figure 7. 3D-GIoU vs. SECOND for the detection performance of 3D and BEV evaluation on the KITTI
validation set across three difficulty levels (i.e., Easy, Moderate and Hard). In (a) and (b), the solid
line represents 3D-GIoU, while the dotted line represents SECOND.

5.4. Analysis of the Detection Results

Some detection results on the KITTI validation set of our network are shown in Figure 8. As
shown in the RGB images in Figure 6, 3D bounding boxes were also projected into corresponding
images of the point cloud, resulting in 2D bounding boxes and 3D bounding boxes on the image.

(a) Car

 Figure 8. Cont.

Sensors 2019, 19, 4093 12 of 16
Sensors 2019, 19, x FOR PEER REVIEW 12 of 16

(b) Cyclist

(c) Pedestrian

Figure 8. Several 3D detection results on the KITTI validation set. In each RGB image, all the 2D and
3D bounding boxes represent the detection results. The digit and word beside each 2D box represent
the instance score and class. In the point clouds, teal 3D boxes indicate detection results, and 3D red
boxes represent ground truths.

5.4.1. Car Detection

The four images and the associated point clouds in Figure 8a are shown as typical car detection
examples. Whether it is a long- or close-distance car, our network can achieve superior detection
results, even if the available points belonging to a long-distance car are few. Furthermore, the
proposed network can successfully detect highly occluded cars, which is a great challenge task for
other networks. Consequently, these results show that the proposed network is suitable for 3D car
detection.

Figure 8. Several 3D detection results on the KITTI validation set. In each RGB image, all the 2D and
3D bounding boxes represent the detection results. The digit and word beside each 2D box represent
the instance score and class. In the point clouds, teal 3D boxes indicate detection results, and 3D red
boxes represent ground truths.

5.4.1. Car Detection

The four images and the associated point clouds in Figure 8a are shown as typical car detection
examples. Whether it is a long- or close-distance car, our network can achieve superior detection
results, even if the available points belonging to a long-distance car are few. Furthermore, the proposed
network can successfully detect highly occluded cars, which is a great challenge task for other networks.
Consequently, these results show that the proposed network is suitable for 3D car detection.

Sensors 2019, 19, 4093 13 of 16

5.4.2. Cyclist and Pedestrian Detection

The images and the associated point clouds in Figure 8b and c show the detection results of
cyclists and pedestrians, respectively. It is easy to find that there were more detection errors than cars.
The causes of these errors can be summarized into three points. Firstly, compared with cars, there were
relatively few instances of cyclists and pedestrians in the training set, which led to insufficient training
of the network. Secondly, the size of cyclists and pedestrians was smaller, that is to say, each instance
contained fewer points, which made it easier to confuse with other objects with similar size. Thirdly,
the positioning of the 3D bounding box of some successfully detected objects was not precise enough,
which was mainly reflected in the rotation angle. Therefore, how to filter out the unrelated points,
improve the object recall rate, and give more accurate 3D bounding box is a research focus of cyclist
and pedestrian detection.

5.5. Ablation Studies

To prove the effectiveness of the 3D GIoU loss and Backbone Network proposed in this paper, we
have done some ablation experiments on the KITTI validation set, and the results are summarized in
Table 3. In particular, Baseline 1 represents the corrected SECOND [18], which adds the 3D GIoU loss.
Correspondingly, Baseline 2 represents replacing the RPN in SECOND [18] with the RPN proposed in
this article, which is composed of the Backbone Network and the Header Network.

Table 3. 3D and BEV detection performance: AP (%) on the KITTI valuation set.

Method Method
Car Cyclist Pedestrian

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

3D

SECOND 85.99 75.51 68.25 80.47 57.02 55.79 56.99 50.22 43.59
Baseline 1 87.20 76.80 74.65 82.84 62.34 56.66 58.16 51.42 44.74
Baseline 2 87.62 77.37 75.53 83.89 64.27 62.75 59.37 52.42 49.78
3D-GIoU 87.83 77.91 75.55 83.32 64.69 63.51 67.23 59.58 52.69

BEV

SECOND 89.23 86.25 78.95 82.88 63.46 57.63 60.81 53.67 51.10
Baseline 1 89.99 86.82 86.03 84.83 64.56 58.55 62.34 59.35 52.70
Baseline 2 89.80 87.13 86.31 85.42 65.78 64.45 66.40 59.40 52.56
3D-GIoU 90.16 87.92 86.55 85.35 66.91 65.06 70.16 62.57 55.52

According to Table 3, we can make the following comparison and get the corresponding conclusion:

(1) Comparing Baseline 1 with SECOND [18], it is easy to find that the proposed 3D GIoU loss can
improve detection performance. In particular, the AP of the Hard level was increased by 6.4%.

(2) Comparing Baseline 2 with SECOND [18], we can find that the use of the proposed Backbone
Network improved the detection performance in Hard level by 7.28%.

(3) By comparing 3D-GIoU with Baseline 1, Baseline 2, and SECOND [18], it is not difficult to find
that when the 3D GIoU loss and Backbone Network are used simultaneously, the performance of
3D object detection is greatly improved.

6. Conclusions

In this paper, a Backbone Network and a 3D GIoU loss function are proposed for 3D object
detection in point cloud. Backbone Network can effectively combine detail texture features in low-level
feature maps with semantic features in high-level feature maps, and 3D GIoU loss can significantly
improve the localization accuracy of 3D box. A large number of experiments have been carried out on
the public KITTI benchmark, and our module has achieved excellent results, which fully demonstrate
that the proposed structure is suitable for 3D object detection in point cloud.

Author Contributions: Supervision, S.H.; Writing—original draft, J.X.; Writing—review & editing, Y.M. and J.Z.

Sensors 2019, 19, 4093 14 of 16

Funding: This work was supported by the National Natural Science Foundation of China (No. 61471371).

Acknowledgments: The authors would like to thank the support of the laboratory, university and government.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chao, M.; Yulan, G.; Yinjie, L.; Wei, A. Binary Volumetric Convolutional Neural Networks for 3-D Object
Recognition. IEEE Trans. Instrum. Meas. 2019, 68, 38–48.

2. Chao, M.; Yulan, G.; Jungang, Y.; Wei, A. Learning Multi-view Representation with LSTM for 3D Shape
Recognition and Retrieval. IEEE Trans. Multimed. 2019, 21, 1169–1182.

3. Ankit, K.; Ozan, I.; Peter, O.; Mohit, I.; James, B.; Ishaan, G.; Victor, Z.; Romain, P.; Richard, S. Ask Me
Anything Dynamic Memory Networks for Natural Language Processing. arXiv 2015, arXiv:1506.07285.

4. Alexis, C.; Holger, S.; Yann Le, C.; Loïc, B. Deep Convolutional Networks for Natural Language Processing.
arXiv 2018, arXiv:1805.09843.

5. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-View 3D Object Detection Network for Autonomous Driving.
In Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26
July 2017; Volume 1, pp. 1907–1915.

6. Chen, X.; Kundu, K.; Zhang, Z.; Ma, H.; Fidler, S.; Urtasun, R. Monocular 3d Object Detection for Autonomous
Driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las
Vegas, NV, USA, 26 June–1 July 2016; pp. 2147–2156.

7. Li, B.; Ouyang, W.; Sheng, L.; Zeng, X.; Wang, X. GS3D: An Efficient 3D Object Detection Framework for
Autonomous Driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Long beach, CA, USA, 15–21 June 2019; pp. 1019–1028.

8. Guan, P.; Ulrich, N. 3D Point Cloud Object Detection with Multi-View Convolutional Neural Network. In
Proceedings of the IEEE Conference on International Conference on Pattern Recognition (ICPR), Cancun,
Mexico, 4–8 December 2016; pp. 2040–2049.

9. Zeng, Y.; Hu, Y.; Liu, S.; Ye, J.; Han, Y.; Li, X.; Sun, N. RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point
Cloud for Autonomous Driving. IEEE Robot. Autom. Lett. 2018, 3, 3434–3440. [CrossRef]

10. François, P.; Francis, C.; Roland, S. A Review of Point Cloud Registration Algorithms for Mobile Robotics;
Foundations and Trends®in Robotics, Mike Casey: Boston, MA, USA, 2015; Volume 4, pp. 1–104.

11. Boyoon, J.; Sukhatme, G.S. Detecting Moving Objects Using a Single Camera on a Mobile Robot in an Outdoor
Environment. In Proceedings of the 8th Conference on Intelligent Autonomous Systems, Amsterdam, The
Netherlands, 10–13 March 2004; pp. 980–987.

12. Lavanya, S.; Nirvikar, L.; Dileep, K.Y. A Study of Challenging Issues on Video Surveillance System for Object
Detection. J. Basic Appl. Eng. Res. 2017, 4, 313–318.

13. Khan, M.; Jamil, A.; Zhihan, L.; Paolo, B.; Po, Y.; Sung, W. Efficient Deep CNN-Based Fire Detection and
Localization in Video Surveillance Applications. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1419–1434.

14. Cheng-bin, J.; Shengzhe, L.; Trung, D.D.; Hakil, K. Real-Time Human Action Recognition Using CNN
Over Temporal Images for Static Video Surveillance Cameras. In Advances in Multimedia Information
Processing—PCM 2015; Springer: Cham, Switzerland, 2015; pp. 330–339.

15. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum PointNets for 3D Object Detection from RGB-D Data.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 18–22 June 2018; pp. 918–927.

16. Kitti 3D Object Detection Benchmark Leader Board. Available online: http://www.cvlibs.net/datasets/kitti/
eval_object.php?obj_benchmark=3d (accessed on 28 April 2018).

17. Zhou, Y.; Tuzel, O. VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22
June 2018; pp. 4490–4499.

18. Yan, Y.; Mao, Y.; Li, B. SECOND: Sparsely Embedded Convolutional Detection. Sensors 2018, 18, 3337.
[CrossRef] [PubMed]

19. Simon, M.; Milz, S.; Amende, K.; Gross, H.M. Complex-YOLO: An Euler-Region-Proposal for Real-Time 3D
Object Detection on Point Clouds. In Proceedings of the European Conference on Computer Vision (ECCV),
Munich, Germany, 8–14 September 2018; pp. 197–209.

http://dx.doi.org/10.1109/LRA.2018.2852843
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
http://dx.doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196

Sensors 2019, 19, 4093 15 of 16

20. Hamid, R.; Nathan, T.; JunYoung, G.; Amir, S.; Ian, R.; Silvio, S. Generalized Intersection over Union: A
Metric and A Loss for Bounding Box Regression. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 658–666.

21. Yang, B.; Luo, W.; Urtasun, R. PIXOR: Real-time 3D Object Detection from Point Clouds. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 7652–7660.

22. Li, B.; Zhang, T.; Xia, T. Vehicle detection from 3D lidar using fully convolutional network. arXiv 2016,
arXiv:1608.07916.

23. Engelcke, M.; Rao, D.; Wang, D.Z.; Tong, C.H.; Posner, I. Vote3deep: Fast Object Detection in 3D Point Clouds
Using Efficient Convolutional Neural Networks. In Proceedings of the 2017 IEEE International Conference
on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 1355–1361.

24. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 77–85.

25. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Columbus, OH, USA, 24–27 June 2014; pp. 580–587.

26. Kiwoo, S.; Youngwook Paul, K.; Masayoshi, T. RoarNet: A Robust 3D Object Detection based on RegiOn
Approximation Refinement. arXiv 2018, arXiv:1811.03818.

27. Liu, W.; Ji, R.; Li, S. Towards 3D Object Detection with Bimodal Deep Boltzmann Machines over RGBD
Imagery. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Boston, MA, USA, 7–12 June 2015; pp. 3013–3021.

28. Zhuo, D.; Londin, J.L. Amodal Detection of 3D Objects: Inferring 3D Bounding Boxes from 2D Ones in
RGB-Depth Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5762–5770.

29. Qianhui, L.; Huifang, M.; Yue, W.; Li, T.; Rong, X. 3D-SSD: Learning Hierarchical Features from RGB-D
Images for Amodal 3D Object Detection. arXiv 2015, arXiv:1711.00238.

30. Song, S.; Xiao, J. Deep Sliding Shapes for Amodal 3D Object Detection in Rgb-d Images. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 808–816.

31. Ling, M.; Yang, B.; Wang, S.; Raquel, U. Deep Continuous Fusion for Multi-Sensor 3D Object Detection. In
Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 641–656.

32. Huitl, R.; Schroth, G.; Hilsenbeck, S.; Schweiger, F.; Steinbach, E. TUMindoor: An Extensive Image and
Point Cloud Dataset for Visual Indoor Localization and Mapping. In Proceedings of the IEEE International
Conference on Image Processing, Orlando, FL, USA, 30 September–3 October 2012.

33. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S. Joint 3D Proposal Generation and Object Detection
from View Aggregation. In Proceedings of the IEEE International Conference on Intelligent Robots and
Systems, Madrid, Spain, 1–5 October 2018; pp. 1–8.

34. Li, M.; Hu, Y.; Zhao, N.; Qian, Q. One-Stage Multi-Sensor Data Fusion Convolutional Neural Network for
3D Object Detection. Sensors 2019, 19, 1434. [CrossRef] [PubMed]

35. Xu, J.; Ma, Y.; He, S.; Zhu, J.; Xiao, Y.; Zhang, J. PVFE: Point-Voxel Feature Encoders for 3D Object Detection.
In Proceedings of the IEEE International Conference on Signal, Information and Data Processing, Chongqing,
China, 11–13 December 2019. accepted.

36. Lin, T.-Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of
the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2999–3007.

37. Everingham, M.L.; Van Gool, C.; Williams, K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes
(VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [CrossRef]

38. Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object
Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 936–944.

http://dx.doi.org/10.3390/s19061434
http://www.ncbi.nlm.nih.gov/pubmed/30909582
http://dx.doi.org/10.1007/s11263-009-0275-4

Sensors 2019, 19, 4093 16 of 16

39. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
40. Alex, H.; Sourabh, V.; Holger, C.; Zhou, L.; Jiong, Y.; Oscar, B. PointPillars: Fast Encoders for Object Detection

from Point Clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 12697–12705.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Monocular Image-Based Detection
	Point Cloud-Based Detection
	Multimodal Fusion-Based Detection

	Method
	Data Preprocessing
	Point-Voxel Feature Encoder
	Sparse Convolution Middle Layers
	Region Proposal Network

	Loss Function
	Classification Loss
	3D Bounding Box Regression Loss
	3D GIoU Loss

	Experiments
	Network Details
	Car Detection
	Cyclist and Pedestrian Detection

	Training
	Comparisons on the KITTI Validation Set
	Analysis of the Detection Results
	Car Detection
	Cyclist and Pedestrian Detection

	Ablation Studies

	Conclusions
	References

