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Abstract: With the development of wireless communication technology, cognitive radio needs to
solve the spectrum sensing problem of wideband wireless signals. Due to performance limitation of
electronic components, it is difficult to complete spectrum sensing of wideband wireless signals at
once. Therefore, it is required that the wideband wireless signal has to be split into a set of sub-bands
before the further signal processing. However, the sequence of sub-band perception has become
one of the important factors, which deeply-impact wideband spectrum sensing performance. In this
paper, we develop a novel approach for sub-band selection through the non-stationary multi-arm
bandit (NS-MAB) model. This approach is based on a well-known order optimal policy for NS-MAB
mode called discounted upper confidence bound (D-UCB) policy. In this paper, according to different
application requirements, various discount functions and exploration bonuses of D-UCB are designed,
which are taken as the parameters of the policy proposed in this paper. Our simulation result
demonstrates that the proposed policy can provide lower cumulative regret than other existing
state-of-the-art policies for sub-band selection of wideband spectrum sensing.

Keywords: sub-band selection; non-stationary multi-armed bandit; wideband spectrum sensing

1. Introduction

With the rapid development of internet of things and 5G technologies, wireless spectrum
resources are becoming scarcer. Cognitive radio, as a promising solution for efficient radio spectrum
utilization [1,2], meets many challenges, especially spectrum sensing technology [3], wideband
spectrum sensing is one of challenges. Various solutions have been proposed on wideband spectrum
sensing, such as the single-channel sub-Nyquist sampling algorithm [4] and compressed sensing [5].
Although compressed sensing is the most promising method, it is still difficult to solve the spectrum
sensing problem for wideband wireless signals when faced with noncontiguous bands, complex, and
changeable electromagnetic environment [6]. Therefore, the research on traditional wideband spectrum
sensing architecture is still meaningful: Segment the wideband spectrum into a set of sub-bands
according to the requirement of users, and then conduct spectrum sensing for a certain sub-band at
each time slot [7]. In the case of fixed spectrum sensing algorithm, how to determine the sensing
sequence of sub-bands is the main research content to improve the sensing ability of cognitive radio.

In the traditional wideband spectrum sensing architecture, the spectrum sensing method of
sub-band includes narrow band spectrum sensing algorithms and wide-band spectrum sensing
algorithms, so the spectrum sensing algorithm can be selected according to the application
requirements [8–10]. Sub-band selection problem is a kind of optimization problem, in the study
of spectrum sensing there are many optimization problems: Energy efficiency optimization [11],
sub-channel allocation optimization [11], and throughput balancing [1], so the sub-band selection
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problem can be modeled as a exploration and exploitation tradeoff problem as well as a spectrum
dynamic allocation problem [12].

Currently, multi-armed bandit (MAB) mode has been employed to analyze the spectrum dynamic
allocation problem. The dynamic rule, which is governing the selection of the machine to be played, is
called a policy, it is commonly denoted by π. The MAB problems can be divided into stationary MAB
problems and non-stationary MAB (NS-MAB) problems [13]. In this paper, due to the dynamic nature
of the primary user’s signals in sub-bands, the sub-band selection problem is generally modeled as
a NS-MAB problem. Much attention has been devoted to NS-MAB problems, and some policies have
been proposed, such as: Discounted upper confidence bound (D-UCB) policy and sliding window
upper confidence bound (SW-UCB) policy. To the author’s knowledge, because of the uncertainty of
the change, these policies have poor performance in solving the sub-band selection problem.

Therefore, we propose an optimized D-UCB (O-D-UCB) policy to improve the performance of the
decision strategy on sub-band selection by optimizing the discount factor and exploration bonus in
the D-UCB algorithm. According to multiple experimental results, it is shown that the performance
improvement of the policy proposed in this paper is verified. The main contributions of this paper are:

(1). Several new discount functions and exploration bonuses which have been designed for the
O-D-UCB policy;

(2). The effect of discount function and exploration bonus on the O-D-UCB policy
experimentally studied;

(3). An O-D-UCB policy for sub-band selection problems is proposed and its performance is compared
with other policies through simulation experiments.

The remainder of the paper is organized as follows. In Section 2, related works are reviewed.
In Section 3, the NS-MAB problem is modeled and analyzed, and we propose a policy based on
D-UCB in Section 4 a series of discount functions and exploration bonuses are employed. In Section 5,
we designed multiple experiments to verify the influence of different discount functions and exploration
bonus on D-UCB policies, and compare our policy with other policies. In Section 6, we briefly discuss
the experimental results. The paper is concluded in Section 7.

2. Related Works

The modeling of the exploration-exploitation tradeoff problem with MAB was originally proposed
in the context of drug testing in [14], and placed in a general setting in [15]. Since its inception, MAB
mode with various modifications has been studied, and the taxonomy of MAB modes is summarized
in Figure 1 which based on the reward model. In a stochastic MAB mode, the rewards are generated
from stochastic distributions, but in an adversarial MAB mode, the rewards are generated by a process
that cannot be treated as a stochastic distribution [16].
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2.1. Stochastic Stationary MAB

If the stochastic distributions of rewards are stationary, it will be a stationary MAB mode.
To address this question, many researchers have proposed a series of methods including: Randomized,
UCB-based, recency-based, and deterministic.

The simplest policy is randomized policy, the most typical of which is the greedy policy, the core
idea of the greedy policy is to selects the arm with the highest expected reward at a time. Hence there is
no exploration in the greedy policy. In order to balance exploration and exploitation, Watkins proposed
the ε-greedy policy [17], in which, explores has a probability of ε and exploits has a probability of
1-ε, where ε is close to zero. On this basis, several improvements of this policy appear: ε- f irst [18],
ε-decrease [19], greedy mix [20,21], and least taken [21]. Another randomized policy is soft-max policy
which was proposed by Luce in [22], and it is a variant of the ε-greedy policy. When exploring, instead
of randomly selecting the arm, the policy selects the arm with maximum probability which is calculated
by soft-max function. It can be transformed into decreasing soft-max policy [19] and EXP3 cluster
policies [23,24].

The UCB policy is the typical representation of UCB-based policies [25,26]. In this policy, we can
measure the potential optimal value by an upper confidence bound of the reward value (it also can be
called exploration bonus). In [26], a class of policies based on sample means and upper confidence
bounds were proposed, and the policy was further developed in [27] by improving a constant in the
UCB policy. Recently the KL-UCB policy [28] and Lin-UCB policy [29] were proposed to extend the
application scenario of MAB mode.

The recency-based policies and deterministic policies are mainly used in Markovian reward
environments, and the main representatives are the RBE policy [30], RBERC policy [12], and DSEE
policy [31]. In addition, there are other new policies for solving stochastic stationary MAB problems,
such as: [21,32–34].

2.2. Stochastic Non-Stationary MAB

If the stochastic distributions of rewards are not stationary, it will be a NS-MAB mode. Further,
we can divide it into smooth NS-MAB and abrupt NS-MAB which are based on whether the change of
rewards are continuous or not; the abrupt NS-MAB mode is widely used and studied.

NS-MAB mode is the extension of stationary MAB mode, and the NS-MAB mode is more realistic
in some scenarios. Following the distinction in [35], there are two main approaches to deal with
NS-MAB. One is the passively adaptive policy which is unawares the change of reward and updates its
decision just based on the observations. The other one is the actively adaptive policy which monitors
the environment for getting change points and updates their decision based on the change points.
ε− greedy policy is the simplest passively adaptive policy, and the EXP3.S policy is a variant of the
ε− greedy policy which can get better performance in NS-MAB problems [36]. In addition, there are
a number of UCB cluster policies for NS-MAB which are based on UCB policy of stationary MAB.

The discounted UCB (D-UCB) policies were proposed by Kocsis in [37], and other studies have
refined these policies [38,39]. The D-UCB policy averages past rewards with a discount factor which
gives more weight to recent plays. The sliding window UCB (SW-UCB) policy was also proposed
in [39] which relies on a local empirical average of the observed rewards, using only the last plays, τ.
Based on these, non-stationary recency-based exploration (NRBE) policy and windowed recency-based
exploration (WRBE) policy were proposed in [40], these polices are the combination of UCB and RBE.
Besides, the periodic version of the tuned UCB policy was proposed in [41] which regularly reset,
always, after a fixed number of sensing instances. The previous policies for MAB mode are summarized
in Table 1.
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Table 1. The summary of policies for MAB problems.

Stationary Independent Reward Non-stationary Independent Reward

Randomized
ε-greedy cluster

EXP3 cluster
Soft-max

ε-greedy cluster
EXP3.S

UCB-based
UCB

RUCB
KL-UCb

D-UCB
SW-UCB

NRBE
WRBE

Recency-based RBE
RBERC

Deterministic DSEE

Discounted upper confidence bound (D-UCB); sliding window upper confidence bound (SW-UCB); non-stationary
recency-based exploration (NRBE); and windowed recency-based exploration (WRBE).

3. System Model

3.1. NS-MAB Model

In this paper, we modeled the sub-band selection problem as an abrupt NS-MAB problem.

Definition 1. A NS-MAB problem is a tuple 〈K ,R〉 where:

• K = {1, 2, . . . ., K} is a set of arms;
• R := R(r

∣∣∣k, t) is an unknown probability distribution of reward r given the chosen arm k at time t,
where ∃k ∈ K , t1, t2 s.t. R(r

∣∣∣k, t1) , R(r
∣∣∣k, t2) .

We denote with t = {1, 2, . . . ., n} be the sequence of sense slots. The smaller the t value, the more
recent the samples are. Xk

t ∈ [0, 1] is the reward of arm k at slot t. The rewards
{
Xk

t

}
t≥1

of arm k
are modeled as a sequence of independent random variables from potentially different distributions
unknown to sensor node, and the expectation of reward is denoted by µt(k) = E

[
Xk

t

]
. We define the

optimal arms as i∗ = argmaxk∈Kµt(k), and the optimal reward is µt(i∗). In NS-MAB, there is not only
an optimal arm i∗ since the distributions change, so we denote i∗t to be the optimal arm of each time
step t. We define ∆ = (µt(i∗t) − µt(it)) as the difference in terms of expected reward which called is
regret, where it is the arm selected by policy in time step t.

Definition 2. The cumulative pseudo-regret of policy π on a NS-MAB problem is defined by Equation (1),
where the T is the size of time slot.

RT =
T∑

t=1

(µt(i∗t) − µt(it)) (1)

In the policy π, if the optimal arm is selected at each time slot, the cumulative pseudo-regret
will be zero: RT = 0; if the selected arm away from the optimal arm, the cumulative pseudo-regret
will be much greater than zero. Consequently, the cumulative pseudo-regret can reflect the quality of
the policy.

3.2. Sub-Band Selection Problem

We use the traditional wideband spectrum sensing architecture in this paper. We should segment
the spectrum into a set of sub-bands according to the requirement of users, and then conduct spectrum
sensing for a certain sub-band at each time slot, in the traditional sensing architecture. As we discussed
in the previous section, the sensing sequence of sub-bands is an important factor of sensing performance
of wideband spectrum sensing.
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In this paper, we mainly focused on the sub-band selection problem. We divide the wideband
signal into multiple sub-bands according to channel division, where each sub-band is a channel.
We assume that the wideband signal can be divided into Nb sub-bands (channels). In the absence of
prior knowledge of the channel (sub-band), assume that the channel obeys the binomial distribution.
In this model, there are two state of the channel: H0, meaning that only the noise (no primary user’s
signal) exists and H1, meaning that both the PU signal and the noise exist. We set that the value of
state H0 is zero (VH0 = 0) and the probability of state H0 is pH0 ; the value of state H1 is one (VH1 = 1)
and the probability of state H1 is pH1 , where pH0 + pH1 = 1. So, in the NS-MAB model, the channel can
be modeled as the arms, and the state of the channel can be modeled as the reward of the arm.

Definition 3. The reward of arms in the NS-MAB model is defined as the expectation of the binomial distribution
of channel:

Es = VH0 ∗ pH0 + VH1 ∗ pH1 = pH1 (2)

Because of the dynamic nature of the channel, the probability distribution of binomial distribution
may change over time. So in this paper, by analyzing the variation law of the channel state probability
distribution function, we summarize four typical scenarios: Scenario 1: The probability distribution
functions of all channels remain stable; scenario 2: Only one channel’s probability distribution function
changes, and the rest remain stable; scenario 3: The probability distribution function of multiple
channels changes simultaneously, and the others remain stable; scenario 4: The probability distribution
function of multiple channels changes at different times.

Among the four scenarios, scenario 1 is the simplest, and multiple assumptions are made on
the basis of the practical situation of electromagnetic environment. Scenario 4 is the most complex,
which is the most consistent with the practical situation of electromagnetic environment, and the
assumptions are the least. But these four scenarios need to make the following assumptions: When the
probability distribution function change, it will not change again in M time slot.

4. Methods

4.1. Algorithm

On the basis of D-UCB policies [12,39,40], it is optimized by adding discount function and
redesigning exploration reward to make it more suitable for the complex and changeable electromagnetic
environment. The optimized D-UCB policy is described in the Algorithm 1.

Algorithm 1 Optimized D-UCB (O-D-UCB) Algorithm

Input: Discount function( f (x)), exploration bonus (B(x)), and sampled data(Xk(s))
Output: The state of the channel perceived by the spectrum sensing algorithm (Cs)

1: Initialization, sense each band once.
2: for each t = K + 1, K + 2, · · · :
3: Set Uk(t) = Xk(t) + Bk(t);
4: Draw action it, it = argmaxUk(t)
5: Receive reward Xk(t) ∈ [0, 1]
6: for all k = 1, . . . , K set:
7: Xk(t) =

∑t
s=1 f (s)Xk(s)1is=k/Nk(t)

8: Nk(t) =
∑t

s=1 f (s)1is=k
9: Bk(t) = B(t)
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In Algorithm 1, the indicator function 1u obtains value 1 if u is true and otherwise 0. We can know
from Algorithm 1 that the core index of the O-D-UCB policy selection arm is Uk(t) which is composed
by Xk(t) and Bk(t), and it can be written as follows:

Uk(t) = Xk(t) + Bk(t) (3)

where Xk(t) is employed to estimate the exploitation by discounted averages, and Bk(t) is exploration
bonus which represents the exploration. The calculation expressions of Xk(t) and Bk(t) are shown
in the Algorithm 1 In [39], the power function is used as the discount function which described as
f (x) = γx, then the Xk(t) can be written as follows:

Xk(t) =
t∑

s=1

γt−sXk
t 1is=i/

t∑
s=1

γt−s1is=i (4)

The exploration bonus in [39] is shown as follows, where Nk(t) =
∑t

s=1 γ
t−s1is=i and ξ is the

bias parameter:

Bk(t) = 2B

√√√
ξ(log

K∑
i=1

Ni(t))/Nk(t) (5)

4.2. Parameters

4.2.1. Discount Function

The discount function is designed to weight data; the recent samples have higher weight and
more representatives of changes in the distribution of reward. Based on this, the monotonic decreasing
function can be designed as a discount function of O-D-UCB policy. Therefore, we designed a variety
of discount functions; the O-D-UCB policy can choose the appropriate discount function according to
different application scenarios.

The exponential function can be used to design a discount function whose expression is f (x) = γx.
The base of exponential function determines the properties of the exponential function. If 0 < γ < 1,
it is a concave function with monotonic decreasing; when γ > 1, it is a concave function with monotonic
increasing, and if γ is bigger or smaller than 1, the curve is going to be very steep, the value of the
function is going to change dramatically. Therefore, when the exponential function is used as the
discount function, the base (γ) should be close to 1, otherwise the historical samples cannot be fully
utilized, as in [39], the base (γ) is set as γ = 0.9982.

Besides, we can design a discount function based on a power function and the expression of
the power function is f (x) = xa. Similar to the exponential function, the exponent (a) determines
the properties of power function. If 0 < a < 1, it is a monotony increase by degrees convex function,
when a > 1, it is a monotony increase by degrees concave function, and when a = 1, it is a linear
function, and the function curves with different exponents is described in Figure 2.

As we can know from Figure 2, the power function is monotonic increasing function, which is
inconsistent with the monotonic decreasing function of discount function. Therefore, when using
it to design discount function, we need to redesign the variables of power function. In this paper,
we modified the expression of the power function, and it is shown as follows:

f (x) = ((N − x)/N)a (6)

In addition, window function can also be used to design discount function. Such as the SW-UCB
policy which is proposed in [39], only the τ most recent samples are considered in computing its
mean reward. The rectangle window employed by [39], seeing from another angle, it is another type
of discount function. It means that the weight of the τ most recent samples is 1 and the weight of
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remaining samples is 0, and the expression is shown in (7). Therefore, we can adjust the window
function to design different discount functions for the O-D-UCB policy.

Rτ(x) =
{

1, 0 < x < τ;
0, x > τ.
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Many window functions are proposed in the process of filter design. By analyzing the characteristics
of various window functions, we designed the discount function based on the Hanning window.
The expression of the improved Hanning window function is described as follows:

f (x) = (1 + cos(pi ∗ x/N))/2 (8)

In this paper, six discount functions are designed by the above three types of functions with
different parameters. The function curves and expressions are shown in Figure 3.Sensors 2018, 18, x FOR PEER REVIEW  8 of 18 
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When verifying the impact of the discount function on the performance of the policy, we should
fix the exploration bonus; the expression of the exploration bonus is shown in Equation (5). Based on
the discount functions shown in Figure 3, we designed six different D-UCB policies.

We set that the UCB-E stands for traditional D-UCB policy using exponential function as discount
function; the UCB-L means that the discount function of the D-UCB policy is a linear function
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(the exponent of the power function is 1); the UCB-P-1/3 indicates that the discount function of the
D-UCB policy is a power function with an exponent of 1/3; the UCB-P-3 represents the discount
function of the D-UCB policy as a power function with an exponent of 3; the D-UCB policy with the
improved Hanning window as its discount function is called UCB-W-H; and the UCB-W-R policy is
a D-UCB policy with the discount function is rectangular window.

The correspondence between the abbreviation of policy and the discount function expression is
as shown in the Table 2. Different discount functions reflect the degree of utilization of the sample
by the policy; in different application scenarios, policy needs to have different degrees of utilization
of the samples. Therefore, we need to determine the discount function that best fits the application
requirements before the simulation experiments.

Table 2. The correspondence between the abbreviation of policy and the discount function expression.

Abbreviation of Policy Discount Function Expression

UCB-E y = 0.9982x

UCB-L y = (N − x)/N

UCB-P-1/3 y = ((N − x)/N)1/3

UCB-P-3 y = ((N − x)/N)3

UCB-W-H y = (1 + cos(pi*x/N))/2

UCB-W-R y = R(x)

4.2.2. Exploration Bonus

The exploration bonus is designed to promote the sensing of channel which has not sensed
for a long time. By analyzing the characteristics of different exploration bonus under stationary
condition, it was found that those exploration bonuses are generally designed with the average reward
of the arm as the independent variable, and they are generally concave functions with monotonic
decreasing. This is also supported by intuition: When the average reward difference of arms is small,
it is necessary to increase the exploration bonus fast in order to find the optimal arms; when the average
reward difference of arms is large, the exploration bonus should be slowed down in order to inhibit
excessive exploration.

In non-stationary problems, the exploration bonus should be modified to ensure that explored
the optimal channel at once when the rewards change. In general case, the exploration bonus
of non-stationary reward can be written as Equation (5), where the parameter ξ can be adjusted
by requirements.

Here, we introduce another exploration bonus to solve NS-MAB problems, while it performs well
in stationary conditions which is shown as follows:

B(x) = ξ
√

var(x)/Nk(t) (9)

where var(x) = Xk(t)(1−Xk(t)) = Xk(t)−Xk(t)
2 is the statistical variance of each arm reward, ξ is the

bias parameter, it is noted that ξ = 1.96 through theoretical analysis in stationary conditions [42].
In non-stationary conditions, since the sample values are weighted, the bias parameters should be
adjusted with discount functions.

The exploration bonus based on statistical variance is also supported by intuition: When the
variance of arm reward is large, it means that the arm has not been fully explored and further
exploration is needed. When the variance of arm reward is small, it means that the arm has been fully
explored and no more exploration is needed.
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It is the same with discount function that we should fix the discount function when studying the
impact of exploration bonus on policy performance. In this paper, we fix the discount function as:

f (x) = γx (10)

where γ = 0.9982. Based on the previous research, we designed two kinds of exploration bonus during
the experiment. EB-a represents the exploration bonus based on the traditional D-UCB policy, and its
expression is Equation (5); EB-b represents the exploration bonus based on statistic variance, and its
expression is Equation (9).

Different exploration bonus represents the degree to which sensing strategies attach importance to
exploration, and also reflect the balance between exploitation and exploration of strategies. Therefore,
it is necessary to choose the exploration bonus reasonably. When the rewards of arms change frequently,
the intensity of exploration should be increased; otherwise, the exploration effort should be reduced.

In this paper, in order to get the best performance, we should design experiments to find the
optimal exploration bonus before the simulation experiments.

5. Experiments

In this paper, we adopt the traditional wideband spectrum sensing architecture, and we assumed
that the sub-band spectrum sensing method as shown in literature [10] which is based on
multi-resolution singular spectrum entropy; the sub-band selection algorithm which is proposed in
this paper was used to determine the sub-band sequence. Therefore, each sub-band has the same false
alarm rate and detection probability, the efficiency of wideband spectrum sensing mainly decided by
the sub-band selection algorithm. In this section, we evaluate the O-D-UCB policy and compare with
other policies which are employed to address sub-band selection problems. The detailed experimental
setup and numerous quantitative analysis as well as visualization are also presented.

5.1. Datasets and Settings

For better modeling and analysis of the electromagnetic environment, the following assumptions
were made during the simulation experiments. Firstly, the action of the policy has no effect on the
reward change of per arm. Secondly, when the reward change, it will be not change again in M time
slots, in this paper, we assume that M = 5000, it means that the probability distribution of reward will
be stable for at least 5000 time slots. Then, the channels of wideband are independent channels; channel
states do not affect each other. Lastly, the distributions of reward for arms are Bernoulli distributions,
and it is independent identically distributed in time. Besides, we set the parameters of simulation data:
Data size N = 50,000, the number of arms K = 5.

Based on this, according to the analysis of the variation law of the channel state probability
distribution function, four data sets are designed based on the proposed four scenarios. Dataset a:
Scenario 1 (stable scenario, Figure 4a); dataset b: Scenario 2 (scenario with one channel changes,
Figure 4b); dataset c: Scenario 3 (scenario with multi arms change synchronized, Figure 4c) and dataset
d: Scenario 4 (scenario with multi arms change out of synchronized, Figure 4d). In the rest of the paper,
we use dataset a, dataset b, dataset c, and dataset d to represent different test scenarios respectively.

As can be seen from Figure 4, in dataset a, the rewards of arms do not change and there is only one
optimal arm in the whole time; in dataset b, there is only one arm changes its reward and the optimal
arm changes over time, the reward of arm five changes three times, and the optimal arm changes
tree times; in dataset c, there are multi arms change at the same time, the reward distribution of four
arms changed, these changes occurred at four moments which leads to the optimal arm changes four
times; and in dataset d, there are multi arms change out of sync, only arm two remained unchanged
throughout the simulation, and the remaining arms changed at six moments, resulting in the optimal
arm changes five times. This is summarized in Table 3. During the simulation experiment, we selected
the accumulative pseudo-regret and the optimal arm utilization rate as performance indicators.
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Table 3. The characteristics of datasets.

Datasets The Number of Change Points The Number of Optimal Arm Change

dataset a 0 0
dataset b 3 3
dataset c 4 4
dataset a 6 5

5.2. Parameters Selection

In this paper, as the parameters of the policy, we designed a variety of discount functions and
exploration bonuses, so that the O-D-UCB policy can be adapted to different applications, such as
sub-band selection, advertising recommendation. In order to study the performance of the O-D-UCB
policy in the sub-band selection problem, we designed two sets of experiments to determine the most
appropriate discount function and exploration bonus.

5.2.1. Impact of Discount Function

The first set of experiments is used to determine the discount function. The O-D-UCB policies
with different discount functions and the traditional exploration bonus are run in dataset b which is
a typical scenario of the sub-band selection problem, and the results are shown in Figures 5 and 6.

From Figure 5, it is clear that the UCB-P-3 policy has the best performance and the UCB-W-H
policy has the worst performance. In additional, the performance gap between each policy is obvious,
and the order of performance is: UCB-P-3 > UCB-L > UCB-P-1/3 > UCB-E > UCB-W-R > UCB-W-H.
Then, the performances of UCB-E policy and UCB-W-R policy are stable, cumulative regret value
is accumulated with a fixed slope. Furthermore, the cumulative regret value will increase with the
increase of change points, and it will have a significant increase near the change point in generally,
except UCB-E policy and UCB-W-R policy.

As we can see from Figure 6, after the start of the experiment, with the continuous exploration,
the optimal arm utilization rate rapidly increases; when a certain stage is explored, the optimal arm
utilization remains stable, and the exploration and exploitation reach a stable balance. With the arrival
of the change point, the optimal arm utilization rate drops rapidly, but remain stable again soon.
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Therefore, in addition to the optimal arm rate can be used as a performance indicator, the change
of the optimal arm utilization rate near the change point is also an important manifestation of the
performance for the policies.

We can see from Figure 6 that the optimal arm utilization rate of the UCB-P-3 policy is the highest
throughout the experiment, especially after multiple change points. In additional, the optimal arm
utilization rate of UCB-E policy and UCB-W-R policy remain at about 70% and 60%. Then, near the
change point, the optimal arm utilization rate of the UCB-W-H policy fluctuate the most, followed
by the UCB-W-H policy, and the least volatile is the UCB-P-3 algorithm. Finally, the optimal arm
utilization of UCB-W-H policy will be difficult to remain stable, with the increasing of change points.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 18 

 

policy in the sub-band selection problem, we designed two sets of experiments to determine the 

most appropriate discount function and exploration bonus. 

5.2.1. Impact of Discount Function 

The first set of experiments is used to determine the discount function. The O-D-UCB policies 

with different discount functions and the traditional exploration bonus are run in dataset b which is a 

typical scenario of the sub-band selection problem, and the results are shown in Figures 5 and 6. 

 

Figure 5. The cumulative regret for the O-D-UCB policies with different discount functions in  

dataset b. 

From Figure 5, it is clear that the UCB-P-3 policy has the best performance and the UCB-W-H 

policy has the worst performance. In additional, the performance gap between each policy is 

obvious, and the order of performance is: UCB-P-3 > UCB-L > UCB-P-1/3 > UCB-E > UCB-W-R > 

UCB-W-H. Then, the performances of UCB-E policy and UCB-W-R policy are stable, cumulative 

regret value is accumulated with a fixed slope. Furthermore, the cumulative regret value will 

increase with the increase of change points, and it will have a significant increase near the change 

point in generally, except UCB-E policy and UCB-W-R policy. 

 

Figure 6. The optimal arm utilization rate for the O-D-UCB policies with different discount functions 

in dataset b. 

As we can see from Figure 6, after the start of the experiment, with the continuous exploration, 

the optimal arm utilization rate rapidly increases; when a certain stage is explored, the optimal arm 

utilization remains stable, and the exploration and exploitation reach a stable balance. With the 

arrival of the change point, the optimal arm utilization rate drops rapidly, but remain stable again 

soon. Therefore, in addition to the optimal arm rate can be used as a performance indicator, the 

Figure 5. The cumulative regret for the O-D-UCB policies with different discount functions in dataset b.

Sensors 2018, 18, x FOR PEER REVIEW  11 of 18 

 

policy in the sub-band selection problem, we designed two sets of experiments to determine the 

most appropriate discount function and exploration bonus. 

5.2.1. Impact of Discount Function 

The first set of experiments is used to determine the discount function. The O-D-UCB policies 

with different discount functions and the traditional exploration bonus are run in dataset b which is a 

typical scenario of the sub-band selection problem, and the results are shown in Figures 5 and 6. 

 

Figure 5. The cumulative regret for the O-D-UCB policies with different discount functions in  

dataset b. 

From Figure 5, it is clear that the UCB-P-3 policy has the best performance and the UCB-W-H 

policy has the worst performance. In additional, the performance gap between each policy is 

obvious, and the order of performance is: UCB-P-3 > UCB-L > UCB-P-1/3 > UCB-E > UCB-W-R > 

UCB-W-H. Then, the performances of UCB-E policy and UCB-W-R policy are stable, cumulative 

regret value is accumulated with a fixed slope. Furthermore, the cumulative regret value will 

increase with the increase of change points, and it will have a significant increase near the change 

point in generally, except UCB-E policy and UCB-W-R policy. 

 

Figure 6. The optimal arm utilization rate for the O-D-UCB policies with different discount functions 

in dataset b. 

As we can see from Figure 6, after the start of the experiment, with the continuous exploration, 

the optimal arm utilization rate rapidly increases; when a certain stage is explored, the optimal arm 

utilization remains stable, and the exploration and exploitation reach a stable balance. With the 

arrival of the change point, the optimal arm utilization rate drops rapidly, but remain stable again 

soon. Therefore, in addition to the optimal arm rate can be used as a performance indicator, the 

Figure 6. The optimal arm utilization rate for the O-D-UCB policies with different discount functions
in dataset b.

5.2.2. Impact of Exploration Bonus

The second set of experiments is used to determine the exploration bonus. The O-D-UCB policies
with different exploration bonus are run in dataset b and the discount function is exponential function
which described in Table 2. The simulation results are shown in Figures 7 and 8.

It is obvious from Figure 7 that the cumulative regret values of the O-D-UCB policy with the EB-b
is significantly less, but it grows rapidly near change point. In addition, the cumulative regret value
curve of D-UCB with EB-a can be fitted as a straight line with steady rise, and it does not fluctuate
obviously with the increase of change points.

It is obviously in Figure 8, the optimal arm utilization rate of D-UCB policy with EB-a remains
stable and stable at around 70%, while that of D-UCB policy with EB-b fluctuates with change points.
The fluctuation range at some change points is large, and the optimal arm utilization rate will continue
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to rise until it is stable after decreasing. Although the optimal arm utilization rate is fluctuating, in the
case of D-UCB policy with EB-b, it is still higher than that of D-UCB policy with EB-a.
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5.2.3. Comparison

Through the above experiments, we find the optimal parameter combination of the O-D-UCB
policy for sub-band selection problem, the discount function should be the power function with an
exponent of three, whose expression is (11); and the exploration bonus should be the bonus based on
the statistic variance, whose expression is (12). Therefore, the core expression of the O-D-UCB policy is
shown in Table 4.

f (x) = ((N − x)/N)3 (11)

B(x) =
√
(Xk(t) −Xk(t)

2)/Nk(t) (12)

Table 4. D-UCB and O-D-UCB corresponding quantities.

D-UCB Policy O-D-UCB Policy

Uk(t) := Xk(t) + Bk(t) Uk(t) := Xk(t) + Bk(t)

Xk(t) =
∑t

s=1 γ
t−sXk

s 1is=i/Nk(t) Xk(t) =
∑t

s=1 ((N − s)/N)3Xk
s 1is=i/Nk(t)

Nk(t) =
∑t

s=1 γ
t−s1is=i Nk(t) =

∑t
s=1 ((N − s)/N)31is=i

Bk(t) = 2B
√
ξ log(

∑K
j=1 N j(t))/Nk(t) Bk(t) =

√
(Xk(t) −Xk(t)

2)/Nk(t)
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In the simulation experiments, we compare the proposed optimal D-UCB policy against five
other non-stationary policies: NRBE [40], WRBE [40], EXP3.S [23], SW-UCB [39], and D-UCB [39].
The parameter values for NRBE (using the notation in [40]) are γ = 0.98 and ñ = 1700, for WRBE
the parameters are W = 800. Using the notation in [23] the parameters for the EXP3.S policy are
α = 0.00005 and γ = 0.0658. The parameter values for SW-UCB which using the notation in [39] are
τ = 1780 and ξ = 0.6, for D-UCB the parameters are γ = 0.9982 and ξ = 0.15.

The performance of the O-D-UCB policy with other policies in different data sets is shown in the
Figures 9 and 10.
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Figure 9. The cumulative regret of each policy under different datasets. (a) describes dataset a.
(b) describes dataset b. (c) describes dataset c. (d) describes dataset d.
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As shown in Figure 9, in dataset a (Figure 9a), the policy with the lowest cumulative regret is
the WRBE policy, but the gap of cumulative regret between each policy is not large except the EXP3.S
policy. In non-stationary scenarios (Figure 9b–d), the policy with the lowest cumulative regret is the
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O-D-UCB policy, except in dataset c (Figure 9c). In dataset c (Figure 9c), the D-UCB policy has the
lowest cumulative regret, but the performance gap with the O-D-UCB policy is small. In all data sets,
the performance of the D-UCB algorithm remains stable; after the simulation time, the accumulated
regret value is stable at around 250. EXP3.S has the worst performance in all data sets. When there is
a change point, the optimal D-UCB policy can converge quickly at each data set, and some policies
cannot converge at some data set. When the change point number is small, the NRBE and WRBE
policies can converge quickly, as the change point increases, the convergence period is significantly
longer, and the convergence value increases significantly, in the end, it does not converge at the dataset
c (Figure 9c) and dataset d (Figure 9d).

We can get from Figure 10, in the stationary scenario (Figure 10a), the optimal arm usage of
O-D-UCB policy and WRBE policy can reach more than 90%, and the NRBE policy can maintained
near 85%, the D-UCB policy is maintained at around 75%, and the SW-UCB policy is slightly higher
than 50%, EXP3.S is lowest, it only reached 20%. In all non-stationary scenarios (Figure 10b–d), the
optimal arm usage of D-UCB policy is kept at around 75%, while the O-D-UCB policy can reach 80%
or more in the dataset b and dataset d, and in dataset c (Figure 10c), the fluctuation range is large,
resulting in a lower optimal arm usage rate. In Figure 10, a more interesting phenomenon is that the
optimal arm usage of the EXP3.S policy is kept at around 20% in all data sets, which is the same as the
probability of randomly selecting the optimal arm.

6. Discussion

6.1. Parameters

The discount function represents the use of historical samples by the policy; the exploration bonus
represents the tradeoff of the exploration and exploitation. In order to get better performance, these
two parameters need to be properly matched according to the application requirements. Such as the
discount function y = ((N − x/N)3 which we selected in this paper has a higher degree of utilization of
recent samples and a lower degree of utilization of historical samples. The other discount function
y = ((N − x/N)1/3 is different, it has a high degree of utilization for all samples, but the samples at the
beginning of the experiment (Figure 3). It can be seen that these two discount functions are adapted to
different application scenarios: The discount function y = ((N − x/N)3 is adapted to a scene where the
change is frequent, and the policy only needs to consider the recent samples; the discount function
y = ((N − x/N)1/3 is adapted to a scene with little change, and the policy need to consider all of the
historical samples. Therefore, the discount function y = ((N − x/N)3 is suitable for sub-band selection
problem, this is the same choice of the experiments (Figures 4 and 5).

6.2. Performance

It can be seen from Figures 9 and 10 that the O-D-UCB policy which proposed in this paper
can obtain a better sub-band sensing sequence in a dynamic environment by comparing with other
commonly used policies [23,39,40] in different data sets through simulation experiment, especially in
dataset b and dataset d. In dataset c, the performance of the O-D-UCB policy is slightly lower than that
of the D-UCB policy.

Here, we focus on the reasons for the performance degradation of the policy in dataset c. Before
the first change point, since exploration and exploitation form stability, the optimal arm is the mostly
used, and the worst arm is rarely chosen. When the change occurs, the original optimal arm becomes
the worst arm, and the original worst arm becomes the optimal arm. It is difficult to find the optimal
arm after the change in a short time, therefore, after the first change point, the optimal arm usage rate
drops rapidly and it is difficult to stabilize. In this instance, the second change point swaps the optimal
arm and the worst arm, so after the second change point, the optimal arm usage rate rises sharply and
the third change point does not change the position of the optimal arm. Therefore, there is no influence
on the trend of the optimal arm usage rate. At the fourth change point, the optimal arm becomes the
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second worst arm, and the second worst arm becomes the optimal arm. So, the optimal D-UCB policy
takes a long time to find the optimal arm and the optimal arm usage rate drops rapidly.

According to the above analysis, we need to increase the exploration of the policy so that the
policy can quickly find the optimal arm in the dramatic change.

6.3. Cost

Since the policy proposed in this paper is based on the traditional D-UCB policy, so we only
analyzed the cost of D-UCB policy and the O-D-UCB policy, the core calculation expressions of two
policies are described in the Table 4. We can know that the computation complexity of exponential
function is O(2n), where n is the simulation time slot; and the computation complexity of power
function is O(n3), where n is the simulation time slot. So we can get that the computation complexity of
exploitation function of these two policies is respectively O(2n) and O(n3): T(Xk(t)

∣∣∣D−UCB) = O(2n) ,
T(Xk(t)

∣∣∣optimizedD−UCB) = O(n3) . On this basis, we further analyze the computational complexity
of exploration reward, for D-UCB policy, the computation complexity of exploration reward is:
T(Bk(t)) =

∑K
j=1 O(2n) = K ∗O(2n) = O(2n); the computation complexity of exploration reward

for O-D-UCB policy is: T(Bk(t)) = O(n3) ∗O(n3) = O(n6). The computation complexity of these
two policies is the sum of the complexity of the exploitation function and exploration reward.
So the computation complexity of D-UCB policy is: T(Uk(t)) = T(Xk(t)) + T(Bk(t)) = O(2n);
the computation complexity of O-D-UCB policy is: T(Uk(t)) = T(Xk(t))+T(Bk(t)) = O(n3)+O(n6) =

O(n6). We can get that the computation complexity of the O-D-UCB policy is smaller than D-UCB
policy (O(n6) < O(2n)), which are summarized in Table 5.

Table 5. The computation complexity of D-UCB policy and O-D-UCB policy.

Computation Complexity D-UCB Policy O-D-UCB Policy

T(Xk(t)) O(2n) O(n3)

T(Bk(t)) O(2n) O(n6)

T(Uk(t)) T(Xk(t)) + T(Bk(t)) = O(2n) T(Xk(t)) + T(Bk(t)) = O(n6)

7. Conclusions

In this paper, we propose an O-D-UCB policy for NS-MAB model for sub-band selection problem
of wideband spectrum sensing. Through multiple experiments, the optimal discount function and
exploration bonus of D-UCB policy were found. Based on this, we refine the parameters in the O-D-UCB
policy for sub-band selection problem. Extensive experiments on four data sets indicate that the
O-D-UCB policy is effective and efficient enough for sub-band selection problems, especially in the
high dynamic electromagnetic environment. Furthermore, the O-D-UCB policy is adequate to NS-MAB
model when there is no prior knowledge of the reward of each arm. However, we only studied the
design methods of discount function and exploration bonus from experiment. It is also indicated
that the O-D-UCB policy can improve the decision performance of the NS-MAB problems, but the
theoretical basis of the policy will be left as further open research. Besides, in future research, we also
need to solve the problem of performance improvement in the scene with the rewards of multi arms
change synchronized.
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