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Abstract: Earth observation sensors continually provide datasets with different spectral and spatial 
characteristics, while a series of pre- and postprocessing techniques are needed for calibration 
purposes. Nowadays, a variety of satellite images have become accessible to researchers, while big 
data cloud platforms allow them to deal with an extensive number of datasets. However, there is 
still difficulty related to these sensors meeting specific needs and challenges such as those of cultural 
heritage and supporting archaeological research world-wide. The harmonization and synergistic 
use of different sensors can be used in order to maximize the impact of earth observation sensors 
and enhance their benefit to the scientific community. In this direction, the Committee on Earth 
Observation Satellites (CEOS) has proposed the concept of virtual constellations, which is defined 
as “a coordinated set of space and/or ground segment capabilities from different partners that 
focuses on observing a particular parameter or set of parameters of the Earth system”. This paper 
provides an overview of existing and future earth observation sensors, the various levels of 
interoperability as proposed by Wulder et al., and presents some preliminary results from the 
Thessalian plain in Greece using integrated optical and radar Sentinel images. The potential for 
archaeolandscape studies using virtual constellations is discussed here. 

Keywords: virtual constellations; remote sensing archaeology; optical sensors; radar sensors; fusion; 
heritage management 

 

1. Introduction 

Nowadays, a variety of satellite images with different spatial, temporal, and radiometric 
resolutions are available due to the recent advancements of earth observation [1]. However, despite 
the increasing availability of space-borne sensors, research is sometimes restricted by the mismatch 
observed between the individual sensors’ characteristics in regards to their resolutions. Since each 
sensor operates in a specific wavelength range, and it is sensitive to specific environmental 
conditions, the acquisition of all the required information cannot be performed by a single sensor [2]. 

Optical and radar satellite sensors have been widely applied to support archaeological 
investigations all around the world. Optical images are used to detect archaeological proxies of 
subsurface remains [3,4] and to monitor landscapes from natural [5] and anthropogenic hazards, 
including looting marks [6,7]. Optical image analysis takes advantage of the visible (400–700 nm) and 
near-infrared part of the spectrum (750–900 nm), while recent studies in the short wavelength 
infrared part of the spectrum (1500–2300 nm) can also be found [8]. The use of radar spaceborne 
imagery has shown a significant increase in the last decade, mainly due to the advancement of the 
spatial and temporal resolution of sensors such as those provided via COSMO-SkyMed, TerraSAR-
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X, and Sentinel-1 missions [9,10]. Radar images are currently exploited for detecting land movements 
and landslides in the vicinity of archaeological sites and monuments [11], while the potential use of 
high-resolution radar sensors for detecting looting areas has been reported in the past [12]. Few 
publications in regards to the detection of archaeological proxies can be also found [13]. A general 
overview of the trend observed in the last years in the field of earth observation for archaeological 
research can be found in the works of [14] and [15]. 

While it is essential to capitalize on the capacity of existing sensors and to understand potential 
synergies between them, the concurrent exploitation of radar and spaceborne optical sensors for 
archaeological research is still limited. In an attempt to expand the scope of space-based Earth system 
science so as to meet the needs of particular research domains [16], the Committee on Earth 
Observation Satellites (CEOS) has proposed the concept of virtual, space-based constellations [17]. 
Virtual constellations are a set of actions aiming to coordinate space and/or ground segment 
capabilities from different partners related to the Earth system. As [16] argue, “[virtual constellations] 
are formalized systems, designed to address specific scientific and operational information needs. 
They involve not only sensors and measurements, but also data policies and archives”. Virtual 
constellations of planned and existing satellite sensors can help to overcome current limitations in 
research by combining existing space observations [16]. 

The integration of space sensors in various research studies can maximize the outcomes and 
support future research, going thus a step further than the processing of individual datasets. This 
paper aims to present the concept of virtual earth observation constellations for cultural heritage and 
archaeological research. The proposed concept is built upon the original work carried out by the 
Committee on Earth Observation Satellites (CEOS), which formulated the concept of virtual 
constellations, which was then extended by Wulder et al. [16]. Although fusion and integration 
analysis of various remote sensing datasets have been reported in the past for archaeological research 
(see for instance [2,18–23], the concept of virtual constellations, proposed by CEOS is more than 
complementary observations. It is a framework for synergistic and coordinated use of earth 
observation sensors to increase the data availability, minimizing “unnecessary redundancy and 
costs” [16]. The opportunities raised by such an approach are discussed in this paper. 

2. CEOS Virtual Constellations Concept 

Virtual constellations are defined as “a coordinated set of space and/or ground segment 
capabilities from different partners that focus on observing a particular parameter or set of 
parameters of the Earth system” [17]. Virtual constellations are built upon interagency collaboration 
and partnerships aiming to “address observational gaps, sustain the routine collection of critical 
observations, and minimize duplication/overlaps…” [17]. The mission of virtual constellations is to 
promote the efficient, effective, and comprehensive collection, distribution, improve monitoring, 
assessment, predictive capabilities, and application of space-based image data of specific domains. 
Until now, seven virtual constellations have been formed, namely the Atmospheric Composition 
(AC-VC); the Land Surface Imaging (LSI-VC); the Ocean Colour Radiometry (OCR-VC); the Ocean 
Surface Topography (OST-VC); the Ocean Surface Vector Wind (OSVW-VC); the Precipitation (P-
VC), and the Sea Surface Temperature (SST-VC). Each of these VCs are dealing with a specific area 
of interest, aiming to implement novel strategies and data collection methods. It should be mentioned 
that these virtual constellations are based on the close collaboration of the various space agencies 
dealing with various aspects such as data calibration and validation, merging of satellite and in-situ 
data, product generation, as well as development and demonstration of new and improved 
applications.  

The need for such collaborations is evident by the variety of missions and instruments available 
today in the domain of earth observation. Based on the statistics of the CEOS Database [24], more 
than 35 earth observation agencies are active around the world in more than 25 different 
countries/regions. These agencies are responsible for nearly 500 earth observation operated or 
approved missions and up to 560 earth observation instruments (Figure 1). 
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Figure 1. Earth observation operated or approved missions and instruments per agency (data from 
CEOS Database, [24]). 

Although the CEOS dataset is indicative, a closer look into the dataset and putting aside 
observation missions that are usually out of the scope of the archaeological science (e.g., 
meteorological sensors), indicates a variety of existing and forthcoming sensors which can provide 
valuable information for heritage applications, such as those providing optical high-resolution 
multispectral and hyperspectral images. These high-resolution sensors can acquire submeter 
resolution optical data. However, the spectral resolution of these sensors is limited to the visible and 
near-infrared part of the spectrum (see Table 1). A critical attribute of these datasets is access rights 
and availability of the images. Some high spatial resolution optical and hyperspectral images are 
currently characterized as “Constrained Access” or “Very Constrained Access”, which prohibits and 
constrains the scientific exploitation of these datasets. These restrictions, which result in the 
nonavailability of the satellite images for scientific applications, may limit the potential of exploiting 
space sensors for better understanding of the environment. Under the prism of data restrictions, the 
concept of Virtual Constellations is becoming even more imperative: instead of waiting for any future 
declassification of restricted datasets, the scientific community may focus on the development of new 
strategies regarding integration of satellite spaceborne datasets. The virtual constellation concept 
involves the accessibility not only of future datasets, but also for imagery archives. 

Table 1. Details of current and future of earth observation instruments providing high-resolution 
optical data (source: CEOS Database, [24]). 

Instrument Sort and Full Name  Agencies/Country 
Instrumen
t Status* 

Wavel
ength 

Resolution 
(m) 

Data 
Access** 

AEISS—Advanced Electronic Image 
Scanning System 

KARI/Korea  
(ASTRIUM/Europe)  

O 
VIS, 
NIR 

Pan: 0.7 m 
VNIR: 2.8 m 

VCA 

AEISS-A—Advanced Electronic Image 
Scanning System-A 

KARI/Korea 
(ASTRIUM/Europe) 

O 
VIS, 
NIR, 

MWIR 

Pan: 0.7 m 
VNIR: 2.8 m 

IR: 5.5 m 
VCA 

AEISS-HR—Advanced Electronic Image 
Scanning System-High Resolution 

KARI/Korea 
(KAI)  

F 
VIS, 
NIR 

Pan: 0.5 m, 
VNIR: 2 m 

VCA 
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APAN—Advanced PAN ISRO/India F VIS 1.25 CA 

ASTER—Advanced Spaceborne Thermal 
Emission and Reflection Radiometer 

METI/India 
(NASA)/USA 

O 

VIS, 
NIR, 

SWIR, 
TIR 

VNIR: 15 m 
SWIR: 30 m 
TIR: 90 m 

OA 

ATCOR—Atmospheric correction ISRO/India F 
VIS, 
NIR 

240 m CA 

CARBONITE-1 Imager UKSA/UK O VIS 1.5 m VCA 

CARBONITE-2 Imager UKSA/UK O VIS 1.2 m VCA 

CCD (HJ) CAST/China O 
VIS, 
NIR 

30 m OA 

Event Imaging Spectrometer from GEO 
(GeoCape) 

NASA/USA F VIS 250 m  OA 

Geoton-L1 
ROSKOSMOS/Russi

a 
O 

VIS, 
NIR 

1 m; 3 m CA 

High Resolution Optical Sensor KARI/Korea F 
VIS, 
NIR 

1m VCA 

HiRI—High-Resolution Imager CNES/France O 
VIS, 
NIR 

0.70 m OA 

LISS-III—Linear Imaging Self Scanner III 
(Resourcesat) 

ISRO/India O 
VIS, 
NIR, 
SWIR 

23.5 m OA 

LISS-IV ISRO/India O 
VIS, 
NIR 

5.8 m CA 

LISS-V—Linear Imaging Self Scanner – IV ISRO/India F VIS 2.5 CA 

MSC—Multi-Spectral Camera KARI/Korea O 
VIS, 
NIR 

Pan: 1 m  
VIS-NIR: 4 m 

VCA 

MSI—Multi Spectral Imager DLR/Germany O 
VIS, 
NIR 

6.5 m OA 

MSI (Sentinel-2)—Multi-Spectral Instrument 
ESA/Europe  

(COM/Europe) 
O 

VIS, 
SWIR 

10/20 m  OA 

MSS—Multispectral imaging system 

ROSKOSMOS/Russi
a 

(ROSHYDROMET/R
ussia) 

O 
VIS, 
NIR 

12 m CA 

MUX (SJ-9A)—Multispectral CCD Camera CRESDA/China O 
VIS, 
NIR 

10 m OA 

MX (HRSAT)—Multispectral HR VNIR ISRO/India F VIS 1.9 m CA 

NigeriaSat 2 Remote Sensing—Med and 
High Res 

NASRDA/Nigeria O 
VIS, 
NIR 

Pan: 2.5 m 
MS: 5/32 m  

 

OEK VR—Multispectral optoelectronic high-
resolution module 

ROSKOSMOS/Russi
a 

F 
VIS, 
NIR 

Pan: 0.4 m  
MS: 1.6 m 

CA 

PAN (BJ-2)—Panchromatic Imager NRSCC/China O VIS 1 m   

PAN (Cartosat-1)—Panchromatic Camera 
ISRO/India 

O VIS 2.5 m CA 

PAN (Cartosat-2)—Panchromatic Camera 
ISRO/India 

O VIS 1 m VCA 

PAN (Cartosat-2A/2B)—Panchromatic 
Camera 

ISRO/India 
O VIS 1 m VCA 

PAN (Cartosat-2E)—Panchromatic Camera  
ISRO/India 

O VIS 0.65 m VCA 
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PAN (Cartosat-3)—Panchromatic sensor 
ISRO/India 

F VIS 0.25 m VCA 

PAN (CBERS)—Panchromatic and 
Multispectral Imager 

CAST/China O 
VIS, 
NIR 

Pan: 5 m   
MS: 10 m  

OA 

GF-1/PMS -Panchromatic and multispectral 
imager 

CRESDA/China O 
VIS, 
NIR 

Pan: 5 m 
MS: 10 m  

OA 

GF-2/PMS—Panchromatic and multispectral 
imager 

CRESDA/China O 
VIS, 
NIR 

Pan: 5 m  
MS: 10 m  

OA 

PAN (GISTDA)—Panchromatic imager GISTDA/Thailand O VIS 2 m CA 

PAN (HRSAT)—Panchromatic Camera ISRO/India F VIS 1 m CA 

PAN (SJ-9A)—Panchromatic and 
multispectral imager 

CRESDA/China 
O 

VIS, 
NIR 

2.5 m OA 

PAN (ZY-1-02C)—Panchromatic and 
multispectral imager 

CRESDA/China 
O 

VIS, 
NIR 

Pan: 5 m 
MS: 10 m  

VCA 

PAN CAMERA—Panchromatic Camera ASI/Italy F VIS 5 m CA 

PAN THEOS-2 (GISTDA)—Panchromatic 
imager THEOS-2 

GISTDA/Thailand O VIS 2 m CA 

PAN+MS (RGB+NIR)—Ingenio PAN+MS  
CDTI/Spain  

(ESA/Europe) 
F 

VIS, 
NIR 

Pan: 2.5 m  
MS: 10 m 

CA 

PSS—Panchromatic imaging system 

ROSKOSMOS/Russi
a 

(ROSHYDROMET/R
ussia) 

O 
VIS, 
NIR 

2.5 m CA 

VHRI-100—Very High-Resolution Imager 
100 

UKSA/UK O 
VIS, 
NIR 

Pan: 1.0 m 
MS: 4.0 m 

CA 

WPM—Wide Swath Panchromatic and 
Multispectral Camera 

CAST/China F 
VIS, 
NIR 

Pan: 2 m 
MS: 8 m  

OA 

* O: Operational, F: Future 
** VCA: Very Constrained Access; CA: Constrained Access; OA: Open Access  

As recorded in the CEOS Database [24], the variety of existing and forthcoming sensors for 
specific categories will continue to grow in the future. For instance, for the domain of landscape 
topography (for supporting land surface heights measurements, e.g., DEMs), 75 different sensors will 
provide continuous satellite data until 2036. The list includes 31 active sensors and 44 new sensors 
which have already been approved (Figure 2). Given these numbers and the trend observed 
regarding space growth, supported by various national and international space agencies, the concept 
of the virtual constellation is timely. Synergies between the various space-borne sensors can be 
developed, including also future earth observation sensors. This close collaboration can eventually 
fill gaps in terms of the spectral, spatial, and temporal windows.  
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Figure 2. Earth observation sensors (current and future) supporting landscape topography studies 
(data from CEOS Database, [24]). 

Even if initially the concept of virtual constellations was focused on earth observation sensors 
that share similar spatial, spectral, temporal, and radiometric characteristics, this was later extended 
by Wulder et al. [16]. In that study [16] virtual constellations “include sensors that are principally 
incompatible, because they are fundamentally different (for instance active versus passive remote 
sensing systems), but their combination is necessary and beneficial to achieve a specific monitoring 
goal.” Additionally, Wulder et al. [16] proposed three application readiness levels (ARL), based on 
the levels of interoperability of the various datasets, as follow (for more details see [16]):  

(a) the first level (ARL-1) combines earth observation sensors whose data are incompatible 
because the measurements are based on different principles, such as the case of optical and radar 
sensors; 

(b) the second level (ARL-2) aims to combine earth observation sensors that share the same 
principle (e.g., optical sensors) but the sensors have different characteristics (e.g., different 
spatial/spectral resolutions), and  

(c) the third level (ARL-3) aims to combine sensors that share the same principle and share 
similar spatial and spectral characteristics (e.g., the case of Landsat 5 TM and Landsat 7 ETM+).  

It is evident from the above that the combination of sensors at level 1 (ARL-1) is more 
complicated and difficult, while processing datasets of level 3 (ARL-3) requires minimal efforts. 
Examples of the various Application Readiness Levels (ARL-1 to 3) for environmental applications 
and terrestrial-monitoring can be found in the work of Wulder et al. [16].  

3. Virtual Constellations in Archaeological Research 

As mentioned before, in the domain of cultural heritage, earth observation has made a significant 
contribution, especially towards heritage preservation and management. While the exploitation of 
single or multisource earth observation datasets has been presented in the past (see for instance [25–
27]), the synergistic use of such datasets is still limited. Given the spatial, spectral, and temporal 
resolution limitations of single-space sensors, the virtual constellation concept can improve these 
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characteristics [17,28] to provide more information in a systematic way for monitoring archaeological 
sites and landscapes.  

The free of charge and open access policy followed by NASA and ESA is a unique opportunity 
for researchers to explore in depth the synergistic use of space-borne datasets. The high temporal 
resolution revisits of Sentinel-1 and Sentinel-2 images—provided by the ESA—give the opportunity 
for researchers to process almost concurrent optical and radar images taken over archaeological areas 
of interest. In the following section, we present some potential benefits of level ARL-1 at the 
archaeological landscape of the Thessalian plain in Greece.  

3.1. Area of Interest 

The Thessalian plain comprises a distinct geographical region in central Greece. At the northern 
part of the plain, there are the Antihasia and Olympus mountains while Orthis and Pindos mountain 
ranges can be found in the southern and western part of the plain. On the east, the plain ends up 
towards the Aegean sea. The specific area has attracted the interest of archaeologists since the 
beginning of the twentieth century. At this region, several Neolithic settlements/tells called magoules 
were established from the Early Neolithic period until the Bronze Age (6000–3000 BC) (Figure 3).  

The first systematic archaeological studies of the area were performed in 1906, while the first 
report regarding field surveys results was only published in 1980 [29]. More recently, through the 
study of Vouzaxakis [29] and Alexakis et al. [30,31], several magoules have been geolocated using 
global navigation satellite systems (GNSS) and documented with in-situ observations and foot 
surveys. The overall synthesis of these studies, which cover an area approximately of 13,500 square 
kilometers, has reported more than 320 archaeological sites. Some of the Neolithic settlements are 
nowadays visible in the Thessalian plain as low mounds a few meters high, and they mainly consist 
of loam and mud-based materials. However, due to the agricultural pressure in the area (the 
Thessalian plain is considered the primary agricultural region of Greece), and the use of heavy 
agricultural machinery, most the magoules have been flattened, thus making their in-situ detection 
difficult.  

The discovery of these magoules can, however, be achieved using remote sensing technologies. 
Indeed, the use of spaceborne optical sensors has been investigated in the past with relative success, 
indicating cropmarks which are considered as archaeological proxies of these Neolithic settlements 
of the area [32,33]. These archaeological proxies tend to give a different spectral signature of the crops 
cultivated on top of the magoules, compared to the rest surrounding the agricultural area as a result 
of the subsurface remains. 

  
Figure 3. Photo from the magoula Zerelia (left) and Almyros II (right) (photos from A. Agapiou). 

3.2. Data Description and Methodology 

For the needs of the study, we obtained Sentinel-1 and Sentinel-2 images over the area of interest. 
The Sentinel images were downloaded using the Sentinel Hub [34] cloud platform, which combines 
a complete archive of the Sentinel-1 and Sentinel-2 sensors. Specifically, a Sentinel-2 image with an 
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acquisition date of 10th of March 2019 and a Sentinel-1 image with an acquisition date of 8th of March 
2019 were downloaded from the Sentinel Hub. The specific acquisition period was selected since this 
was reported in the literature as the optimum time-window for monitoring cropmarks in the Eastern 
Mediterranean [35]. 

The Sentinel Hub provides Sentinel-1 data acquired in interferometric wide swath (IW) mode, 
with a 250 km swath, processed to Level-1 ground range detected (GRD) at resolution of 10 m, 
orthorectified at VV intensity (vertical transmit and vertical receive) and VH intensity (vertical 
transmit and horizontal receive) polarization (Figure 8a and 8b, respectively). Besides, the Sentinel 
Hub provides optical Sentinel-2 data processed to two levels: L1C (orthorectified Top-Of-
Atmosphere reflectance) and L2A (orthorectified Bottom-Of-Atmosphere reflectance) with spatial 
resolution of 10 m, 20 m, and 60 m, depending on the wavelength. The spatial resolution of these 
datasets is considered adequate for the needs of the current study, as the average diameter of the 
magoules is approximately 100 m. 

Based on the reflectance values of the optical Sentinel-2 image, the normalized difference 
vegetation index (NDVI) [36], the normalized archaeological index (NAI) [37], the normalized 
difference water index (NDWI) [38], and the normalized difference moisture index (NDMI) [39] have 
been calculated following Equations 1–4. The optical products of Sentinel-2 are shown in Figures 8c 
to 8f. 

𝑁𝐷𝑉𝐼 = 𝜌𝐵𝑎𝑛𝑑 8 − 𝜌𝐵𝑎𝑛𝑑 4𝜌𝐵𝑎𝑛𝑑 8 + 𝜌𝐵𝑎𝑛𝑑 4  (1) 

𝑁𝐴𝐼 = (𝜌  − 𝜌  )(𝜌  + 𝜌  ) (2) 

𝑁𝐷𝑊𝐼 = (𝜌  − 𝜌  )(𝜌  + 𝜌  ) (3) 

𝑁𝐷𝑀𝐼 = (𝜌  − 𝜌  )(𝜌  + 𝜌  ) (4) 

 
Figure 4. Sentinel-1A over the Thessalian plain acquired at 8 March 2019: (a) VH polarization image; 
(b) VV polarization image. Sentinel-2A L2A over the Thessalian plain acquired at 10 March 2019: (c) 
NDVI image; (d) NAI image; (e) NDWI image and (f) NDMI image. The distribution of the Neolithic 
settlements in the area is shown in (g). 
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The two optical and four radar products, namely the VV and VH intensity polarization and the 
optical indices NDVI, NAI, NDWI, and NDMI, were grouped into a new multiband image for further 
processing. It should be mentioned that the radiometric range of all bands was within a range scale 
from −1 to + 1. Then, a random selection of 60% of the geolocated magoules was extracted from the 
archaeological geo-database. Based on this subset and the multiband image, the properties of each 
site were estimated, providing the distinctive signature of the site in regards to the VV, VH, NDVI, 
NAI, NDWI, and NDMI bands. Afterward, a one-class classification processing was followed based 
on the mean signature of all sites and spectral angle mapper (SAM) as the classifier algorithm. A 
threshold of 0.05 of the SAM angle was defined. The outcome of this process was a binary 
classification image with values of 0 and 1. Value 1 indicated areas (pixels) that share similar 
signature properties as those of the selected sites, while the 0 value indicated unclassified areas. 

The random 60% extraction and classification analysis was repeated ten times to examine the 
robustness of the overall analysis. All binary classifications results were summed up and masked 
using the NDVI index. The latest was used so as to exclude nonvegetated areas such as urban areas 
and water bodies (threshold value >0.3). The overall outcomes of the analysis were evaluated and 
compared using the existing geodatabase (known magoules). The results were quantified using zonal 
statistics (mean values), while a prediction map was also produced. The methodology diagram is 
depicted in Figure 5. 

Radar image
(Sentinel 1)

Optical image
(Sentinel 2)

NDVI
NAI

NDWI
Moisture Index

VV polarization
VH polarization

Layer 
stack

Location of existing 
archaeological sites - points

 (geo-database)

Random extraction 
of 60% of the 

archaeological sites

Site 
signature

One-class 
classification

(SAM)

Binary 
classification 

(0 -1)

10 iterations

SUM of all binary 
classifications Zonal statistics Prediction map EvaluationNDVI mask < 0.3 to 

be ignored
 

Figure 5. The overall methodology for the prediction map and evaluation at the Thessalian plain. 

3.3. Data Analysis 

The overall one-class classification rate detection results after the ten iterations are shown in 
Table 2. The minimum number of detections is zero (nondetected in any of the iterations carried out) 
while the maximum number of detections is ten (equal to all number of iterations). As shown in the 
table, only eight sites out of 329 (equal to 2.43%) were nondetected from the classification process. 
Approximately 15% (52 sites) were detected less than two times, and another 25% of sites (84 sites) 
were detected less than four times. In total, approximately 44% of the sites were detected less than 
four times out of the ten of the classification process. In contrast, the rest of the sites (56%) were 
detected more than six times. The geographical distribution of the detection rate is shown in Figure 
6. Red dots indicate the nondetected sites after the ten iterations of the SAM classification process, 
while the radius of the rest of sites is related to the total number of detections. 

Table 2. Overall results from the evaluation report. 

Description Total Number % Cumulative % 
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Nondetected sites 8 2.43 2.43 
Sites detected less than 2 times 52 15.81 18.24 
Sites detected less than 4 times 84 25.53 43.77 
Sites detected less than 6 times 179 54.41 98.18 

Sites detected more than 6 times 6 1.82 100.00 

 
Figure 6. Geographical distribution of the total detections from one-class classification (max = 10: total 
number of iterations, min = 0: nondetected). 

Based on the outcomes of the one-class classification analysis, a prediction map was generated, 
as shown in Figure 7. Areas sharing a similar profile with the randomly selected sites were considered 
as areas with a high likelihood of archaeological evidence more than six times out of ten in the 
classification process, while grey areas share moderated likelihood values. Given the limited 
numbers of satellite images used in the study, as well as the extensive area of interest, this prediction 
map should be taken with great caution and be compared with the existing archaeological visibility 
of the area. However, like any prediction map in archaeological science, this kind of analysis can 
support initial steps of landscape research, aiming to visualize the context of an area before any other 
targeted investigation (e.g., acquisition of high-resolution images, foot surveys, and geophysical 
prospections) is conducted. 
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Figure 7. Prediction maps based on the one-class classification. 

4. Discussion 

Previous results have demonstrated the potential use of integrated optical and radar satellite 
images for remote sensing archaeological investigations in the area of Thessaly. While the analysis is 
based on a limited number of images (one optical and one radar), the overall results show that more 
of the half-sites (>50%) could be detected following a supervised one-class classification analysis. Of 
course, difficulties still occur since some sites were not detected, and others were detected only in 
some of the classification results, which can be explained due to the heterogeneous individual 
characteristics of the sites. 

Although the use of medium resolution freely distributed datasets has the potential to assist 
towards the detection of new archaeological sites, critical aspects need to be taken into consideration, 
for instance, the spatial resolution of such datasets. In the case of the Thessalian plain, the use of such 
images was feasible mainly due to the vast extent of the magoules (100 m diameter). However, the 
medium resolution does not provide the highest level of accuracy compared to the high-resolution 
sensors. 

However, while high-resolution images with submeter spatial analysis can provide more detail 
regarding the archaeological area of interest as shown in several examples in the past [40,41], the use 
of medium freely distributed datasets should not be overlooked. On the contrary, the exploitation of 
these datasets should be seen as a complementary source of information for supporting large scale 
archaeological investigations, such as the case of the Thessalian Plain, and are possibly able to unlock 
new research avenues of future multitemporal archaeological investigations. While the synergistic 
use of optical and radar images is still in its infancy, it is considered promising [4]. Of course, the 
virtual constellation concept is not restricted to freely distributed images such as those of Sentinel 1 
and Sentinel 2, but it also includes commercial images (either optical or radar), which in combination 
can support archaeological investigations. Big data earth processing cloud platforms which can 
support large scale and extensive datasets of observations are considered as essential aspects to 
support similar future investigations [42,43]. 

5. Conclusions 
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New developments of earth observation sensors and the development of advanced image 
processing are some fundamental changes observed in the last years in the field. Due to the variety 
of sensors available today as well as the variety of space agencies dealing with satellite missions and 
instruments, the CEOS has proposed a conceptual framework where these could be used together for 
the benefit of the scientific community by providing harmonized data, filling observation gaps, and 
improving monitoring, etc. This concept has been lately extended by [16], aiming to include other 
types of sensors which are incompatible between them as in the case of active and passive space-
based sensors. 

This framework allows researchers to explore new ways of fusion, better integration, and 
understanding of the environment that is essential for various scientific domains. This framework 
could also support heritage management and archaeological prospection, thus maximizing the 
benefit of space sensors in specific domains. This integration is not an easy task, but it could fill gaps 
observed using established methods. As the results have shown, difficulties still exist and thus further 
research is needed. At the same time, efforts for integrating historical data (satellite and aerial), which 
are essential to better understand landscape changes, are also needed. 

Virtual constellation requires the systematic efforts of the scientific community as well as space 
agency authorities towards the integration of various types of sensors for archaeological research. 
Therefore, the virtual constellation concept can be the framework for this effort as this has been 
already implemented with success in other scientific fields. From the experience and work of other 
ongoing constellations [16], it is clear that the cultural heritage section needs to investigate various 
approaches for gap analyses and requirement assessments, building upon the existing VCs. The 
authors will continue to investigate how the synergistic use of radar and optical datasets (level ARL-
1) can be further exploited in a more systematic way. 
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