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Abstract: This paper presents the possibility of applying a soft polymer coating by means of a
layer-by-layer (LbL) technique to highly birefringent polymer optical fibers designed for laminating
in composite materials. In contrast to optical fibers made of pure silica glass, polymer optical fibers
are manufactured without a soft polymer coating. In typical sensor applications, the absence of a
buffer coating is an advantage. However, highly birefringent polymer optical fibers laminated in a
composite material are much more sensitive to temperature changes than polymer optical fibers in a
free space as a result of the thermal expansion of the composite material. To prevent this, we have
covered highly birefringent polymer optical fibers with a soft polymer coating of different thickness
and measured the temperature sensitivity of each solution. The results obtained show that the
undesired temperature sensitivity of the laminated optical fiber decreases as the thickness of the
coating layer increases.

Keywords: fiber optic sensors; polymer optical fibers; photonic crystal fibers; composite materials;
embedded sensors; layer-by-layer self-assembly

1. Introduction

Traditional metallic alloy parts can be replaced with great success by composite materials. Their
high strength, low weight, and cost effectiveness make them ideal candidates for manufacturing parts
to be used in aviation, marine, and windmill industries [1-3].

Mechanical properties of polymer composites critically depend on the lamination process.
Consequently, there is a strong need for the monitoring of polymer matrix curing in order to ensure
that it has been performed according to predefined requirements. The lamination process strongly
influences the final properties of a polymer composite, for example its glass transition temperature or
ultimate tensile strength. An ideal solution is in vivo monitoring of the lamination process to enable
the introduction of instantaneous corrections. This would be possible if, for instance, fiber optic sensors
are embedded directly in a composite material. However, fiber optic sensors are highly sensitive to
transverse deformations that arise during the production process of a composite material [4].

Polymerization is a chemical process that consists of the simple joining of multiple molecules
containing multiple bonds into a single macromolecular compound without any byproducts [5,6]. This
process can be initiated under the influence of visible light activation, chemical reaction, or temperature.
During polymer formation, we encounter the problem of polymerization shrinkage, which consists of
bringing the molecules closely together due to the Van der Waals forces.
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In the case of fiber optic sensors embedded in polymer composites, the situation is complex.
The displacement vectors are directed centrally to the lateral surface of the optical fiber (symmetrically
in the fiber cross section, similarly to the hydrostatic pressure) only when the reinforcement fibers are
arranged parallel to the optical fiber axis. However, if the reinforcement fibers form a two-dimensional
braided fabric (Figure 1), then the displacement vectors are asymmetrical, and mainly directed to the
surface of the layer. The optical fiber placed in the space between the two fabrics is then compressed.
The positioning of these fibers has a decisive effect on the type of deformation to which the laminated
optical fibers are exposed. The optical fiber placed in the space between two fabrics is then subjected
mainly to compressive stresses.

x50 2 mm

Figure 1. A typical arrangement of the optical fiber in a composite material.

During the lamination process, deformations in the laminated fibers arise due to polymerization
shrinkage. Such material contraction may, under the least favorable circumstances, completely change
the characteristics of the fiber optic sensor placed in it. A solution to the problem was used in the case
of optical fibers made of silica glass soft coatings which isolate the sensor from the transverse stresses
occurring in the material [7]. In our previous work [8], we studied the influence of thermal expansion
of composite materials on embedded polarimetric sensors. We found that a polarimetric fiber optic
sensor laminated in a composite material without any soft buffer coating was characterized by greater
temperature sensitivity than a sensor laminated with a soft buffer coating. Numerical calculations
presented in [9] show that a soft protective coating is able to absorb both stresses generated during the
lamination process and stresses created by the thermal expansion of a composite material.

However, it may also lead to deterioration of sensor parameters, as the optical fiber will not
register longitudinal deformation correctly, and will not function properly, due to the mismatch of
Young’s modulus between silica glass and soft polymer. The solution to this problem may be the
use of an optical fiber made of polymethyl methacrylate (PMMA) [10,11], thermoplastic cyclic olefin
copolymer (TOPAS®) [12], polycarbonate (PC) [13], or ZEONEX [14], whose Young’s moduli are
much better matched to the composite material [15]. PMMA is one of the most widely used optical
polymers for polymer optical fiber sensors [16]. In the case of lamination in composite materials, it is
necessary to apply an additional layer of soft coating which can effectively protect the optical fiber
from external stress. However, the standard polymer, photonic crystal fiber, has no acrylate coating
and is very sensitive to the stresses occurring in the composite material during temperature changes.
The deformations presented elsewhere [9] (Figure 2) indicate that small holes in the laminated fiber
were compressed towards to the fiber core. Additionally, the ellipticity of the core was reduced and
the diameter of the two big holes near the core decreased. These deformations of the structure were
different along both the x and y axes, since there is such a visible change in fiber geometry. Comparing
the sensitivity to the temperature of microstructured polymer optical fibers (mPOF) before and after
the lamination process [17], it should be noted that polymer optical fibers increased their thermal
sensitivity in a significant way. The reason for this is the polymerization shrinkage, which in an
uncontrolled way changes the birefringence of the mPOF laminate in polymer composites with a
two-dimensional structure created by the reinforcing fibers. During polymerization, this structure may
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strengthen or weaken the birefringence in laminated mPOF and, consequently, change the sensitivity
of this optical fiber to any deformation.

Figure 2. A picture of laminated microstructured polymer optical fiber (mPOF) manufactured by
Kiriama Pty Ltd. of Sydney, Australia (a) and a comparison between cross sections of polymer photonic
crystal fibers before (black ellipses) and after (red ellipses) the lamination process (b) [9].

Soft polymer coating can be performed by using a layer-by-layer (LbL) self-assembly process
involving electrostatic interaction. This almost 30-year-old deposition technique is an approach toward
a simple, controllable, and low cost fabrication of nanoscale films connected with functionalization
of planar or spherical surfaces. The basic principle is an alternating adsorption of charged materials
(polyelectrolytes, nanoparticles, etc.) onto an oppositely charged surface [18]. The most physicochemical
surface properties, such as thickness, elasticity, permeability, or reactivity, can be controlled by the
selection of polymers and modification of deposition parameters (ionic strength, pH value, etc.).
As reported in [19], the use of natural biopolymers (chitosan, alginate, hyaluronic acid, etc.) in a
multilayer build up leads to the formation of strongly hydrated and thick LbL films, giving better
protection from external mechanical stress factors. However, a thick multilayer film can also reduce
the sensing magnitude of an optical fiber embedded in a composite material, making them completely
useless. Hence, precise thickness control and selection of suitable polymers for optimal soft multilayered
film are required.

The LbL process is a self-limiting deposition process. This means that if this process is carried
out under the same conditions each time (with the same ion strength and pH after a defined time
of deposition, and for >15 min), it always yields the same and very reproducible layer thickness, of
nanometer accuracy on each point, independent of the structure of the object or the concentration
of the deposition material. Other methods, like chemical reaction on the surface, yield either an
extremely thin monomolecular layer, or, in the case of a chain reaction such as radical polymerization,
a hardly controllable thickness. Other methods, like dipping in a polymer solution or chemical
vapor deposition, are also difficult to control or inhomogeneous on the surface. Therefore, the LbL
method is very versatile and suitable for the homogeneous and controlled deposition of a number of
chemical compounds.

In this paper, the possibility of using mPOF with a soft polymer film for monitoring the degradation
of composite materials has been presented. In traditional applications, there is no need for the mPOF
to be covered with an additional layer of soft polymer, therefore during the lamination process they are
exposed to additional stresses that affect the mPOF parameters. In order to protect optical fibers from
polymerization shrinkage, we present the possibility of coating them with a soft polymer film by using
the LbL technology and show that protected mPOFs retain their properties after the lamination process.

2. Materials and Methods

In this research, we used a polymer polarization maintaining (PM) photonic crystal fiber
manufactured by Kiriama Pty Ltd. of Sydney, Australia. This mPOF is characterized by a 2.5 X 4.5 um
core diameter, 4.4 pm hole spacing, and 2.2 um and 4.5 um small and big hole diameters, respectively.
The core and cladding were made of PMMA, and were surrounded by a PC coating.
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2.1. Sample Fabrication

The soft polymer coating on the mPOFs was processed with thicknesses (6) of 100, 300,
and 500 nm using positively charged polysaccharide-chitosan (CHI) of low molecular weight
(Chitopharm-S, MW 50-100 kDa, Cognis, Monheim am Rhein, Germany), and negatively charged
synthetic polymer-poly(styrene sulphonate) (PSS) (MW 70 kDa, Sigma Aldrich, St. Louis, MI, USA).
A multilayer film was deposited directly onto the mPOFs at a pH of 5.6 (50 mM sodium acetate buffer)
in the presence of 200 mM NaCl by alternately immersing the substrate in polyelectrolyte solutions for
20 min. After the deposition of each layer, the mPOFs were washed three times in deionized water.
Finally, the LbL-coated mPOFs were dried under a nitrogen stream.

In principle, the thickness of the dry film could be measured by neutron scattering or electron
microscopy. However, the first method was not available, and the second requires an exact cutting
procedure of the fiber. Hence, the thickness of the CHI/PSS film was calculated using the values
obtained by Hatami et al. in [20].

The composite plate comprised eight fiberglass layers: two outer layers made of Interglass
92-100, and six inner layers made of Krosno STR-450. Two PM mPOFs were implemented into
the composite materials between the outer and inner layers. The dimensions of the sample were
255 x 42 x 2.5 mm. Both types of samples were prepared at the Faculty of Materials Science and
Engineering, Warsaw University of Technology.

A thermally conductive aluminum plate was used to make the heating area of three Peltier
modules uniform. The dimensions of the plate were 255 x 42 X 1 mm. The outer layer of the sample
was in contact with the plate.

2.2. Characterization Methods

Changes in polarization induced by temperature are measured with a polarimeter. A polarization
controller is used to set the state of polarization (SOP) [21,22] at the input to the polarimetric sensors.
This is done by changing the azimuth and ellipticity of the polarization at the controller. The initial
values are set in such a way that a maximum optical power is achieved at the input of the polarimeter.

The state of polarization at any time can be represented by three normalized Stokes vector
parameters. The Poincaré sphere is a tool used to graphically represent the transformations of the
polarization, where the Stokes parameters define a point on the sphere in a Cartesian, right-handed
coordinate system. The corresponding states of polarization are assigned to areas on the sphere.
In particular, longitudes represent the states of the same azimuth, while latitudes represent the same
ellipticity. Because any SOP is represented by a single point on the sphere, a continuous path on the
surface of the Poincaré sphere represents the continuous changes in the azimuth and ellipticity of the
polarization. If the path of the point is a full circle, then the phase shift is 27t. Hence, by evaluating the
data obtained from the Poincaré sphere, both the strain and temperature responses of a polarimetric
sensor can be acquired.

The experimental setup is shown in Figure 3. A 543 nm laser was used as an input source and
was launched with its polarization at a 45° angle with respect to the optical axis of the PM fiber, so that
the optical intensities of the two orthogonal polarizations were evenly distributed. The input angle
was controlled by using a polarizer and a half wave plate. A Thorlabs TXP 5004 polarimeter was used
to measure the temperature effects of the mPOF. A polarimeter provided information about the SOP of
the mPOF output, presented graphically as a trace on the Poincaré sphere. The temperature in the
experiment was changed continuously, whereas the induced phase shift for an applied temperature
change was calculated from the Poincaré sphere.
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Figure 3. Measurement setup in which P and A are the polarizer and analyzer, respectively.

3. Results

3.1. Numerical Calculations

The finite element method (FEM) is a commonly used tool for calculating equations and sets
of partial differential equations describing various aspects of mathematical physics. A solution is
obtained as a result of discretization of given area and boundary (initial) conditions, and defining
degrees of freedom (usually these are values of the sought function in the nodes of the discretized net,
e.g., components of the displacement vector, temperature, or electric field potential). The discretization
of the analyzed area consists of dividing into subareas, called finite elements, connected by nodes.

Nowadays, calculation packages allow advanced phenomena (static, dynamic, linear, or nonlinear
analyses) to be modeled, as well as work with complex constructions or materials (plating of aircrafts,
layered, or anisotropic materials). For the analysis presented further in this manuscript, we used
ANSYS v19.0 software.

The aim of the conducted simulations was to calculate the influence of polymer coating thickness
on the distribution of stresses in the fiber. Their occurrence is connected to the technological shrinkage
of a composite, which appears during the manufacturing process. The coating’s task is to level the
effects of the appearing stresses. For this analysis, we created the model of a fragment of a composite
with an embedded fiber. Four configurations of 6 were analyzed: 0 nm (no coating), 100 nm, 300 nm,
and 500 nm. The FEM model is presented in Figure 4.

Je

Owing to the local influence of the coating on the distribution of stress, the composite model
was limited to two layers. The fiber was placed between those layers. We also included the local
deformation of the composite due to the embedding of a fiber sensor in the models. The void created

Figure 4. The finite element method (FEM) model used in analysis.

in this way was filled with a resin.
Figures 5-7 present the geometry of the FEM models, along with the description of individual
elements. The diameter of the fiber was r = 125 um.
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Figure 5. Geometry of the models.

Coating

Resin

Composite
layers

Fiber

Figure 6. The scheme of all elements used in the analysis.

Figure 7. Zoom on the embedded fiber. All analyzed cases are presented.

The linear shrinkage of the resin during the cooling process was carried out by thermal expansion
of the material. The value of the thermal expansion coefficient for the resin was set at 0.00001 1/°C,
while for the other materials it was equal to 0. Thus, if a decrease in temperature by 100 °C is
assumed, the resin is subjected to shrinkage by 1%o. The remaining elements (layers of the composite,
coating, and fiber) were not deformed due to a change in temperature, but only due to mutual
influences. Supporting conditions were included so as to preserve the freedom and symmetry of the
model’s deformation.
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Due to the qualitative characteristics of the analysis, we decided to use the materials available
in the library of ANSYS software. For the composite material, we chose a composite fabric made of
carbon fiber. Its mechanical properties are presented in Table 1, whereas the mechanical properties
of the remaining materials used in the analysis are presented in Table 2. The definitions of the given
parameters are: E, Young’s modulus; v, Poisson’s ratio; G, shear stiffness; and o, expansion coefficient.
Figure 8 presents the radial stresses in the cylindrical coordinate system connected with the fiber.

Table 1. Mechanical properties of the composite.

E11(MPa) E22(MPa) E33(MPa) v12 v23 v13 Gl12(MPa) G23(MPa) GI13(MPa) «(1/°0)
61340 61340 6900 004 03 0.3 19500 2700 2700 0

Table 2. Mechanical properties of the remaining materials.

Resin Fiber Coating
E (MPa) 10 3000 3
v 0.35 0.345 0.3
a (1/°C) 0.00001 0 0

0086TAT Max
O0EE612
0.0a8477
D062
0046207
DL0SETT2
0045538
00485203
0045568
0,045533 Min

(CATE0G
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00&z308 (LI L]
NLE195T 0038806
0081607 Min 003BZTT Min

Figure 8. Radial stresses o obtained in the cross section of the fiber for all cases of the coating thickness
5. Units are in MPa. The increasing layer thickness causes a decrease in the radial stress.

The results of the conducted analyses indicate that radial stresses decrease with an increasing
thickness of the coating. This change is nearly linear, which can be observed in Figure 9.
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Figure 9. Radial stresses inside the fiber as a function of the coating thickness.

The numerical calculation shows that the distribution of stresses is nonuniform, but both maxima
and minima are not significantly different (for a 100 nm coating, the values change from 0.0455 MPa to
0.0467 MPa). This means that the shape of the cross section, which was initially circular, is slightly
deformed into an ellipse (Figure 2).

To calculate the two-dimensional stress distribution in the fiber, and the effect of strain on
light propagation, we used the values obtained in ANSYS analysis for simulations in COMSOL
Multiphysics® software (Comsol Ltd., Stockholm, Sweden), which is also based on the finite element
method. The use of the COMSOL software allowed us to calculate the point force and propagation
constants of the two confined modes under the influence of hydrostatic pressure. A comprehensive
description of this procedure can be found in our previous work [9]. A detailed numerical analysis
shows that the use of a buffer zone of submicrometer thickness allows for a significant reduction of an
undesirable impact of external factors on the optical fiber. Figure 10 shows how the birefringence of the
mPOF changed under the influence of a 1%o polymerization shrinkage if the thickness of the CHI/PSS
coating was modified. If the thickness & of the CHI/PSS film (characterized by a Young’s modulus of 3
MPa) was below 500 nm, then a significant decrease in the influence of the polymerization shrinkage
on the optical fiber was observed. However, for 6 higher than 500 nm, any additional decrease did
not occur.

0,6 x10™

04 |-

0,2 |

0'1 1 1 1 1 1
0 200 400 600 800 1000 1200

& (nm)

Figure 10. Numerical calculations of the birefringence change of an mPOF under the influence of a 1%o
polymerization shrinkage for soft coatings of different thickness.

3.2. Experimental Results

Firstly, the mPOF was placed in the composite material at different angles to the reinforcement
layers (0 and 90 ° presented in Figure 11). The observed change of birefringence under the influence
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of a temperature change (Table 3) was the strongest for optical fiber (a) and the smallest for optical
fiber (b) (Figure 12). This is due to the fact that the additional stresses induced during the lamination
process strengthened the birefringence of mPOF (a) and compensated for the birefringence of mPOF
(b). Both high and low birefringence change the phase of the propagating light under the influence of
a temperature change more or less adequately. In order to measure the effect of soft buffer coating,
all optical fibers should be placed at the same angle with respect to the reinforcement layers.

mPOF 1 l mPOF 2

Figure 11. Two orientation types of the mPOF fiber in a composite material.

Table 3. Measured temperature sensitivity of the laminated mPOF (rad/m x K).

Coating
Free Space  Radial = Horizontal No Coating 100 nm 300 nm 500 nm
2.09 7.85 1.26 8.38 6.28 4.19 3.14

-

(a) (b)

Figure 12. Phase shift observed in laminated mPOF oriented at 0° for AT =1 °C (a) and oriented at 90°
for AT =5 °C (b).

Figure 13 presents the experimental validation of the described numerical calculations. The phase
shift observed for uncoated fiber resulting from an increase in temperature around the laminated
fiber by 3 °C is presented on the Poincaré sphere as a full circle. When the thickness of the CHI/PSS
coating increases, the temperature sensitivity of the laminated photonic polymer optical fiber decreases.
The obtained results show that at 100 nm of the coating thickness, the phase shift for the temperature
change around the laminated fiber by 3 °C is presented on the Poincaré sphere as % of the full ring,
and the calculated temperature sensitivity of the laminated mPOF is equal to 6.28 (rad /m x K). Further
increasing § to 300 nm and 500 nm leads to a decrease in temperature sensitivity to 4.19 (rad/m x K)
and 3.14 (rad /m x K), respectively. The value observed at a coating thickness of 500 nm (Table 3) is
close to the temperature sensitivity stored in a free space. This result means that the birefringence of
the optical fiber changed to a negligible extent during the lamination process. Additionally, the coating
layer adequately protects the laminated fiber against the deformations of the composite material
resulting from thermal changes. The character of calculated stress changes (Figure 9) and birefringence
(Figure 10), as well the measured temperature sensitivity (Figure 14), show very high compatibility.
In all cases, increasing 4 above 500 nm shows a decrease in the dynamics of the effect of polymerization
shrinkage on the mPOF.
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(@) (b) (©)

acy

(d) (e)
Figure 13. Observed phase shift in mPOF for a temperature change from 21 °C to 24 °C in free space (a)

and phase shift in mPOF in a composite material for the same temperature variations with no coating
(b), with a 100 nm coating (c), with a 300 nm coating (d), and with a 500 nm coating (e).

co
T

Temperature sensitivity (rad/mxK)

0 200 400 600
& (nm)

Figure 14. Measured temperature sensitivity of the laminated mPOF as a function of the
coating thickness.

4. Conclusions

In this paper, the influence of temperature on the stress sensitivity of mPOF placed in the
composite material has been investigated and analyzed. As the ANSYS analysis showed, the mPOF
was distorted, which has been confirmed by observations of the cross section of the laminated optical
fiber. Such a deformation has a very negative effect on the birefringence of the laminated fiber,
and on its sensitivity to temperature changes. The results presented indicate that the LbL coating
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consisting of CHI/PSS multilayers reduces both the deformations of a polymer fiber optic during the
lamination process, and the thermal changes in a composite material. This holds great potential for
enhanced functionalities of PM mPOFs, as well as their use in control of manufacturing processes,
while simultaneously improving their practical applications in many industrial fields, especially in
structural health monitoring.
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