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Abstract: Lemon is the most sensitive citrus fruit to cold. Therefore, it is of capital importance to
detect and avoid temperatures that could damage the fruit both when it is still in the tree and in
its subsequent commercialization. In order to rapidly identify frost damage in this fruit, a system
based on the electrochemical impedance spectroscopy technique (EIS) was used. This system consists
of a signal generator device associated with a personal computer (PC) to control the system and
a double-needle stainless steel electrode. Tests with a set of fruits both natural and subsequently
frozen-thawed allowed us to differentiate the behavior of the impedance value depending on whether
the sample had been previously frozen or not by means of a single principal components analysis
(PCA) and a partial least squares discriminant analysis (PLS-DA). Artificial neural networks (ANNs)
were used to generate a prediction model able to identify the damaged fruits just 24 hours after the
cold phenomenon occurred, with sufficient robustness and reliability (CCR = 100%).
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1. Introduction

Lemon (Citrus Limon (L.) Osbeck) is one of the world’s most remarkable citrus crops, with a total
production of almost 16 million tons in 2016, representing 12.2% of the total world citrus production.
Spain, with 950 thousand tons, is the sixth country in terms of lemon production and the second one in
terms of export, dedicating two thirds of its production to the international market and being second
only to China [1]. Thus, the cultivation, postharvest and commercialization of lemons activities are of
strategic importance in Spain.

However, lemon production and export present a problem related to freeze damage [2,3].
Periodically, the Mediterranean region (where most of the Spanish lemon is produced) experiences
adverse climatic phenomenon resulting in chilling nights. Additionally, an inadequate management of
refrigerated storage may also result in freezing. Both cases generate a loss in quality and potential
commercialization of citrus fruits [4–6]. In general terms, freeze damage in lemons appears when
temperatures fall below between −0.8 and −1.4 ◦C, as the lemon is the most sensitive citrus fruit to
congelation [7,8]. However, the consequences of chilling may vary depending on the intensity and
duration of the freezing episode and other bio-climatic factors [9].

In fact, freezing affects in many ways. If the phenomenon is rapid, ice crystals appear both in the
interstices among the cells and inside them, thus, breaking the structure and causing cellular death,
which causes necrosis in the affected tissue affected and the impossibility of any type of recovery.
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On the other hand, if freezing is slow enough, intercellular water begins to freeze such that the cells are
not initially affected. If the phenomenon remains, a progressive dehydration of the cell will take place
due to the loss of water towards the interstitial, leading to osmotic equilibrium between liquids in the
inner and outer part of the cells. This process, if it is too demanding for the cell, can lead to death, but
only if it exceeds its ability to yield water without perishing. Additionally, thawing after congelation
can lead to the survival of living cells if it is slow enough. However, if it is too fast, it can also lead to
dehydration and cell death by transpiration [9,10].

Additionally, some authors have identified specific effects of freezing on lemons such as textural
loss and soaked appearance, the disruption of the normal metabolism of the fruit [11,12], the liberation
of enzymes, changes in color, odor, flavor and nutritive value [13], pitting, rind staining, red blots and
necrosis on the flavedo [14]. Some of these effects are easily detectable, but others are neither obvious
nor immediate in appearance, so they are difficult to identify.

In order to solve this problem, several methods for freeze-damage detection and control in
citrus fruits have been developed. These methods are diverse, ranging from the simplest—based on
the visual inspection of the fruit [15]—to physical techniques such as the separation of the fruit by
density (flotation) [16], ethanol detection [5], vision sensors [17,18], gas-mass chromatography [19],
fluorescence [6] or nuclear magnetic resonance [20]. These methods are mostly laboratory techniques
that have specific requirements in terms of instruments, personnel, time, sampling and testing, thus
making them comparatively less agile with respect to electrochemical impedance spectroscopy (EIS).

On the contrary, EIS, combined with an adequate statistical treatment of the data, is a simple,
inexpensive, immediate, on-line and robust technique [21,22]. Impedance spectroscopy [23] is a
method for characterizing the electrical properties of materials and their interfaces using electrodes.
This technique involves applying an electrical stimulus to electrodes, observing the response and
determining their properties, interactions and dependencies with certain factors. The electrical
response can vary substantially depending on the charges (free ions), microstructure, and nature of
the sample and geometry and properties of the electrodes. As electrical impedance is an intrinsic
property correlated with the internal structure of the samples, EIS measurements [24] determine or
infer information about them as long as the event in analysis presents a change in their electrical
behavior. In fact, EIS has already been successfully used in the field of food technology, particularly in
the quality control of several parameters of fruits and vegetables [25,26] such as bananas [27], kiwis [28],
mangoes [29], eggplants [24], tomatoes [30], carrots [31,32] potatoes [33], manufactured products [34]
and their waste valorization [35,36].

Knowing the impedance value of the samples and the processes they have experienced, statistical
prediction models can be obtained by means of multivariate analysis techniques that can later be used
to predict the properties of new samples from their corresponding impedance measurements. Given
that EIS generates a large amount of data per test, a powerful statistical tool is necessary to ensure
reliable results. Consequently, principal components analysis (PCA) and partial least squares (PLS)
have been used in a first phase, as they have thus far given very satisfactory results when working
with this type of data [37–39]. Here, a discriminant analysis by partial least squares was selected, as
there was a large amount of data per sample, and it was clearly organized in groups with different
electrochemical responses [25,40]. Next, artificial neural networks (ANNs) were used to improve
the aforementioned methods since they are very flexible and adaptable, easily fitting to non-linear
systems and able to learn from their own mistakes [41,42]. ANNs are also easy to use, clear, and easily
implementable on a personal computer (PC) since they also have low computational requirements.
In fact, the potential application of ANNs that can be implemented in a microprocessor to create a
portable detection device that could be used in the field for in-situ freeze damage detection was of
particular interest for this study.

Accordingly, and attending to the preliminary experience in this field [25], the goal of this study
was to determine the ability of a system combining EIS analysis by using a specific sensor and an
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adequate data treatment tool (ANN) to detect freeze-damage in lemons in a rapid, easy, economic and
reliable way.

2. Materials and Methods

2.1. Raw Material

Lemons were selected based on their physical aspects, variety, origin, size and ripening, and
the absence of damage or injuries; we tried to get a series of samples as homogeneous as possible
according to their natural origin [43]. Once in the laboratory, fruits were washed, dried and kept at
room temperature to be later subjected to the corresponding tests.

In the specific case of assays with frozen lemons, fruits were first exposed to a laboratory
freezing night simulation by introducing them in a freezer (LIEBHERR Model GGU 1500 Premium,
Liebherr-International Deutschland GmbH, Biberach an der Riß, Germany) long enough to reach and
slightly exceed the freezing temperature of the fruit. Then, after the temperature stabilization of the
product for at least 12 hours, they were tested again following the same protocol [25].

2.2. Electrochemical Impedance Spectroscopy System

The measurement technique used was two-electrode impedance spectroscopy (Figure 1a). This
technique consists of applying a potential difference between two electrodes and measuring the current
through them in order to find the electrode–sample–electrode impedance. The electrodes used are
stainless steel needles. The material has a high corrosion resistance and is widely used in food contact
applications [44]. In addition, the resistance of the electrodes is very small (~ 3 mΩ), in the order of
about one million times smaller than the sample resistance, so the resistive part of measured impedance
is practically the sample resistance. The electrodes were connected to two wires housed in an epoxy
resin frame (Figure 1b).
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electrodes used in the assays.

The system consisted of an electronic equipment and a software application that ran on a PC
(Figure 2). Sinusoidal alternating electrical signals with different frequencies were applied to the
sample, and the current response for each one of the frequencies was measured. Then, the system
calculated the impedance spectrum of the sample by means of the Discrete Fourier Transform (DFT)
and displayed it on the screen. The parameters of the system (signal amplitude, frequency range,
current scale, etc.) were configured by the user through the graphical user interface. The EIS system
was divided into two clearly differentiated parts.

2.2.1. Software Application

A software application ran on a PC. It carried out a frequency sweep to obtain the impedance
modulus and the phase of the sample. The user established the frequency range and the amplitude
of the sinusoidal signals applied to the electrodes. For each one of the frequencies, the application
calculated the signal temporal evolution and sent this information (along with the rest of the data
needed to generate the signal) to the electronic equipment through a USB port. Then, with the data
response of the electronic equipment, the software application determined the amplitude and the
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phase of the voltage and current signals through a DFT. From these data, the software application
calculated the modulus and phase of the sample impedance for the current frequency. Then, the
application stored the result of the measurement in a file and repeated the same process for the rest of
the frequencies. The specifications of the EIS measurement system are shown in Table 1.
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Table 1. Specifications of the electrochemical impedance spectroscopy (EIS) measurement system.

Parameter Specifications

Frequency range 1 Hz–1 MHz

Signal amplitude Up to 500 mV

Type of signal Sinusoidal

Impedance calculation Discrete Fourier Transform

Measured parameters Current and Voltage

Output data Modulus and phase of the impedance

Data set per assay Up to 100 data (50 for modulus and 50 for phase)

2.2.2. Electronic Equipment

The electronic equipment received the information sent by the computer, generated the
corresponding sinusoidal waveform and applied it to the sample. Then, the current and voltage signal
responses were sampled and sent to the PC. For the receiving process of the data sent by the PC
and the signal generation, the equipment used a complex programmable logic device (CPLD, Altera
EPM7160SLC84), a 10-bit digital analogue converter (DAC) and a static 2 KB (2048 bytes) random
access memory (RAM). A second CPLD, two 8-bit digital analogue converter and a configurable current
sensor sampled the signals corresponding to the voltage applied to the electrode and the current
flowing through it. The samples were stored in others two static RAM memories. Once a complete
cycle of the signal was sampled, the values are transmitted to the PC.

The electronic measurement system was designed by the Group of Electronic Development
and Printed Sensors (GED and PS) of the Interuniversity Institute for Molecular Recognition and
Technological Development (IDM) at the Universitat Politècnica de València (UPV) [45].

2.3. Electrochemical Impedance Spectroscopy Analyses

Samples were previously prepared as described in Section 2.1. Then, ten fruits were selected, and
EIS analyses were carried out. To do so, each lemon was tested in three different ways, conducting
three repetitions and three iterations per test, taking a total of 27 assays per fruit. The first type of
assays was conducted with unaltered lemons, puncturing the sensor directly into the skin. The second
ones were made after peeling a part of the fruit and puncturing the sensor into a single segment.
Finally, the third type of assays was performed by puncturing each needle (electrode) of the sensor into
a different segment, leaving the segments membranes (separation between segments) approximately
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in the middle. The idea of conducting these three different kinds of tests was to determine which part
of the fruit experienced the most significant changes in terms of electrochemical response to the frost
phenomenon. In simple terms, this allowed us to know which part of the lemon was the most sensitive
to freeze.

A specific protocol for the impedance spectroscopy tests was designed. It was as follows: Firstly,
it was verified that the whole system (measurement device and PC) was turned on, connected and
correctly working. Then, temperature of the fruit was measured by using a multimeter (FLUKE 16
Multimeter, FLUKE, Everett, WA, USA). Next, the sensor was punctured into the fruit in the appropriate
way for the type of test to be conducted. Afterwards, the test prepared by activating the software.
Then, the system received the order to generate a specific electric signal that was transmitted to the
fruit via the sensor. The response was also collected from the sensor and arrived to the PC where it
was shown on the screen and stored for the further processing of data. The sensor was then cleaned
and dried to make it ready for the next test.

2.4. Data Treatment

Given that the response for each EIS test carried out consisted of a total of 100 data (50 modulus
values and 50 phase values), the volume of data to work with was very high. Thus, an appropriate
data processing method was essential. Subsequently, two different data treatment methodologies were
taken into account and compared: Multivariate analysis and artificial neural networks.

2.4.1. Multivariate Analysis

First, a multivariate analysis of the collected data was carried out. To do so, a PCA was preliminarily
conducted in order to check whether the obtained data tended to be grouped naturally, showing
differences between natural lemons and those that were previously frozen.

Next, a partial least squares-discriminant analysis (PLS-DA) of the data was performed to
discriminate the analyzed samples and identify if there were significant differences among them
regarding the obtained variables. The PLS-DA is a regression analysis in which the dependent variable
is categorical, which is the class to which the samples belong [46], and the independent variables are
the 100 data obtained per analysis (50 modulus values and 50 phase values). The particularity in this
methodology is that new independent values are used to test the model. As such, 67% of the data
set was used for calibration, and the remaining 33% of the data set was used to test the model [47].
The accuracy of the obtained model was analyzed by the coefficient of determination (R2) and the root
mean square errors of both cross validation and prediction (RMSCV and RMSEP).

Both PCA and PLS-DA analyses were conducted by using the software SOLO© (Eigenvector
Research, Ind., Manson, WA, USA).

2.4.2. ANNs

Alternatively, a study was carried out to detect the possibility of modeling the electrochemical
response of the fruits by means of ANNs, as this type of networks is also easy to use, clear, and easily
implementable on a PC because it also has low computational requirements. In fact, the potential
implementation of ANNs in a microprocessor was of particular interest in this study. Thus, a portable
device for in-situ analyses could detect freeze-damage in the fruits when they are still in the fields,
thereby meeting all of the low power requirements, easy handling and reliability. Actually, this type
of development [48] has already been successfully applied using simplified ANNs, [49,50] which are
even simpler, computationally less demanding, quick to program, easy to use and very reliable [51].
The goal was to work with a prediction system that is more flexible, adaptive and versatile than the
traditional statistical data treatment methods [52,53]. It was particularly interesting considering that
the samples were natural fruits that were subject to a wide set of variables that could have generated
more or less diversity among them despite belonging to the same species and the same batch (ripeness,
acidity, sugar contents, size, time since they were collected, etc.).
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Type and structure of the ANN were preliminarily fixed by a set of initial trials. Then, a deeper
study allowed us to select a specific architecture of the net (layers and neurons in each layer) and also
the functions to be applied in each neuron and the algorithms to work within the layers. Data for
these studies were appropriately divided by random into three different data sets to be used in the
different steps of the ANN design: Training (70%), validation (15%) and test (15%). The first phase
(training) allowed us to use the ANN model for the validation and test phases, respectively assessing
the obtained model by using both previously used data in the training phase and independent data.
Additionally, as overfitting is a probed problem in ANN-based prediction models, a proportional
structure of the network was selected, and cross-validation and early-stopping were used when training
the model [54]. In this specific case, the accuracy of the obtained ANN was expressed in terms of the
correct classification rate (CCR%) and the associated confusion matrix.

ANN modeling was conducted by using the software Alyuda Neurointelligence 2.2© (Alyuda
Research Inc., Cupertino, CA, USA).

3. Results

3.1. Impedance Spectroscopy Results

Once the EIS test was completed, 27,000 data were overall collected (27 tests/sample 10 samples
100 data/test). This data set was appropriately stored in the PC and graphically shown by the software,
allowing us to create figures like the ones shown in Figure 3, which represent both the phase and the
modulus of the impedance for the selected samples. Graphics showing the Nyquist diagrams were
also available in the graphic interface of the software.
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In 1925, Fricke-Morse [55] introduced an equivalent electrical circuit for biological materials
(Figure 4) that has been widely used in bioelectrical impedance analysis and other applications such
as food technology [22,31,56]. The main advantages of Fricke´s model are its simplicity and direct
physical interpretation. In this model, cells are represented by means three elements: Re (resistance of
the extracellular fluid), Ri (resistance of the intracellular fluid) and Cm (capacitive component of the
cell membrane) [57].
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The obtained results respond to this behavior because freezing changes the internal structure of
biological materials by rupturing cell membranes and, thus, the impedance of the materials. In Fricke’s
model, this impedance is shown in a double way. Firstly, it is shown in the reduction in the capacitive
component, as can be seen in the decrease the absolute value of the impedance phase (Figure 3a) due
to the breakdown of the cell membrane itself. Secondly, it is shown in the decrease of the impedance
modulus (Figure 3b) due to the increase in conductivity in the extracellular fluid generated by the
release of intracellular fluid that alters salt concentration after the cells collapsed.

In general, this behavior was observed in all the analyzed samples; it was most evident in those in
which the threshold temperature of freezing was exceeded, and it was dramatically increased in those
cases in which the freezing temperature was somewhat more severe.

3.2. Multivariate Analysis Results

A PCA study of the obtained EIS data allowed us to clearly discriminate samples according to
their electrochemical behavior (Figure 5).
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This PCA was able to explain up to 71.33% of the variance with just one principal component
latent variable and an additional 23.51% if a second one was added. This means that the model was
able to explain up to 94.84% with just two principal components latent variables.

Afterwards, a PLS analysis was carried out in order to obtain a model capable of detecting the
freezing phenomena in these samples. Thus, a PLS-DA was specifically used, and the obtained results
allowed us to verify that it is possible to classify lemon samples in two different groups (natural and
previously frozen), as the model showed high sensitivity for both calibration and prediction phases
(Figure 6).
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3.3. ANNs Results

Finally, an ANN-based model was studied, as this kind of modeling is more flexible, adaptive
and does not necessarily respond to a linear behavior pattern. The preliminary results allowed us
to observe that it was possible to predict freezing in lemons by ANNs. A more detailed study was
able to obtain a 20-13-1 network, this being the best one of the structures suggested by the software.
The selected structure was a pyramidal network with three levels or layers: An initial input layer with
20 nodes, a hidden layer with 13 nodes, and an output layer with just one node. This network was run
with an on-line back-propagation algorithm and logistic type activation functions in the nodes of both
the hidden and the output layers, which proved to be very effective in the discrimination of lemon
samples according to whether or not they had experienced a previous frost phenomenon in the last
24 h. The obtained network was able to correctly classify 100% of the samples analyzed (Table 2).
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Table 2. Correct classification rates (CCRs) and confusion matrices of the obtained artificial neural
network (ANN) model for freeze-damage detection in lemons by EIS.

ANN Architecture: 20-13-1

Training Validation Test Overall

CCR = 100% CCR = 100% CCR = 100% CCR = 100%
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4. Conclusions

As the lemon is the most sensitive citrus to cold, establishing strategies to prevent damage and
quickly detect the effects of a frost phenomenon is of capital importance. This will help in decision
making that aims to minimize wastes and economic losses, as well as to avoid introducing fruits with a
lower quality than the expected into the market.

In this study, an EIS technique combined with an adequate data treatment via ANN was analyzed,
allowing us to obtain a system able to identify lemon samples that have experienced a freezing
phenomenon with a high statistical confidence. Specifically, results showed that this technique was
able to successfully classify 100% of the analyzed samples, clearly differentiating samples that had
been frozen to those that had not experienced this phenomenon.

This means that this EIS-based technique is a promissory methodology in this specific use and
allows us to introduce it as an alternative to the existing laboratory processes that are generally slow,
expensive, require complex instruments, and require experienced staff to conduct analyses.

Additionally, the obtained results suggest that this technique could be also successful for freeze
detection in other citrus fruits.
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