
sensors

Article

Privacy Aware Incentivization for
Participatory Sensing

Martin Connolly 1,* , Ivana Dusparic 2, Georgios Iosifidis 2 and Mélanie Bouroche 2,*
1 Department of Information Systems, Cork Institute of Technology, Cork T12 P928, Ireland
2 School of Computer Science and Statistics, Trinity College Dublin, Dublin 2, Ireland;

ivana.dusparic@scss.tcd.ie (I.D.); george.iosifidis@tcd.ie (G.I.)
* Correspondence: martin.connolly@cit.ie (M.C.); melanie.bouroche@scss.tcd.ie (M.B.)

Received: 25 June 2019; Accepted: 13 September 2019; Published: 19 September 2019
����������
�������

Abstract: Participatory sensing is a process whereby mobile device users (or participants) collect
environmental data on behalf of a service provider who can then build a service based upon these
data. To attract submissions of such data, the service provider will often need to incentivize potential
participants by offering a reward. However, for the privacy conscious, the attractiveness of such
rewards may be offset by the fact that the receipt of a reward requires users to either divulge their real
identity or provide a traceable pseudonym. An incentivization mechanism must therefore facilitate
data submission and rewarding in a way that does not violate participant privacy. This paper presents
Privacy-Aware Incentivization (PAI), a decentralized peer-to-peer exchange platform that enables
the following: (i) Anonymous, unlinkable and protected data submission; (ii) Adaptive, tunable and
incentive-compatible reward computation; (iii) Anonymous and untraceable reward allocation and
spending. PAI makes rewards allocated to a participant untraceable and unlinkable and incorporates
an adaptive and tunable incentivization mechanism which ensures that real-time rewards reflect
current environmental conditions and the importance of the data being sought. The allocation of
rewards to data submissions only if they are truthful (i.e., incentive compatibility) is also facilitated in
a privacy-preserving manner. The approach is evaluated using proofs and experiments.

Keywords: participatory sensing; identity privacy; privacy preserving; incentive mechanism;
incentivization; incentive compatibility; data truthfulness

1. Introduction

Participatory sensing is a form of crowdsourcing that enables service providers to capture
environmental data from mobile device users. Participatory sensing has wide applicability in areas
such as smart cities [1], air pollution monitoring [2] and health [3].

Privacy is a key consideration in the success of a participatory sensing system. Participants may
share readings that reveal confidential data pertaining to, for example, participant location or behavior.
Some potential participants may be deterred by the possibility of their privacy being compromised
by this.

Cryptography and anonymization can be used to provide participant privacy, but this may be
at the expense of the quality of the service provider’s dataset. Specifically, if the service provider
has no access to participant identity, it will not be able to allocate rewards to attract and incentivize
users, which may prevent it from achieving the critical mass of data it needs to provide its service.
In addition, if the credibility of the data submitter cannot be assessed, the evaluation of the validity of
submitted data becomes more difficult.

At the same time, the key to the success of a participatory sensing campaign is to attract a critical
mass of relevant data which meets the service provider’s quality requirements. This in turn requires
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the service provider to attract a sufficient number of participants. While participants may be willing to
make data submissions, they will, in general, expect some form of tangible (monetary or non-monetary)
reward in return; for example, to compensate them for costs such as battery consumption.

Privacy preservation should not prevent the service provider from allocating the rewards it needs
to offer to attract and incentivize users. The inherent conflict to be addressed when designing a
privacy-preserving incentivization scheme is thus identified as being, on the one hand, the need to link
participant submissions in order to reward them, and on the other, the need to break this link to ensure
privacy preservation [4].

This paper presents Privacy-Aware Incentivization (PAI), a platform that seeks to address the
privacy requirements of participants in a way that does not hinder the service provider’s ability to
incentivize participants and allocate rewards to a data submission only if it is truthful (known as
incentive compatibility). To this end, PAI incorporates incentivization and incentive compatibility
schemes that reward participants and evaluate the truthfulness of submitted data, respectively, without
requiring access to their personal details.

As the rewards offered by the service provider must be set at a level that matches current
environmental conditions and current participation rates, the incentivization scheme used by PAI to
motivate participation must facilitate the real-time adaption of these rewards. Such a scheme must also
seek to optimize the consumption of the service provider’s budget and must give the service provider
the flexibility to tune the importance and utility of the data being sought. Therefore, the incentivization
scheme used by PAI must facilitate adaptive and tunable reward allocation (R1).

To ensure identity privacy for participants, it is not only necessary to hide their real identity
but also prevent the pseudonymous monitoring of their activities. This is achieved by ensuring that
the service provider or a third party is unable to conduct an inference attack to gain further private
information about participants such as their habitual behavior, location and trajectory.

The first point of potential privacy vulnerability occurs when participants are making data
submissions. The service provider should not be able to identify participants from the data submissions
they make and should not be able to link multiple data submissions made by the same participant.
In addition, data submissions must be protected for service providers to ensure that other participants,
peers or service providers cannot access the data they have paid for. Thus, PAI must provide anonymous,
unlinkable and protected data submission (R2).

Another key point of potential privacy violation is when a participant receives a reward. To prevent
an inference attack, it is necessary to ensure that the service provider cannot identify a participant, cannot
trace participant activity and behavior and cannot infer further information about that participant from
the allocation of a reward. Therefore, PAI must provide untraceable and unlinkable reward allocation
(R3). Finally, PAI must ensure that the service provider or a third party cannot conduct an inference
attack when a reward is being spent and must therefore provide untraceable and unlinkable reward
spending (R4).

In addition to meeting the requirements for privacy preservation and reward allocation, PAI must
ensure that data submissions received by the service provider can still be evaluated to determine
whether they are truthful. This must be achieved without impinging upon the participant’s privacy.
For this reason, PAI must facilitate privacy-aware incentive compatibility (R5).

The requirement for adaptive and tunable reward allocation (R1) is met through the adoption
of the Adaptive Reward Allocation (ARA) approach [5], a Lyapunov optimization-based model that
adapts rewards when sudden changes occur in what are frequently fast-moving participatory sensing
environments. In particular, the response rate to offers already made by the service provider and the
data utility are used to adapt the level of reward.

PAI meets the requirements for anonymous, unlinkable and protected data submission (R2),
untraceable and unlinkable reward allocation (R3) and untraceable and unlinkable reward spending
(R4) through the adoption and extension of Identity Privacy Preserving Incentivization (IPPI) [6],
a decentralized platform that issues untraceable and unlinkable rewards in exchange for anonymous and
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unlinkable data submissions to create a privacy-aware adaptive incentive-compatible incentivization
scheme that is robust to inference attacks from semi-honest service providers and other potential
attackers. To fully address the requirement for anonymous, unlinkable and protected data submission,
the platform is refined to ensure that only the service provider has access to the data submissions that
are intended for it.

The requirement for incentive compatibility (R5) is achieved through the development of a Data
Truthfulness Estimation (DTE) algorithm. This algorithm uses the Maximum Likelihood Estimation
(MLE) statistical method to estimate the probability of the data submission being valid (i.e., truthful).

Figure 1 presents the PAI platform and the core components (IPPI, ARA and DTE) that
are used to meet the requirements for privacy preservation, reward allocation and incentive
compatibility, respectively.
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Figure 1. Privacy-Aware Incentivization (PAI) platform.

The evaluation of PAI builds upon proofs and experiments conducted for IPPI and ARA.
The effectiveness of the DTE algorithm is evaluated by proof, while the performance evaluation of the
cryptographic primitives used for privacy preservation are extended for both fixed and mobile devices,
with a comparison with more recent work in the state of the art also being presented. The computational
complexity of PAI is also evaluated in this paper.

• PAI is a decentralized platform that achieves the following:
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# Providing a data submission mechanism that ensures that data are submitted anonymously
and cannot be linked to any data submissions previously made by the same participant.

# Meeting the privacy requirements of the service provider by ensuring that the submitted
data can only be accessed by this party.

# Allocating rewards to participants without their having to cede their identity privacy.
Specifically, rewards allocated to participants cannot be used to trace the activity of
participants and cannot be used to link participants to their data submissions. In addition,
rewards are also untraceable and unlinkable when participants spend them. This ensures
robustness to inference attacks from service providers and other potential attackers.

# Dynamically computing the rewards to offer to participants by adapting to participation
rates and environmental conditions whilst seeking to optimize budget consumption.
The ability to tune the scheme to balance data capture and budget consumption is
also facilitated.

# Incorporating a mechanism that assesses the truthfulness of data submissions made
without violating participant privacy, thereby demonstrating that the approach facilitates
incentive compatibility.

• An extensive evaluation of the approach is performed in terms of its privacy robustness, data
truthfulness, performance and computational complexity.

It should be noted that this paper extends the work presented in [5] and [6] by the following:

(i) Providing an overall view of the challenges, requirements and the state of the art in privacy
preservation, incentivization and incentive compatibility for participatory sensing;

(ii) Proposing an integrated architecture for a privacy-preserving and incentive-compatible
incentivization scheme for participatory sensing;

(iii) Presenting the design and implementation of the Data Truthfulness Estimation algorithm;
(iv) Evaluating the overall platform against the most recent state of the art both in terms of performance

and computational complexity.

The rest of this paper is organized as follows. Section 2 discusses related work and discusses
how PAI progresses beyond the current state of the art. Section 3 outlines the system and threat
models used for PAI. Section 4 presents the extended IPPI platform used to meet requirements R2–R4.
The approaches taken for adaptive and tunable reward allocation (R1) and incentive compatibility (R5)
are described in Sections 5 and 6, respectively. Section 7 analyzes and validates the effectiveness of the
approach taken by PAI in terms of the requirements identified, while Section 8 evaluates the platform’s
performance. Section 9 concludes the paper.

2. Related Work

This section evaluates related work in the state of the art in terms of the requirements identified in
the previous section.

2.1. Adaptive and Tunable Reward Allocation (R1)

While the state of the art includes many diverse approaches to incentivization and reward allocation,
a significant proportion of them use an auction-based solution such as Vickrey–Clarke–Groves (VCG),
sealed bid and reverse auctions ([7], [8] and [9] respectively). However, auctions entail a high level of
overhead [10] as, in a participatory sensing environment, the service provider will typically need to
gather all bids before deciding which participants to select. This in turn leaves participants vulnerable
to privacy violations as, even if pseudonyms are used, the service provider can monitor participants’
bid activity.

Some approaches use third-party components to manage reward allocation. However, these
third-party components can themselves be points of privacy vulnerability. For example, one
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protocol [11] relies on the use of an additional component that manages the accounts of both
participants and the incentive provider. This credit management component has particular potential
for inference attacks as it performs credit transfers from the incentive provider’s account to that of
the participant.

Other approaches in the state of the art use statistical methods to implement their incentivization
schemes and reward allocation. However, these approaches do not fully meet the requirement for
adaptive and tunable reward allocation (R1). For instance, the budget constrained simulated annealing
technique (a probabilistic optimization method) that is used by EPPI [12] to minimize participant
rewards does not consider the current participation rate and the dynamic environmental changes that
may occur. Similarly, while the STOC-PISCES algorithm [13] considers data utility and participation
rates when computing rewards, it does not take budget constraints into account. Finally, TLCI [14],
which takes data quality and participation into account, does not facilitate tuning to prioritize efficient
budget consumption over data capture and vice versa.

2.2. Anonymous, Unlinkable and Protected Data Submission (R2)

Balancing the needs of privacy preservation and incentivization is a challenge as, in some cases,
the means of incentivization is itself a point of privacy leakage. For example, approaches in the
state of the art that use pseudonyms, such as Stors [15], SPPEAR [16], PriCSS [17] and a certification
center-based scheme [18], may prevent direct access to participants’ identities but can be used by the
service provider to track activity and behavior. Some approaches do partially address the problem of
pseudonym tracking. For example, one privacy-respecting auction [19] uses different pseudonyms in
different auctions to ensure that bids made by the same participant in multiple auctions cannot be
tracked. However, it is possible to track multiple bids made by a participant during a single auction.

Several privacy-preserving incentivization approaches proposed in the state of the art introduce
third-party components to overcome the problems encountered through the use of pseudonyms.
For example, one platform uses untraceable tokens and a Cloud provider [20], while ViewMap [21]
uses the Tor browser to ensure participant anonymity (see https://www.torproject.org). However, as
with those approaches in Section 2.1 that use third-party components for reward allocation, these
components could themselves be a point of privacy violation through, for example, attacks, database
leaks or seizure by governments [22]. This is acknowledged by one approach [23] which, when seeking
to ensure bid privacy for its Vickrey–Clarke–Groves (VCG) auction-based scheme by grouping mobile
participants’ bids, relies on a semi-honest third party.

2.3. Untraceable and Unlinkable Reward Allocation (R3)

The medium for reward allocation is a crucial aspect to be addressed when designing a
privacy-preserving incentivization scheme for participatory sensing. Reward allocation is typically
addressed in the state of the art through the use of existing cryptocurrencies or the creation of
reward tokens.

Cryptocurrencies are electronic forms of value exchange that have the potential to be used for
online purchases, trading and transactions. Their name refers to cryptographic methods that are
used to protect the transaction integrity as well as that of the currency itself. However, while the
intention of cryptocurrencies such as Bitcoin [24] is to preserve the privacy of those engaging in
transactions, the creators of Bitcoin point out that while the cryptocurrency provides anonymity, it is
not pseudonymous; i.e., payees could be tracked through the address at which they receive Bitcoins.
This address effectively functions as a pseudonym given that every transaction involving that address
is stored in the BlockChain. For example, PaySense [25] uses the participant’s Bitcoin address as
a pseudonym. While it may be possible to address this issue through the use of cryptocurrency
‘mixer’ services that enable users to swap Bitcoins with each other, this necessitates users placing their
trust in what is often an anonymous third-party service. Another privacy-preserving incentivization

https://www.torproject.org
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platform [26], whose architecture necessitates the use of a third-party component, also uses Bitcoin to
reward participants.

Alternatives to Bitcoin such as Monero (https://getmonero.org) and DASH (https://www.dash.org/)
also have weaknesses that would prevent rewards from being untraceable. An empirical study [27]
indicates that there are weaknesses in Monero in its use of fake coins, called mixins, to obscure transaction
behavior but which, in fact, make transactions linkable under certain conditions as the mixins are
sampled from a distribution that does not resemble real transaction inputs. In the case of DASH, an
anonymous paper (See https://dashpay.atlassian.net/wiki/display/DOC/Dash+Security-Privacy+Paper),
approved by the currency’s promoters, points out that DASH cannot be used securely and anonymously
unless a third-party component such as the Tor anonymity network is used. In addition, the third party
MasterNode mixing service provided by a third-party component increases the probability of tracing a
payment, especially if there are few other users to swap coins with.

There are several approaches in the state of the art that use tokens, which are mappable to a
tangible monetary or non-monetary item of value, to allocate rewards. However, this is sometimes at
the cost of privacy preservation through the use of third parties ([18] and [11]) and pseudonyms [18].
One credit token system ([28], also [29] and [30]) does attempt to address the challenges of anonymous
reward allocation by using a Blind Signature to break the link between the credit token and what is
termed the pseudo-credit to ensure that the service provider cannot make any connection with the
data submission for which the credit is earned. However, this approach does not address inference
attacks as each credit token is directly linked to the participant’s ID. The authors themselves recognize
this as they acknowledge the vulnerability of the approach to a credit-based inference attack. This is
because the service provider may infer if participants have submitted data for a task from the number
of credits that they have.

EPPI ([12,31]) allocates rewards using token-based E-Cents—an exchangeable and untraceable
unit bearer currency. What the authors refer to as a mix zone facilitates the anonymous exchange of
E-Cents between participants in order to provide untraceability. However, it should be noted that
the participant needs to use a pseudonym for this exchange service. Moreover, the service is itself
a potential source of privacy compromise if it is illegitimately accessed. This is exacerbated by the
fact that anonymity in this ‘mix zone’ is dependent upon the service achieving a sufficient number of
participants and appears to rely upon manual intervention by participants. The privacy evaluation
experiments carried out by the authors also indicate that the approach is, in certain circumstances,
vulnerable to inference attacks. This is due to the use of what is termed an E-Cent pledge-based
participating protocol which requires participants to submit E-Cents as a pledge that functions as a
motivation for the participant to submit truthful data (as the participant will forfeit the E-Cents if they
submit false data).

2.4. Untraceable and Unlinkable Reward Spending (R4)

A number of approaches in the state of the art provide untraceable and unlinkable reward
allocation. For example, one credit token scheme [32] issues participants with a single token that
accumulates rewards and is not linkable to a particular data submission. However, participants are
required to reveal their identity when redeeming rewards, which means that their spending can be
tracked. Similarly, while the credit tokens issued by another, third-party-free, scheme [33] cannot be
linked to data submissions, participants are required to reveal their identity when depositing them.
Indeed, the authors admit that there is a possibility of linkages with data submissions being made if a
participant deposits multiple credit tokens simultaneously. While another approach [34] (an extension
of [32]) does not appear to require participants to reveal their identity, the timing and pattern of reward
token spending can nevertheless be monitored.

https://getmonero.org
https://www.dash.org/
https://dashpay.atlassian.net/wiki/display/DOC/Dash+Security-Privacy+Paper
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2.5. Incentive Compatibility (R5)

Several approaches in the state of the art claim incentive compatibility by tracking participants’
reputations to evaluate the trustworthiness of data submitters. Typically, however, a reputation
management system does not fully consider participants’ privacy requirements. Specifically, while
there are several privacy-preserving trust and reputation management systems in the state of art that
offer anonymity, they enable pseudonymous tracking of participant activity. For example, TATP [35]
measures participants’ trust degree pseudonymously while PaySense [25] tracks participants through
the Bitcoin account balances which are used to evaluate their reputation.

Other approaches use methods that evaluate data truthfulness but often do so at the expense of
participant privacy. For example, participants’ reputation scores are fundamental to the truth discovery
algorithm used by Theseus [36], which calculates the ground truth (i.e., the rate of data truthfulness)
for each performed task. Similarly, the task assignment that is a core component of QEDE [37] requires
direct access to participant activity. DECO [38], a false data detection and correction framework
that applies a signal processing technique to reconstruct missing data and detect untruthful data, is
specifically designed to evaluate data submissions from untrusted participants but is reliant on knowing
the participant’s location to check data consistency. Similarly, the Social Incentive Mechanism [39]
does not meet PAI’s privacy requirements as it leverages participants’ existing social relationships,
while another approach [40] relies upon users to detect their malicious counterparts. SHIELD [41],
which uses the Dempster–Shafer theory probability-based method as well as data mining techniques
to detect untruthful data submissions, does not require direct access to participants’ personal details.
However, it does require participants to register using a third-party identity and credential management
component while the data verification framework itself is a third-party component—all points of
privacy vulnerability.

There are a number of approaches that do ensure data truthfulness without violating participant
privacy. For example, one iterative approach [42] calibrates the sensing devices for the process of
monitoring pollution sources by using the Expectation Maximization statistical method to create a
model that evaluates the truthfulness of sensed sensor data. Specifically, the approach estimates
whether the pollution source is present, the parameters that should be used for measuring the pollution
level as well as the statistical noise caused by the sensing device without requiring access to a
participant’s private information. As a result, this mechanism can be used to evaluate anonymous and
unlinkable data submissions.

2.6. Summary

To conclude, while there are many privacy-aware incentivization schemes in the state of the art,
there is no approach that provides untraceable and unlinkable reward allocation (R3) and spending (R4)
in return for an anonymous and unlinkable data submission (R2). For example, several schemes require
private information from the participant in, for example, an auction bidding process, which makes
data submissions linkable. Other approaches introduce third-party components that are themselves
a potential point of privacy vulnerability as they hold participant details such as reward allocations.
While other approaches do preserve direct identity privacy, they are nonetheless vulnerable to inference
attacks through their use of pseudonyms that could be used to monitor participant behavior and activity
and the issuing of traceable rewards, whether through the use of a cryptocurrency or reward tokens.

The peer-to-peer distributed approach used by PAI, which avoids the need for third-party
components, seeks to combat this potential for inference attacks by ensuring that each interaction
between a participant and a service provider is stateless; i.e., each data submission made by a participant
does not contain any means by which the service provider can link it to previous submissions made by
the same participant. This is achieved by using a once-off untraceable ID for each data submission.
As PAI does not require the use of third-party components or pseudonyms, the approach does not
introduce any potential points of privacy vulnerability. Specifically, PAI uses one-off public/private
key pairs for each data submission transaction to ensure that only a legitimate user can access the
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reward. The details of the data submission transaction are held by a peer who can neither identify the
participant nor ascertain the content of the data submission.

The approaches taken by Li & Cao [28] and Dimitriou [34], both of which seek to provide
anonymous reward allocation, are the approaches in the state of the art that are most similar in intent
to PAI with respect to privacy preservation. While PAI seeks to progress beyond these approaches in
providing untraceable and unlinkable reward allocation and spending, this should not come at an
excessive performance cost. For this reason, these approaches will be used as the bases of comparison
when evaluating PAI’s performance.

There are a number of incentive compatibility approaches in the state of the art that ensure
data trustworthiness but do so at the expense of privacy preservation. While the iterative incentive
compatibility approach discussed in Section 2.5 [42] is intended only for pollution monitoring, the
Expectation Maximization technique used has the potential to form the basis for a method that
would meet PAI’s requirement for incentive compatibility without impinging upon its requirement for
untraceable and unlinkable rewards in exchange for anonymous and unlinkable data submissions.

3. System and Threat Model

This section outlines the system (Section 3.1) and threat (Section 3.2) models used by PAI.

3.1. System Model and Workflow

The participatory sensing model used by PAI is comprised of the participant and the service
provider. The service provider will typically seek data that it will, for instance, publish or perform
data analytics upon. Participatory sensing campaigns to capture this data are initiated by the service
provider through the issuing of offers that specify what type of sensed data it is seeking (e.g., pollution
levels in a particular urban location between 4 pm and 8 pm). Such an offer will also specify the
reward that will be allocated to those participants who make data submissions that match the service
provider’s criteria.

Participants will typically own mobile devices such as smart phones, tablet computers, wearable
devices or smart vehicles which have embedded sensors to capture data. The data captured by these
smart devices can be scalar (e.g., temperature, air quality levels, GPS coordinates) or multimedia (e.g.,
photos, video). Once captured, a data submission is made to the service provider with a view to
receiving a reward.

Once the service provider issues an offer, participants can then decide whether they want to
respond to this offer. If the reward exceeds or equals the minimum reward a participant expects, that
participant will then have to make a decision as to whether to submit data in response to this offer.
Participants are assumed to be rational. It is thus expected that there will be a higher number of
responses as the reward offered for a particular type of data is increased (this of course assumes that
other factors—for example, privacy perceptions—are unchanged.). It is also assumed that costs are
incurred by participants when they make data submissions. This could include, for instance, battery
consumption or the consumption of the user’s mobile data allocation. These costs, as well as the
sensing effort involved, necessitate participant incentivization.

In addition, the service provider’s budget is assumed to be finite and will be either of a monetary
or tangible nature (for instance, Wi-Fi access). Rewards are only allocated to participants when they
fully complete a task.

The fundamental problem addressed by PAI’s incentivization scheme is one of time average
cost minimization. This is because the service provider wishes to offer a reward that consumes the
minimum amount of budget whilst still attracting an acceptable response rate from participants. This
problem is modeled by assuming that the service provider operates in discrete time broken up into
distinct slots t ∈ 1, 2 . . . The reward level is reviewed at the start of each of these timeslots. One or
more offers seeking data submissions can be issued by the service provider in a particular timeslot, t.
The service provider can elect to categorize offers using different granularity levels on the basis of, for
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instance, location accuracy. In addition to computing such rewards, PAI must also ensure that such
rewards meet participants’ privacy requirements, both when the reward is allocated and when it is
being spent.

The workflow of a typical participatory sensing system and the role of PAI’s requirements in each
step is as follows:

• Firstly, the service provider makes a determination as to what type of data is being sought.
To attract this data, it needs to also determine the level of reward that is most likely to attract its
desired number of data submissions whilst at the same time not consuming an excessive amount
of its budget. This challenge is addressed by the requirement for adaptive and tunable reward
allocation (R1) which ensures that the reward is calculated on the basis of previous response
rates for this type of data whilst also seeking to balance budget optimization and data capture.
The service provider then publishes both the reward and the sought data on the OrderBook.

• While participants can view published offers on the OrderBook, they make be loath to respond to
these offers if there is a possibility of their data submissions being used to track them or being
linked to their previous data submission activity. This concern is addressed by the requirement
for anonymous, unlinkable and untraceable data submission (R2). Under this requirement,
participants that elect to respond to the reward will sense the data and generate a once-off

One-Time Key which has no association with their identity. The public key component of the
One-Time Key is used as an anonymous and untraceable ID for data submission while the data
itself is encrypted using the service provider’s public key to ensure that only that party can view
and access it. The response published on the OrderBook thus meets both the participant’s and the
service provider’s privacy requirements.

• From the service provider’s perspective, the provision of privacy preservation for the participant
makes it more difficult to evaluate the truthfulness of the data it receives given that its provenance
cannot be determined. The requirement for incentive compatibility (R5) addresses this issue as, on
publication of the response, the service provider will first decrypt the submitted data content and
assess whether it meets the criteria outlined in its published offer. It then uses a data truthfulness
method to determine whether the data submission is deemed to be truthful and thus merits
a reward.

• If the service provider decides that the data submission should be rewarded, it publishes a
confirmation on the OrderBook. PAI ensures that the service provider has no knowledge of who
that party is and has no means of linking the public part of the One-Time Key to the participant
through the fulfillment of the requirement for untraceable and unlinkable reward allocation
(R3). The requirement for untraceable and unlinkable reward spending (R4) further addresses
participant privacy as it ensures that the service provider cannot track the participant’s spending
of the reward and/or link it to the data submission for which the reward was allocated. Specifically,
the reward can only be spent by the holder of the private part of the One-Time Key; i.e., the
participant who made the data submission.

3.2. Threat Model

The attack surface in a typical participatory sensing system is a large one with the sensing device,
service provider infrastructure, third-party components used by the service provider and Internet
communication all being potential points of attack. There are inherent threats, therefore, that have
the potential to compromise participants’ privacy as well as the integrity of the data held by the
service provider. Those parties who threaten the system (known as adversaries), the participants
or the service provider can be either malicious or semi-honest in their intent. As the term implies,
a malicious adversary intends to do harm to the system or a party within the system. On the other
hand, a semi-honest adversary will be one of the parties within the system and follows the protocol
specification exactly; however, it may try to learn more information than intended by examining data
that it receives.
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While there are a wide variety of attacks (both internal and external) that may target participatory
sensing systems, PAI’s focus is on preventing the service provider from potentially using participants’
data submissions or allocated rewards to undertake inference attacks that will illegitimately grant
access to further information about the participant; for example, the frequency of sensing activity
in a particular location. The Semi-Honest Threat model is therefore the privacy model that must be
addressed in order to meet the goals of PAI; specifically, to prevent inference attacks tracking the
participant’s activity and behavior. In addition, under the PAI approach, the service provider is the
only party who can access data submissions intended for it, thus ensuring that other participants
cannot access this data.

The Semi-Honest Threat model addresses privacy from the participant’s perspective. However,
increased participant privacy also increases the potential for malicious participants to deceive the
service provider and gain unearned rewards by submitting false or spurious data without penalty. This
also affects participants who consume the service provider’s dataset as its overall quality is degraded.
To combat this possibility and achieve incentive compatibility, PAI must also address the potential for
False Data Injection Attacks by evaluating the truthfulness of submitted data.

4. The PAI Platform

This section describes the PAI platform which refines IPPI [6] to take account of the service
provider’s privacy requirements (As the privacy preserving requirements R2–R4 are fundamental
to the platform, they are discussed before requirement R1 (adaptive and tunable reward allocation))
and incorporates mechanisms for reward computation and the enforcement of data truthfulness.
The platform is used to fulfill privacy preserving requirements R2, R3 and R4. Section 4.1 discusses
the provision of anonymous, unlinkable and protected data submission (R2) as well as describing
the decentralized exchange platform that forms the basis for the approach. The means by which
the allocation of participant rewards is made untraceable and unlinkable (R3) is then explored in
Section 4.2. Lastly, Section 4.3 discusses untraceable and unlinkable reward spending (R4).

4.1. Anonymous, Unlinkable and Protected Data Submission (R2)

Decentralized cryptocurrency exchanges such as CryptoNote are peer-to-peer networks that
partition tasks pertaining to payment processing and recording among distributed computer systems.
As such systems are decentralized, there is no central authority, middlemen or any other kind of
third-party component [43]. This concept of a decentralized exchange has several characteristics that
have the potential to support PAI in providing privacy preservation. Specifically, the distributed
peer-to-peer application architecture enables the requirement for anonymous, unlinkable and protected
data submissions to be fulfilled given that no private participant data are required as there is no direct
communication between participants and the service provider. This prevents the service provider from
tracing a participant through, for example, an IP address. Moreover, the approach does not use third
party components (The potential occurrence of other external attacks such as Distributed Denial of
Service (DDOS) attacks is also reduced as there is no central service. This means that all peer devices
would have to be targeted.) that could potentially compromise participant privacy given that PAI uses
distributed peers. Payments can be made or service access granted to these peers to motivate them to
hold data submissions and reward information on behalf of the service provider.

While the fundamental distributed architecture used for decentralized cryptocurrency exchanges
is unchanged, a number of modifications need to be made to the core concept of the OrderBook
(which lists currency trades) to facilitate untraceable reward allocation for PAI. Specifically, the service
provider publishes data submission requests and allocates rewards using the OrderBook, while, from
the participant’s perspective, it facilitates anonymous data submissions and the receipt of untraceable
rewards. Using the OrderBook, the service provider publishes offers that specify the kind of data that
is being sought as well as the reward for a data submission of this kind. Participants are made aware of
offers when they are published. They can then choose to respond to these by making a data submission
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as well as forwarding a token to which any reward will be allocated. The service provider allocates
rewards until it has the number of responses it wants or until the expiration of the offer. Figure 2
presents an overview of how the PAI platform provides privacy preservation.
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4.2. Untraceable and Unlinkable Reward Allocation (R3)

Cryptocurrency exchanges ensure unlinkability between multiple payments made to the same
payee through the use of One-Time Keys [43] which themselves use the Diffie–Hellman Key Exchange
Protocol [44]. This facilitates the establishment of a shared secret between two parties. This secret
can then be used to exchange cryptography keys for use in symmetric encryption algorithms; for
example, AES.

PAI modifies this use of the Diffie–Hellman Key Exchange to create a One-Time Key that consists
of a public and private key component. Both components are held by the participant with the public
component being published on the OrderBook when the participant responds to an offer made by
the service provider. This ensures that the service provider, who is analogous to the payer in a
cryptocurrency exchange, cannot access the participant’s identity, be it real or pseudonymous. In this
way, untraceable rewards are provided to participants and inference attacks are prevented.

Participants are informed of offers from the service provider when the latter publishes an offer
token, TO, on the OrderBook.

TO = {δ, rO, iSP, iO} (1)
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where δ represents the data that is being sought and specifies the type of data desired as well as
other conditions; for example, data granularity, location, the number of data submissions sought and
when the offer expires. rO denotes the reward offered by the service provider in exchange for a valid
data submission, while the ID of the service provider and offer token are represented by iSP and iO,
respectively. TO forms part of a listing, LO, which is published on the OrderBook with participants’
responses being appended to LO.

On acceptance of TO, a participant generates a One-Time Key, KO, and uses the public part of KO

to create an offer acceptance:
AO =

{
d , aKO , iO, iAO

}
. (2)

AO is comprised of the public part of KO, aKO (The symbols used correspond to those used in [44]), the
participant’s data submission d, the ID of the corresponding offer token, iO and a unique ID, iAO . iAO

is assigned by the OrderBook when it receives AO. It should be noted that no ID is assigned by the
participant to AO as this would make the offer acceptance potentially traceable.

The PAI platform refines IPPI to take the service provider’s privacy requirements into account.
Specifically, the service provider may not want a peer, or indeed another potential service provider,
to view the data it is paying for. For this reason, the participant is required to encrypt d in its offer
acceptance using the service provider’s public key bSP:

AO = {{d}bSP , aKO , iO, iAO }. (3)

AO is appended to the offer listing, LO, on the OrderBook. It is then sent on to the service provider
who, after decrypting {d}bSP

using its private key b∗SP, determines whether the data submission merits a
reward. To do this, the service provider determines whether d matches the specifications laid out in the
offer token, TO, and estimates whether the submitted data is truthful using the incentive compatibility
approach outlined in Section 6. As the data submission contains no reference to the participant’s
identity, the service provider cannot determine or otherwise infer who made the data submission.
Once d is evaluated, a validation token is then created and published on the OrderBook by the service
provider:

TV =
{
iV, iAo , v

}
b∗SP

(4)

TV has a unique ID, iV and also consists of the offer acceptance ID iAo as well a flag v that signals
whether a reward should be allocated for this data submission. To confirm that TV indeed came from
the service provider, that party uses its private key, b∗SP, to sign TV. On receiving and verifying TV, a
unique spendable reward ID, iS, is created by the OrderBook, with the public part of KO, aKO being
used to encrypt a spendable reward token that can only be accessed by the participant holding the
private part of KO:

rs= {iS, iV , rO}aKO
(5)

In addition to iS, rs also includes the associated ID of the validation token, iV, and the reward
value, rO. Both TV and rs are appended to the offer listing LO on the OrderBook.

4.3. Untraceable and Unlinkable Reward Spending (R4)

To spend a reward, a participant accesses rs from the offer listing, LO. This is then decrypted using
a∗KO

, the private component of the One-Time Key KO that is held solely by this party. The decrypted
reward is then sent to the OrderBook for spending. The OrderBook checks that the reward is indeed
valid by verifying its provided ID, iS, and also that it has not been spent before. In addition, the service
provider’s public key, bSP, is used to verify the signature of the corresponding validation token, TV.
This is done to confirm that the service provider did in fact generate TV. The reward can be spent once
these verifications have taken place. The spending of the reward is logged in the OrderBook to prevent
the problem of double spending.
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The allocation of a reward in return for a particular data submission can be viewed by all
participants on the OrderBook. However, only the participant who holds the private part of the
One-Time Key, a∗KO

, corresponding to the public component, aKO , can decrypt the spendable reward, rs.
This decryption cannot be forged by other participants. It should also be noted that the OrderBook
holds an identity certificate signed by a peer. This confirms that the service provider is the owner of
the public key, bSP, that is used to verify rewards being spent and, in addition, ensures that the service
provider cannot replace or otherwise change its signature with a view to tracing spendable rewards.

The algorithm for untraceable and unlinkable reward allocation is presented in Algorithm 1.
This algorithm activates when a participant publishes an offer acceptance in response to an offer
published by the service provider on the OrderBook. Algorithm 2 presents the algorithm used to
ensure untraceable and unlinkable reward spending.

5. Adaptive & Tunable Reward Allocation (R1)

PAI has adopted the Adaptive Reward Allocation (ARA) approach [5] to enable the computing of
rewards for offers made by the service provider. This section describes the mechanism. Section 5.1
discusses why Lyapunov optimization is chosen as the underlying method for reward computation.
The budget consumption optimization problem is modeled in Section 5.2, while the design of the
reward algorithm is described in Section 5.3. The incorporation of data utility is outlined in Section 5.4.
The implementation of the algorithm is presented in Section 5.5. It should be noted that the reward
computation mechanism does not require any access to participants’ private information.

5.1. Lyapunov Optimization

The method that underpins PAI’s reward allocation mechanism, Lyapunov optimization, is
used to facilitate the control of dynamic systems such as incentive and price computation in data
communication networks. It has already been used in the state of the art for incentive design for
participatory sensing [45] (but not, it should be noted, for reward computation). Its ability to respond
to sudden and rapid changes that occur over time in the environment to which it is applied [46] make
it particularly suitable for dynamic participant sensing environments as does its suitability for the
minimizing of dynamic costs [47]. Such attributes are directly relevant to service providers given that
these parties will typically seek to optimize their budget consumption in addition to capturing the
most timely and relevant data.

Any incentivization mechanism for a participatory sensing campaign will need to respond to
sudden and rapid changes in an environment as this will often change the nature, quality, level of detail
and accuracy of the data being sought. At the same time the consumption of the service provider’s
budget must also be borne in mind. These factors can both be taken into account by a Lyapunov
optimization model, thus making it particularly appropriate for PAI. This will also ensure adaptability
as the reward is computed, taking both current participation rates and environmental conditions into
account. It should also be noted that a service provider requires no access to future knowledge during
a participatory sensing campaign; i.e., the response rate from participants. This is a further argument
to use Lyapunov optimization, which makes no assumptions in this regard.

The most common use of Lyapunov optimization is for the allocation of resources in, for example,
computer networking [48]. The use of the method must therefore be modified to meet the goals of the
incentivization scheme required for PAI given that, when viewed as an economic market, participatory
sensing has a number of distinct characteristics. Crucially, the dynamic and fast-changing nature
of many participatory sensing environments means that the ‘product’ (i.e., the data being sought
by the service provider) can potentially change suddenly. Moreover, the value of the data to the
service provider at a particular point in time will change depending on that party’s needs. This is
a key differentiating attribute in participatory sensing compared to other areas that require price
optimization such as wind power or cloud infrastructure rental because, while demand changes in
these markets, the actual product does not. The type of data sought may change over the course of a
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participatory sensing campaign and may only be relevant for a fixed period of time. In other words,
its time-sensitive nature requires it to precisely match the information which is being sought by the
service provider [49]. For these reasons, a market-based model is a suitable means of designing a
participatory sensing incentivization scheme.

Algorithm 1: Reward Allocation

[Service Provider publishes an offer token TO]
//OrderBook operation.
Append TO to offer listing, LO.
[On acceptance of TO by a participant]
Capture d
//Generate the public and private components of the One-Time Key.
Generate aKO and a∗KO
//Create offer acceptance, AO.
AO = {{d}bSP , aKO , iO, iAO }

//Participant retains One-Time Key since the private key, a∗KO
, is used to claim reward.

//[aKO , a∗KO
] represents the set of One-Time Keys held.

[aKO , a∗KO
] + = {aKO , a∗KO

}
Publish AO on OrderBook
//OrderBook Operation.
LO+ = AO//Append AO to LO
Forward AO to Service Provider
//Service Provider Operation.
[On receipt of AO]

//Decrypt the data submission.
Decrypt {d}bSP using b∗SP
v = Validate AO
if v then

Log allocation of RO//Make reward allocation.
TV =

{
iV, iAo , v

}
b∗SP

LO+ = TV //Append TV to LO and publishon OrderBook.
//OrderBook generates and publishes encrypted spendable reward.
rs = {iS, iV, rO}aKO

end if

Algorithm 2: Reward Spending

[Participant wants to spend the reward]
Decrypt rs using a∗KO
[OrderBook operation]
//Verify that the associated validation token’s signature is a valid one from the service provider.
Verify signature of TV (identified by iV entry in rs)
if verification passes then

Check that iS is not already recorded as spent
if iS is not recorded as spent then

Permit spending
Record iS as spent

end if
end if

5.2. Budget Consumption Optimization Problem

This section formulates the Lyapunov optimization-based budget optimization problem. The
method requires past response rates for different levels of reward and has no need for future information.
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The challenge to be met is to minimize the time average reward whilst still attracting the desired number
of responses. In this way, budget consumption for the service provider is optimized. To facilitate
ongoing reward computation, the participatory sensing campaign is modelled as a series of discrete
timeslots with rewards being computed at the start of each timeslot. Thus, for any given timeslot t, the
budget, B (Capitalization is used to correspond to the notation found in [50]), consumed by the service
provider is

B(t) = r(t)N(t) (6)

The reward offered during a timeslot is denoted by r(t) while the number of responses received is
represented by N(t).

Like all Lyapunov optimization models, PAI’s reward computation scheme requires a control
decision. In this case, this is the determination of an optimal reward level r(t) for a timeslot t. As a
result, the time average budget consumption for this policy is

BAV , lim
t→∞

1
t

t−1∑
t=0

E
{
r(t)N(t)

}
(7)

Of course, while one of the key goals of PAI’s reward model is to compute a reward level that
minimizes the time-average budget consumption, it must also ensure that the offered reward attracts a
sufficient number of responses. Both factors must therefore be taken into account when designing the
reward algorithm.

5.3. Designing the Reward Algorithm

Balancing budget consumption optimization and attaining the response rate desired by the service
provider requires a trade-off between minimizing the number of offers that have been forfeited because
the reward is too low and optimizing the consumption of the budget available to the service provider.
To do this, a virtual queue, which does not exist in reality (it is a software implementation to facilitate
the definition of the Lyapunov optimization-based model [50]), is defined to model the number of
forfeited responses fir a particular timeslot, t, denoted by Zforfeit(t) (Z is used to denote a virtual queue.
This notation corresponds to that used in [50]).

Determining the value for Zforfeit(t) in a given timeslot requires the service provider to set the
number of desired responses, Ndesired. For a given timeslot, t, subtracting the actual number of
responses received Nreceived(t) from Ndesired(t) thus gives Zforfeit(t):

Zforfeit(t) =
{

0 Nreceived(t) ≥ Ndesired(t)
min

{
Ndesired(t), P(t)

}
−Nreceived(t) Nreceived(t) < Ndesired(t)

(8)

An estimate of the number of participants in the system is represented by P(t). Zforfeit(t) is the
key determinant when computing the optimal reward for a timeslot t. For PAI’s reward computation
mechanism, the Lyapunov Function for t is thus

L(t) ,
1
2

Zforfeit(t)
2 (9)

This quadratic Lyapunov function gives a scalar (one-dimensional) measure for the total queue
backlog for the participatory sensing system. Given the dynamic nature of the participatory sensing
campaign, this Lyapunov function would be expected to change between timeslots. This is known as
the one-slot conditional Lyapunov drift:

∆(t) , L(t + 1) − L(t) (10)



Sensors 2019, 19, 4049 16 of 32

Given the requirement for timely responses, the solution that best minimizes the Lyapunov drift
and the associated queue backlog must be chosen for each timeslot; i.e., it must be greedily minimized.
This ensures adaptive reward allocation and the balance required between minimizing the reward
offered in exchange for a data submission (thus, optimizing budget consumption) whilst still obtaining
a sufficient number of meaningful and timely responses. In queuing theory terms, the model seeks to
achieve queue stability by continuously pushing the queue backlogs towards a lower congestion state.
To optimize budget consumption, therefore, the Lyapunov drift expression must include the budget
consumption term B(t). This then leads to the following drift-plus-penalty expression:

∆(t) + V
{
B(t)

}
(11)

The goal here is not only to minimize the queue backlog but also to minimize budget consumption.
Thus, both should be minimized simultaneously. Under Lyapunov optimization, such a minimization
objective is referred to as a penalty. The limit of the drift-plus-penalty expression, referred to as a
bound, must be then minimized [51], which is the ultimate goal of Lyapunov optimization. In addition,
a non-negative control parameter, V, is included so that the weighted budget consumption term is taken
into account for the control decision. Thus, the trade-off between reducing the backlog of Zforfeit and
minimizing B is facilitated. In statistical terms, the upper bound for the drift-plus-penalty expression
must be determined.

While a general case for a drift-plus-penalty bound [47] is presented, it must be extended for a
participatory sensing environment. Assuming that Nreceived(t) is i.i.d (independent and identically
distributed) over timeslots for any control algorithm seeking to minimize the allocated reward, r(t),
the following upper bound can included for the drift-plus-penalty expression used for the Lyapunov
optimization-based problem being addressed here [51]:

∆(t) + V
{
B(t)

}
≤ Bconstant(t) + VE

{
B(t)

∣∣∣Z(t)}
+ Zforfeit(t)E

{
Nreceived(t− 1) −Ndesired(t)

∣∣∣Zforfeit(t)
} (12)

Bconstant(t) is a positive number used when carrying out the Lyapunov optimization computation:

Bconstant(t) ,
1
2
(Nreceived(t− 1) −Ndesired(t))

2 (13)

The goal here is similar to other Lyapunov optimization-based models [52] in that the objective is
not to directly minimize the drift-plus-penalty expression but rather the right-hand side of the upper
bound. For this reason, the queue backlog, Zforfeit(t), is monitored in every timeslot t. This then enables
the Lyapunov optimization approach [47] to be adapted so that the budget consumption B(t) can be
chosen as the solution to the following problem:

minN(t)(Vr(t) + Zforfeit(t)) (14)

The number of responses, N(t), is determined by the reward offered, r(t). Microeconomic supply
curves are used to model this relationship; i.e., the response rate for a particular category of data
submission at different reward levels. One of the rewards on the relevant curve that has been
constructed for the current timeslot thus represents the solution for this minimization problem. In other
words, there are a finite number of values for the reward to be allocated, r(t), in a given timeslot t.
The minimization problem is evaluated for all possible budget consumption levels with the reward
that optimizes budget consumption then being selected. The service provider then publishes the offer
token, TO, with this reward. Once the responses are received, the relevant supply curve is updated to
reflect the number of responses actually received. This process takes place for every timeslot during
which an offer is published by the service provider.
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While a Lyapunov optimization model only typically requires knowledge of the current state of
the system, the algorithm used by PAI requires knowledge of the number of responses received in
previous timeslots in computing r(t). Higher rewards are thus offered when the backlog for Zforfeit is
large, while, conversely, lower rewards are offered in the case of a small backlog for Zforfeit.

Using standard Lyapunov optimization theory [52], a proof demonstrating the optimality of this
minimization problem is presented:

Theorem 1. (Adapted from [47]).

lim
t→∞

∑
t∈T

E
(
B†(t)

)
≥ B∗ −

Bconstant

φ

The budget consumption for a given timeslot, t, is denoted by B†(t), while B∗ refers to a budget consumption
benchmark that assumes that the service provider can anticipate a defined number of possible scenarios; i.e.,
stochastic future information. The theorem shows that, as time tends towards infinity, budget consumption
optimization converges to the minimum budget consumption, with a controllable error bound O( 1

φ ).

5.4. Incorporating Data Utility

In addition to being adaptive, the reward allocation scheme must also be tunable. Specifically,
the scheme must tune the utility of the data being sought and balance this data capture with budget
consumption. This can be achieved by modifying the value of V [50]. Assuming the time-average
maximization problem’s objective value is B∗av under an optimal policy, it is possible to present the
following theorem [52]:

Theorem 2. (Adapted from [50]). For each timeslot, we assume the number of responses received in the
previous timeslot, Nreceived(t− 1), and the number of desired responses in the current timeslot, Ndesired(t), are
i.i.d. if there is an γ > 0 such that:

E
{
Nreceived(t− 1)

}
≤ E

{
Ndesired(t)

}
− γ (15)

It is then possible to present the following performance guarantees:

lim
t→∞

1
t

t−1∑
t=0

E
{
p(t)N(t)

}
< B∗av +

Bconstant

V
(16)

Zforfeit , lim
t→∞

1
t

t−1∑
t=0

E
{
Zforfeit(t)

}
≤ Bconstant +

Bconstant + VrmaxPmax

ε
+ Nmax (17)

In the case of PAI, the penalty that is incorporated to achieve queue stability in Lyapunov
optimization is budget consumption, denoted by p(t). ε and rmax represent a constant > 0 and the
maximum reward, respectively, while the number of responses received for rmax is denoted by Nmax.

Theorem 2 indicates that the larger the value for V, the closer budget consumption is to the
optimal solution. However, increasing the value of V results in an increase in average queue backlog.
As a result, budget consumption and the size of Z(t) require a trade-off. The service provider can tune
this trade-off as it has the option to reflect the significance of the data being sought in a particular
timeslot, t, by prioritizing data capture over budget consumption.

The tunability of the reward computation is facilitated by enabling the service provider to scale
the importance of data it is seeking for a given offer. This is achieved by assigning a utility weighting
value, U, for the data being sought. The value of the utility weighting maps directly to the significance
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of the data to ensure that the service provider can prioritize the capture of dynamic changes in the
participatory sensing environment. Given that V increases as the data utility weighting, U, increases in
order to prioritize data submission capture over budget consumption, the value of U maps to that of V
as follows:

U ∝
1
V

(18)

In addition to tuning U to capture dynamic changes in the participatory sensing environment, it
should also be noted that the predictive model that is used to construct the supply curve could also be
used to tune utility by, for example, weighting the most recent data received if data are being sought in
response to the most recent submissions that have been made. This would not require any modification
of the reward computation algorithm.

5.5. Algorithm for Adaptive and Tunable Reward Allocation

Algorithm 3 presents the algorithm for reward computation. Regression analysis is used to create
the supply curves predicting the number of responses different rewards will generate. Table 1 presents
the additional notations used in this algorithm.

Table 1. Additional notations for Algorithm 3.

Notation Meaning

DPPLHS Drift-plus-penalty expression: left-hand side.
DPPRHS Drift-plus-penalty expression: right-hand side.
Llast(r) Last Lyapunov function computed for a particular reward.

Mpredict Linear Regression Prediction model.
OPTcurrent Current Lyapunov optimization computation.
OPTsolution Lyapunov optimization solution.

roptimal The optimal reward value.
[r] Possible reward values.
r(t) The optimal level of reward to offer for a timeslot, t.

[r, Npredict(t), Zforfeit(t)]
Reward, number of predicted responses and the associated queuing state

variable for this reward.

{[r, Npredict(t), Zforfeit(t)]}
The rewards, the number of predicted responses and their associated queuing

state variables.
{[Nactual], r} Number of actual responses for the different levels of reward.

[Npredict(t)], r] Number of predicted responses for the different levels of reward.

[U,V] The data utility weightings and the corresponding constant V (used to calculate
the Lyapunov drift).

∆(t) One-slot conditional Lyapunov drift.

6. Incentive Compatibility (R5)

Economic theory states that when resources are being allocated among a group, individuals may
find it in their interest to distort the information they provide so that they can acquire more of the
resources than they should be entitled to [53]. These distortions in turn may lead to a suboptimal
situation for the group as a whole as resources are inappropriately allocated. For participatory sensing,
such a situation would occur if the service provider allocates rewards to participants who make data
submissions that are not truthful. In this context, a truthful data submission is defined as one which
accurately reflects the environmental measurement(s) being sought. An ‘untruthful’ data submission
might not necessarily reflect dishonesty on the data submitter’s part (for example, the submission could
contain inaccurate readings due to a hardware problem in the participant’s device) but nonetheless
would not merit a reward from the service provider. The service provider suffers under this situation
as its budget is wasted and the quality of its dataset is diminished. Other honest participants suffer as
the budget for legitimate data submissions is effectively reduced so they could be deprived of rewards
they would otherwise receive. The potential for participants to behave dishonestly is addressed by
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the economic concept of incentive compatibility, which addresses the design of an economic system
whereby participants can achieve the best outcomes for themselves by acting truthfully [54]. Incentive
compatibility is thus used for PAI to design a mechanism that statistically estimates whether a data
submission is truthful or not.

The requirement for incentive compatibility (R5) is achieved for PAI by estimating the truthfulness
of the data submitted to the service provider. A data submission can contain one or more categories of
measurement values. As the majority of participatory sensing data are scalar numeric readings, it is
this category of data that is addressed by the proposed incentive compatibility method.

Algorithm 3: Computing the Reward

Create Supply Curve for
{
[Nactual], r

}
from Historical Dataset //Create Supply Curve.

Mpredict = Linear Regression Model for Supply Curve
{
[Nactual], r

}
//Construct Linear Regression model.

[r] = 0..rmax //Predict the responses for different reward levels.[
Npredict, r

]
= predict

(
Mpredict, [r]

]
)

foreach r //Construct the each reward’s queuing state variables.
Zforfeit(t) = Npredict(t) − Ndesired(t){[

r, Npredict(t), Zforfeit(t)
)
]
}
+

[
r, Npredict(t), Zforfeit(t)

)
]

end foreach
Bconstant(t) = 0.5 ∗ (Nreceived(t− 1) − Ndesired(t))

2//Compute Lyapunov Optimization constant.
V = [U, V] //Map data utility weighting U to V
foreach [r, Npredict(t), Zforfeit(t))] //Use Lyapunov Optimization to evaluate each reward.

B(t) = r ∗ Npredict(t)//Compute the budget used by this reward.
if B(t) > Bproportionmax

then //Check that budget consumption does not exceed set maximum.
break

end if
L = ∗ Zforfeit(t)

2//Carry out the Lyapunov Optimization computation.
∆(t) = L− Llast(r)//Compute one-slot conditional Lyapunov drift.
DPPLHS = ∆(t) + (V ∗ B) //Evaluate drift plus penalty expression.
DPPRHS = Bconstant(t) + (V ∗ B) + Z(t)(Nreceived(t− 1) −Ndesired(t)))
if DPPLHS >= DPPRHS then

continue
end if
OPTcurrent = Npredict ∗ ((V ∗ r) + Z(t))//Evaluate the current optimization computation.
if OPTcurrent > OPTsolution then

OPTsolution = OPTcurrent

roptimal = r
end if

end foreach

There are a number of statistical methods that can be used to evaluate data truthfulness for scalar
data. Section 6.1 discusses the choice of approach for estimating data truthfulness, while Section 6.2
describes the design and implementation of this approach.

6.1. Choosing an Approach to Estimate Data Truthfulness

As noted in Section 2.5, statistical techniques could be used to estimate data truthfulness without
impinging upon the privacy requirements of the participant. In statistical terms, data truthfulness
can be considered as a case of incomplete data; i.e., the truthfulness of the data submission cannot
be known with 100% certainty. There are a number of statistical methods that can be used to make
estimations for incomplete probabilistic models. However, the Gradient Descent algorithm (its loss
function, used to compute the difference between, for example, a neural network output and ground
truth, can be used for the purposes of evaluating data truthfulness) is reported to be slow [55] and
would hinder both the scalability and performance of PAI while the Newton–Raphson method is
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dependent on the accuracy of an initial “guess”. The Method of Moments, another possible approach,
has been found to be less precise than the Maximum Likelihood Estimation (MLE) method [56]. For
this reason, MLE is used to quantify the correctness of data submission measurements.

Economic theory acknowledges that full incentive compatibility cannot be guaranteed for all
categories of exchanges between parties [57]. This is the case in finite economies [58] such as a
participatory sensing market in which there is a finite number of participants willing to make data
submissions. In this case of limiting incentive compatibility, there is the potential for a party to gain
from misrepresentation. This is the case here, as the MLE method computes a range that does not
provide a definitive evaluation of data truthfulness but rather is used to estimate whether the data
submission is truthful or not.

6.2. Designing and Implementing an Approach to Estimate Data Truthfulness

Data truthfulness is assessed for each category of measurement value, c, received in the participant’s
data submission, d. The algorithm exits if it considers any measurement value for a category, mc, to
be untruthful. If this occurs, the validation status, v, is assigned a value of f alse and the validation
token, TV, published on the OrderBook denotes that the data submission is invalid. This, of course,
then means that the participant will not receive a reward.

The initial step ensures that the value of the measurement for c, mc, is within the minimum and
maximum threshold limits, mcmin and mcmax , set by the service provider for c. If it is not, v is assigned a
value of f alse. The next step in this process is to read the relevant data, [dc], that are held by the service
provider for c. Depending on the measurement category, this could be the entire dataset, a subset of
the dataset from a recent time period as determined by the service provider (for example, readings in
the last hour), the last n number of readings where n is a number determined by the service provider,
or the last n number of readings at, for instance, a particular time and/or location, The height, h, of the
probability density function (PDF) for [dc] is then computed to assess how close the data values are to
each other and is then used to formulate the natural logarithm to be used for the Maximum Likelihood
Estimation (MLE) method, known as the Log Likelihood Function (LLF). Once initial estimates are set
for the mean and standard deviation of the data value set (µe and σe respectively), the MLE method is
applied using these initial estimates and the LLF. The application of MLE results in the computation
of an estimate for the mean, µ, and the standard deviation, σ, for which the normal distribution best
describes this set of data values.

To prevent outliers and other potentially interesting (and valid) data being miscategorized as
non-truthful data submissions and thus being discarded, the service provider can configure a scaling
factor, fσ, that is applied to σ to create σscaled. By adding and subtracting σ scaled to and from µ

respectively, the scaled limits, lmin and lmax, are computed for mc. mc is then evaluated and if it is not
between lmin and lmax, v is assigned a value of f alse. This process is repeated for all measurement
categories [c]. If each mc is considered to be truthful, d is considered to be truthful and v is assigned a
value of true.

Algorithm 4 presents the Data Truthfulness Estimation (DTE) algorithm used by PAI to estimate
data truthfulness. This algorithm is applied for every measurement value contained in a data submission
made to the service provider. The dynamic participatory sensing environment means that the data
will be ever changing and evolving. As the dataset is changing with each data submission, the MLE
parameters are thus either recomputed every time a change in the dataset occurs or periodically, with
the service provider setting the recomputation interval in the latter case. This ensures that the incentive
compatibility approach not only provides a means of estimating data truthfulness but does so in a way
that reflects changes that have been captured in the service provider’s dataset. The configurable scaling
factor also ensures that potentially interesting patterns and outliers that are reflected in incoming
data streams are not inadvertently disregarded by the service provider. This further ensures that the
requirement for the dataset to be reflective of changes in the dynamic participatory sensing environment
is met. It should also be noted that the estimation of data truthfulness does not require any disclosure of
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identity privacy by the participant as the data submitted to the service provider contains no reference to
the participant who made the submission. Therefore, while the participant who makes a non-truthful
data submission does not receive a reward, the requirement for identity privacy is not violated.

It should be noted that the underlying MLE method has a number of limitations. For instance,
it is only suitable for scalar data and cannot be used to evaluate the truthfulness of multimedia data
content. This is unsurprising given that many statistical methods are only appropriate for scalar data.
The effectiveness of MLE has also been found to be limited in a number of situations, for example, when
the percentage of censored data (i.e., when the value of a measurement is only partially known) is large
and the sample size is small. Nevertheless, it can be concluded that the data truthfulness estimation
approach outlined here does fulfill the requirement for incentive compatibility (R5) as it seeks to
demonstrate how incentive compatibility can be facilitated without impinging upon identity privacy.

Algorithm 4: Estimating Data Truthfulness

[Service Provider receives a data submission d]
//Evaluate data truthfulness for each category of measurement.
foreach c in d

//Check if the measurement value for this category is within the limits set by the service provider.
if mc < mcmin or mc > mcmax then

v = false //If not within the limits, set the validation status to false and exit the algorithm.
return v

end if
Read data [dc] for c //Read the data for this category of measurement.
Get h from [dc]’s PDF //Compute the height of the dataset’s PDF.
LLF = h− sum(log(h)) //Compute the Log Likelihood Function.
//Use initial estimates for the mean and standard deviation.
Use initial estimates µe and σe

//Use MLE to estimate the two parameters (mean and standard deviation) for which the normal
//distribution best describes the data.
Compute µ and σ by applying MLE using LLF, µe and σe

//Read the standard deviation factor for this measurement category, compute the scaled standard
//deviation setting and set the threshold limits.
Read fσ
σscaled = σ ∗ fσ
lmin = µ − σscaled
lmax = µ + σscaled
//Check if the measurement value is within the threshold limits.
if mc < lmin or mc > lmax then

v = false//If not within the threshold limits, set the validation status to false and exit the algorithm.
return v

end if
end foreach
v = true//If the loop has finished without exiting the algorithm, the data submission is a valid one.

7. Analysis & Validation

This section presents proofs and experiments analyzing how PAI meets the requirements outlined
in Section 1. The experiments validating the adaptiveness and tunability of the reward allocation
scheme (R1) are presented in Section 7.1. Section 7.2 discusses how PAI fulfils the requirement for
anonymous, unlinkable and protected data submission (R2), while proofs evaluating whether the
requirements for unlinkable and untraceable reward allocation and spending (R3 and R4) are met
are described in Sections 7.3 and 7.4, respectively. The fulfillment of the requirement for incentive
compatibility (R5) is analyzed in Section 7.5.
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7.1. Adaptive and Tunable Reward Allocation (R1)

The requirement for adaptive and tunable reward allocation (R1) is evaluated in a simulated
participatory sensing environment written using C++ and the Statistical R programming languages.
The simulation is set up so that a series of offers is made by the service provider over its duration,
with each offer seeking 100 responses. While service providers will seek a varied number of responses
during participatory sensing campaigns, this figure is selected to clearly illustrate whether or not the
level of reward being offered is adapting to the response.

Offers are set to have a maximum reward level of 200 units. The duration of each simulation is 60
min with offers being published at 30-s intervals. It is assumed for the purposes of the simulation that
one offer is made per timeslot. The level of reward is recomputed for each offer.

Two types of environment are configured for the simulation. What is termed the high response
environment is, as its name implies, one in which there is a high initial number of responses from
participants. The low response environment is one in which there is an initially low response rate from
participants. The initial response rate is configured to be between 70% and 200% and 10% and 50% for
high and low response environments, respectively, with a continuous uniform distribution being used
to generate the participant response rate. A randomly generated increment is used by the simulation
to vary the response rate and thus assess the adaptiveness of the reward to changes in the response
rate. The incorporation of randomness is used to take other factors that may affect the response rate
into account for the participatory sensing environment. A simple calculation is used for the response
rate - the ratio of the number of submissions versus the number of responses sought.

Figure 3 presents the adaptiveness of the reward allocation mechanism to the response rate in
a high response environment. The average reward is 11.94 units for an average response rate of
just over 101%. The reward is set to an initial figure of 105 units, but this rapidly decreases as the
reward mechanism detects that the response rate is consistently high. This is further illustrated by the
relatively low standard deviation figures of 2.78 and 4.08 for the reward and response, respectively.
In contrast, Figure 4 shows the reward adaptiveness in a low response environment. The average
reward of 66.13 units reflects the fact that the reward allocation mechanism has to take account of
the initial low response rate. The successful adjustment of the reward to take such conditions into
account is reflected in the average response rate of 92.98%. The standard deviations of 18.65 and 22.33,
respectively, for the reward and response rate reflect the need for the reward allocation mechanism to
increase the reward offered to improve the initial poor response rate.Sensors 2019, 19, 4049 24 of 33 
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7.2. Anonymous, Unlinkable and Protected Data Submission (R2)

R2 is demonstrated by showing that participants make data submissions to the service provider
anonymously (Theorem 3), illustrating that the data submissions made by participants are unlinkable
(Theorem 4) and showing that only the service provider can access these data submissions (Theorem 5).

Theorem 3. Data submissions made by participants to the service provider are anonymous.

Proof. For its participatory sensing campaigns, the service provider publishes offer tokens [TO] on
PAI’s decentralized OrderBook to attract its desired data. Each offer token specifies the data being
sought, δ, and the offered reward, rO. The OrderBook publishes each offer token, TO, as a listing, LO,
with participant acceptances,[AO], being appended to LO. All participants and services providers can
access the OrderBook. Participants can then decide whether to submit data, d, in exchange for the
offered reward, rO.

The service provider does not communicate with any of the participants when it is publishing
the offer token, TO. Likewise, there is no direct communication between a participant and the service
provider when the offer acceptance, AO containing the data submission, d, is published on the
OrderBook given that AO is appended to LO. The components making up, AO – iO, the unique ID
of the offer being responded to, the data submission, d, and the public component of the generated
One-Time Key, aKO , cannot be connected to the participant’s identity but also cannot be connected to
any anonymized ID or pseudonym that could be used to establish who the participant is. Furthermore,
as the assignment of iAo is done by the OrderBook, this ID cannot be used to trace the participant.

The service provider becomes aware of the data submission when it receives AO. It can access
and validate the data, d, within AO but cannot link the submission to the participant’s identity. It can
therefore be concluded that data submissions made to the service provider are done so anonymously
and do not reveal that participant’s identity Similarly, a peer listing the data submission cannot
determine the participant’s identity from AO. The participant can also take further steps to hide their
device ID or, if necessary, their IP address through the use, for example, of a Virtual Private Network
(VPN). �

Theorem 4. Participants make unlinkable data submissions to the service provider.
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Proof. The public part of the One-Time Key, aKO , is used to identify the data submission made by a
participant. In addition to containing no link to the participant’s identity, a different aKO is generated
for each data submission. As each data submission is an independent transaction with a different ID,
the service provider has no means of linking data submissions made by the same participant. �

Theorem 5. Data submissions can only be accessed by the service provider.

Proof. When a participant publishes an offer acceptance, AO, on the OrderBook, the data submitted is
encrypted using the service provider’s public key, bSP. This encrypted data, {d}bSP

, cannot be accessed
by any peer hosting the OrderBook or any other participant or service provider as it can only be
accessed through decryption using the service provider’s private key, b∗SP. �

7.3. Untraceable and Unlinkable Reward Spending (R3)

R3 is demonstrated by showing that participants receive rewards that are untraceable (Theorem 6)
and unlinkable (Theorem 7).

Theorem 6. Participants receive untraceable rewards.

Proof. The OrderBook publishes the public component of the One-Time Key, aKO , in the course of
publishing the offer acceptance, AO. As aKO has no connection to the participant’s identity, it cannot be
linked to the participant who created the associated One-Time Key, KO, or be used to establish who the
participant is.

To indicate whether AO merits a reward, a flag v for AO is published by the service provider on
the OrderBook as part of a validation token, TV. The intended recipient of the reward is indicated by
iAo , the ID of the offer acceptance. As iAo is generated by the OrderBook, it cannot be linked to the
participant. On publication of TV by the OrderBook, it generates an encrypted spendable reward rs for
AO. rs can only be accessed and used by the participant who published AO as only this party holds the
private part of the One-Time Key, a∗KO

. It can therefore be concluded that participants can receive an
anonymous reward in return for a valid data submission without their identity being divulged. �

Theorem 7. Participants receive unlinkable rewards.

Proof. A participant’s set of offer acceptances, [AO] cannot be linked as a One-Time Key, KO, is only
ever used once for a single offer acceptance, AO. Furthermore, the ID of the spendable reward, iS,
cannot be linked to the participant or, indeed, to the public component of the One-Time Key, aKO , that
was generated by that party given that this ID is randomly generated by the OrderBook. It should also
be noted that as rs is only decrypted at the time of its spending, no connection can be made by the
service provider between rs and its ID, iS, to the participant entitled to this reward or to aKO . Thus, it
can be concluded that data submitted by a particular participant cannot be linked using either aKO or
the rs encrypted using aKO .

A participant’s offer acceptances, [AO], public One-Time Key components, [aKO ], or spendable
rewards, [rs], have no IDs that could be connected to that participant. As a result, the service provider
has no means of making any inferences about the participant’s behavior and activity. �

7.4. Untraceable and Unlinkable Reward Spending (R4)

R4 is demonstrated by Theorem 8, which shows that participants’ reward spending is untraceable
and unlinkable.

Theorem 8. Participants’ reward spending is untraceable and unlinkable.
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Proof. The service provider plays no part in the publication of the offer acceptance, AO, or in reward
allocation. In particular, the service provider cannot use the assignment of this offered reward rO to
track the activity of the participant who was allocated a reward. This is because the service provider
cannot assign traceable IDs to AO.

AO has no predetermined ID that can be used to track the participant as the OrderBook assigns
a unique and random ID, iAO , when it receives AO. Furthermore, the service provider cannot link
participant activity from the publishing of that party’s offer acceptances, [AO], as the One-Time Key, KO,
is only ever used once and is never subsequently reused. In addition, there is no connection between
the spendable reward, rs, and AO as the former is only decrypted at the time of its spending. It can
therefore be concluded that a participant’s set of spendable rewards, [rs], is untraceable and unlinkable.
�

7.5. Incentive Compatibility (R5)

R5 is demonstrated by showing that data submissions that are considered to be non-truthful do
not receive a reward (Theorem 9) and illustrating that the incentive compatibility method is privacy
preserving (Theorem 10).

Theorem 9. Data submissions that are considered to be non-truthful do not receive a reward.

Proof. The service provider sets the minimum and maximum threshold limits, mcmin and mcmax , and
also configures a scaling factor, fσ, that is used to compute the interval between the scaled limits, lmin

and lmax, that is deemed to contain valid values for a measurement category, mc. Participants have no
role in determining these parameters. Any measurement category in a sensed data submission d that
fails either of these two tests results in d as a whole being considered untruthful and, consequently, not
receiving a reward. �

Theorem 10. The incentive compatibility method is privacy preserving.

Proof. The service provider receives the sensed data, d, as part of the offer acceptance, AO. Prior to
approving the reward allocation, the service provider ensures that d matches the criteria of the offer
represented by iO and can then evaluate the truthfulness of d using the data truthfulness enforcement
method described in Section 6. While this ensures that the service provider does not allocate rewards
for non-truthful data submissions, it does not violate identity privacy as the service provider has no
access to the participant’s identity. At the same time, the fact that TV is published for every offer
acceptance ID, iAO , ensures that participants can see that a non-truthful data submission has been
rejected. �

8. Performance Evaluation

This section evaluates the performance of PAI, focusing on resource consumption in terms of time,
energy and processing requirements. The most likely potential resource consumption bottleneck for
any privacy preservation approach pertains to its use of cryptographic primitives. Thus, Section 8.1
evaluates the performance of those primitives used by PAI. To analyze the level of processing resources
required by the algorithms as a whole, Section 8.2 assesses the computational complexity of PAI’s four
algorithms. As outlined in Section 2.6, the approaches taken by Li & Cao [28] and Dimitriou [34] are
used as the bases of comparison for evaluating PAI’s performance.



Sensors 2019, 19, 4049 26 of 32

8.1. Cryptographic Primitives

As well as the C++ implementation of the algorithms for the simulated participatory sensing
environment, PAI and the cryptographic primitives used for operations pertaining to the participant
and OrderBook peers have been implemented for the Android mobile operating system using the Java
programming language and the SpongyCastle API [59]. The digital signature is specified by the DSA
algorithm with the SHA-1 algorithm being used for message digest. To address the possibility that
a peer may choose to use a fixed rather than a mobile device (for example, a desktop computer or a
PC server), the Java Programming language and the BouncyCastle API [60] are used to implement
that party’s verification and decryption primitives for the Windows 10 operating system. As energy
consumption does not tend to be a major concern for fixed devices, it is not measured for this
latter implementation.

The implementation is deployed on a Samsung Galaxy S7 Edge Android smartphone (Android
7.0, 4GB RAM, Quadcore 2.3 and Quadcore 1.6 GHz CPU) and, in the case of a peer using a fixed device,
on an 8GB Lenovo T450s ThinkPad laptop computer (8GB RAM, Intel Core i7-5600 2.6GHz CPU).
The energy consumption and running time of the cryptographic primitives used for data submission
and a typical peer are then measured. Table 2 presents the results of these experiments.

Table 2. Resource consumption of cryptographic primitives.

Time (ms) Power (J)

Submitter (Android Phone)
- One-Time Key 4.000 0.023

- Data encryption 0.120 0.002
peer (laptop)
- Verification 0.944 N/A
- Decryption 0.005 N/A

peer (smartphone)
- Verification 339.000 3.290
- Decryption 0.146 0.002
peer (laptop)
- Verification 0.944 N/A
- Decryption 0.005 N/A

peer (smartphone)
- Verification 339.000 3.290
- Decryption 0.146 0.002
Total (laptop) 5.069 0.025

Total (smartphone) 343.266 3.317
Total (Li & Cao [28] Laptop) 5.704 N/A

Total (Li & Cao [28] smartphone) 6.004 0.290
Total (Dimitriou [34] 1305.500 12.612

The cryptographic primitives used by the data submitter and the peer (both of which have to use
resources when making data submissions) in PAI’s algorithms pertain to generation of the One-Time
Key, the encryption of the data submission, the verification of the reward token by the peer when the
user wants to spend the reward and the decryption of the spendable reward. To evaluate the running
time of the cryptographic primitives used for PAI, the associated algorithm is executed over 100 times.
The average time taken by the primitive is then computed. The time taken for the submitter when
generating the One-Time Key and encrypting the data submission is 4.12 ms on average, while the
verification process carried out by a peer (which takes place when the participant wants to consume the
reward) and ID decryptions take under 1 ms. The comparison with participant resource consumption
for the token-based approach proposed by Li and Cao [28] is favorable given that this method takes
12.5% longer on average. The overall time taken by the cryptographic primitives used by PAI is also
substantially lower than that taken for participants in Dimitriou’s approach [34], whether the peer hosts
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the OrderBook on a laptop or a smartphone. The time taken by this approach is 257.5 and 3.8 times
more than PAI when the peer hosts the OrderBook on a laptop and smartphone, respectively.

However, the 339 ms taken for the verification of the reward token by the peer is more expensive
than Li and Cao’s approach when the peer hosts the OrderBook on a smartphone. With the data
encryption and ID decryption taking 0.120 ms and 0.146 ms on average, respectively, the total running
time for the cryptographic primitives of 343.266 ms is 57 times that of Li and Cao’s token-based
approach [28]. The reward token verification is responsible for the majority of this cost, which is
nevertheless well under half a second—a figure that is substantially lower than the 2 s commonly cited
as the upper limit users expect for response time [61]. This verification process is a core part of the
mechanism to decouple the reward allocation and reward spending process and thus ensures that,
unlike Li and Cao’s approach, the data submitter cannot be the victim of inference attacks. Moreover,
this only applies in the case of smartphone hosting of peer operations. If the service provider wants to
encourage hosting on fixed nodes, it has the option to offer higher reward levels for those peers who
do so.

PAI’s smartphone power consumption for the data submitter is 71% lower than the approach taken
by Li and Cao. It must be borne in mind that that the resource consumption totals for the approach
proposed by Li and Cao (6.004 ms and 0.29 J, respectively) exclusively relate to the data submitter.
When this is taken into account, PAI’s resource consumption of 4.12 ms and 0.025 J is significantly
lower for the data submitter as most of the cost is borne by the peer. Energy consumption is also
substantially lower than Dimitriou’s approach, at 3.8 and 504.48 times lower for a smartphone-hosted
and laptop-hosted peer, respectively.

8.2. Computational Complexity

Computational complexity involves the study of the efficiency of algorithms based on the time
and memory space required to solve a problem of a particular size [62]. Complexities are expressed
using the Big O notation.

The majority of the computation for Algorithm 1 is of the order O(1); i.e., the costs of these
operations are independent of the input. The generation of the digital signature by the service provider
is dependent on the size of the key, b∗SP, used to sign rO. Hence, using k to denote the size of b∗SP, the
complexity of this operation is O(k). Similarly, the generation of rs (the encrypted spendable reward)
and {d}bSP

(the encryption of the data submitted) is dependent on the size of the message block, m, to be
encrypted, so the complexity for these operations can be expressed as O(m). It should be noted that, in
both cases, neither k nor m would be of a significant size as they entail digital signing using the service
provider’s private key and the encryption of the spendable reward or data submission, respectively.

The runtime of the majority of the operations for generating the One-Time Key is O(1).
The generation of the key pair used for the reward ID depends on the size of the keys. Assuming
both keys are of the same size k, the computational complexity can be expressed as O(2k). The most
expensive part of the operation is the use of modular exponentiation, which entails the use of two digits
of size n and an exponent of size k bits. A multiplication algorithm M is also used. The computational
complexity of the modular exponentiation operation can be expressed as O(M(n)k) [63]. As this is
the most expensive part of the operation, the Big O notation for Algorithm 1 can thus be expressed as
O(M(n)k).

The most computationally expensive parts of Algorithm 2 pertain to the verification of rO and KO

and the size of bSP and a∗K, respectively. Assuming the size of bSP and a∗K are k1 and k2, the computational
complexity can be expressed as O(k1) and O(k2), respectively. Likewise, the computational complexity
when decrypting rs depends on the size of the message block m and so can be expressed as O(m).
As this is the most expensive part of the operation, the Big O notation for Algorithm 2 can thus be
expressed as O(m). The computational complexity of the core operations for Algorithm 3 depends
on the range of rewards to be offered by the service provider; i.e., from zero to the maximum reward
level, rmax. Assuming the number of possible rewards the service provider could offer is |r|, the Big
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O notation for this aspect of Algorithm 3 can be expressed as O(|r|). The most expensive part of
Algorithm 3 pertains to the linear regression method used to construct the supply curves for each
category of measurement, c. Assuming that the number of elements for a particular c is |nc| and the
number of terms for the linear regression equation is |l|, the computational complexity for the linear
equation is O(|l|2 ∗ (|nc|+ |l|)). This is because the underlying operation of linear regression entails
matrix multiplication. Given that most offers will seek a finite number of measurement categories, |l|
should be a comparatively low number.

Algorithm 4, which is used to estimate data truthfulness, is potentially a computationally expensive
algorithm as its computational complexity is dependent on the number of measurement categories
|c| and the number of items read from the dataset pertaining to this measurement category |[dc]|. For
a single category, therefore, the computational complexity can be expressed as O(

∣∣∣[dc]
∣∣∣). Assuming

the total number of items read from the dataset is
∣∣∣[d]∣∣∣, the overall computational complexity of the

algorithm can be expressed as O
(
|c|

∣∣∣[d]∣∣∣). The potential computational expense of Algorithm 4 is due to
the need to read at least a subset of the dataset [dc] for each measurement category c to estimate the
mean and standard deviation using the Maximum Likelihood Estimation (MLE) method. This expense
can be offset by carrying out this computation periodically and by reducing the size of the subset to be
read from the dataset.

The computational complexity of PAI compares favorably to that of Li and Cao ([28]) as the
modular exponentiation scheme used for the RSA algorithm used by this approach has computationally
expensive operations pertaining to the public key, private key and key generation, which can be
expressed as O

(
k2

)
, O

(
k3

)
and O

(
k4

)
respectively [64]. Thus, the Big O notation for Li and Cao’s

approach can be expressed as O
(
k4

)
, which is much larger than those for Algorithms 1 and 2 of PAI.

The computational complexity of EPPI [12] can be expressed in terms of its public key encryption
and private key signature. Assuming the size of the E-Cent to be encrypted is s and that of the private
key is k, the most expensive parts of the operation of this scheme can be expressed as O(k) and O(s),
respectively. This compares favorably to both Li and Cao’s approach and PAI. However, depending
on the asymmetric encryption scheme used for EPPI (for example, RSA), computational complexity
can be up to O

(
k4

)
, which is much larger than the worst case for PAI’s algorithms. Similarly, the

computational complexity of PAI is favorable when compared with Dimitriou’s approach [34]. This
approach relies upon zero-knowledge proofs which can have a computational complexity of O(|x|n)
assuming a problem instance x and error probability 2−n [65].

It should be noted that, while none of the approaches used for comparison have an algorithm that
is potentially as computationally expensive as Algorithm 4, these approaches do not address the issue
of incentive compatibility and data truthfulness evaluation.

9. Conclusions

This paper proposes PAI, a method of untraceable and unlinkable reward allocation and spending
for participants in participatory sensing systems. PAI is a decentralized exchange platform that permits
participants to make and receive rewards for data submissions without violation of their privacy.
At the same time, the approach permits service providers to obtain the data they need to provide their
service effectively. The adaptive incentivization scheme uses the Lyapunov optimization method to
create an adaptive and tunable incentivization scheme with a view to providing rewards that capture
data reflective of what is often a dynamic participatory sensing environment, while the Maximum
Likelihood Estimation method is used to estimate the truthfulness of scalar data submissions. As PAI
does not use pseudonyms or a trusted third party, it is robust to inference attacks from semi-honest
service providers and other potential attackers and enables participants to be rewarded without
violating identity privacy.

This work addresses the key challenge of giving participants untraceable and unlinkable rewards
in exchange for anonymous and unlinkable data submissions. Other challenges to be addressed
include the evaluation of alternative methods to linear regression for predicting the response rate
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for a particular level of reward, the incorporation of a data truthfulness method for multimedia data
submissions, the evaluation of system performance when more than one service provider participates
in the system and/or multiple measurements are sought in a data submission, and the investigation of
different means of motivating peer participation. By extending PAI to address the above challenges,
it is possible that the approach could serve as the basis for a privacy-preserving marketplace for
participatory sensing.
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