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Abstract: Aiming at the problem of multiple-source direction of arrival (DOA) tracking in impulse
noise, this paper models the impulse noise by using the symmetric α stable (SαS) distribution, and
proposes a DOA tracking algorithm based on the Unscented Transform Multi-target Multi-Bernoulli
(UT-MeMBer) filter framework. In order to overcome the problem of particle decay in particle
filtering, UT is adopted to select a group of sigma points with different weights to make them
close to the posterior probability density of the state. Since the α stable distribution does not have
finite covariance, the Fractional Lower Order Moment (FLOM) matrix of the received array data is
employed to replace the covariance matrix to formulate a MUSIC spatial spectra in the MeMBer
filter. Further exponential weighting is used to enhance the weight of particles at high likelihood area
and obtain a better resampling. Compared with the PASTD algorithm and the MeMBer DOA filter
algorithm, the simulation results show that the proposed algorithm can more effectively solve the
issue that the DOA and number of target are time-varying. In addition, we present the Sequential
Monte Carlo (SMC) implementation of the UT-MeMBer algorithm.

Keywords: direction-of-arrival (DOA) tracking; impulse noise; Multi-Bernoulli filter; particle filtering

1. Introduction

Multi-target Direction of Arrival (DOA) estimation is an essential issue in array processing and has
a wide range of applications in source location, radar, sonar, and wireless communications [1,2]. Sparse
representation and compressive sensing methods are used for DOA estimation of coprime array [3–6],
while these methods are only applied in the case where the sources are stationary. In addition,
difficulties also arise from the uncertainties of the source dynamics: the source may be moving or
static. Thus, it is significant to extend the static DOA estimation algorithm to the dynamic DOA
tracking algorithm.

The representative dynamic DOA tracking algorithms include the subspace tracking algorithm and
the particle filter (PF) algorithm. The subspace tracking algorithm includes Projection Approximation
Subspace Tracking (PAST) [7] and the Projection Approximation Subspace Tracking with Deflation
(PASTD) [8]. In essence, these algorithms transform the determination of the eigensubspace into
solving an unconstrained optimization problem, and combine the recursive least squares (RLS) theory
to achieve effective tracking of the eigensubspace of time-varying sources. However, the RLS method
is very sensitive to impulse noise, and the PAST algorithm’s subspace tracking performance will
degrade sharply in the impulse noise environment [9–11]. In an army of acoustic applications, such as
underwater and room acoustic signal processing, the noise environment is non-Gaussian and is
impulsive in nature [12,13]. Under investigation, it was found that α stable distribution (0 < α ≤ 2) is a
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suitable noise model to describe this type of noise [14]. In recent years, DOA estimation technology
in impulse noise environment has developed rapidly [15–17]. The PF algorithm based on Bayesian
recursive estimation can solve the target tracking problem by utilizing a priori DOA and current
measurement information [18]. In [19], the author considers the particle filtering method to estimate
the single target DOA by using the spatial spectral function based on FLOM matrix as the likelihood
function in the impulse noise environment. However, those algorithms needs to know the number of
targets in advance and cannot deal with the estimation problem of the time-varying sources DOA.

In practical applications, such as submarine tracking and sonar positioning, the number of the
sources are dynamic. Mahler introduced the concept of random finite set (RFS) in [20]. A tutorial
on Bernoulli filters is introduced in [21]. A track-before-detect (TBD) Bernoulli filter based on RFS is
proposed for DOA tracking in single dynamic system in [22], but it cannot solve the DOA tracking
in multiple target dynamic system. The Multi-target Multi-Bernoulli (MeMBer) filtering [23] is a
filter developed under the RFS framework. The advantage is that it operates on the dimensions of a
single target space, thus avoiding the computational complexity and data association problems of the
joint filter. Choppala P B et al. studied the Bayesian multi-target tracking problem based on phased
array sensor, and proposed the MUSIC spatial spectral as a pseudo-likelihood in the Multi-Bernoulli
filter in [24]. However, the shortcoming of this algorithm is that impulse noise is not considered,
and Gaussian noise model is not appropriate in practical applications.

Based on the above analysis, a particle filter algorithm of DOA tracking for Unscented Transform
MeMBer (UT-MeMBer) in an impulse noise environment is proposed. UT is used to construct a
new important density function, which makes the estimation accuracy higher when the particle
degenerates. Since particles close to the real state are more likely to output a larger spatial spectral
response, the magnitude of the spatial spectral response is used as a feature of pseudo-likelihood.
Based on the FLOM matrix, this paper uses FLOM matrix to substitute the covariance matrix to obtain
the corresponding MUSIC spatial spectrum as the particle likelihood function. Further exponential
weighting can increase the weight of the particles, making resampling more efficient. The main
advantage of the tracking algorithm is that the number and state of the target can be accurately tracked
when the number and state of the sources are unknown in impulse noise environment.

The rest of the paper is organized as follows. In Section 2, the problem of the DOA tracking in
impulsive noise environment is described. In Section 3, we outline the Multi-Bernoulli’s Bayesian
theory of DOA tracking. An improved algorithm for likelihood functions is introduced in Section 4.
The UT-MeMBer DOA particle filter tracking algorithm is given in Section 5. We then show our
simulation results in Section 6 and conclusion in Section 7.

2. Problem Formulation

2.1. Array Signal Model

Consider the case of P narrow farfield signals sp(t), p = 1, 2, · · ·P with different DOA θ1,θ2, . . . ,θP

arriving at a uniform linear array (ULA) with M sensors at discrete time t. The DOA of the pth source
can be written as θp. The received signal of the arrays can be expressed as

Z(t) = A(θ)S(t) + N(t) (1)

where NM×1(t) = [n1(t), n2(t), . . . , nM(t)]T represents the impulsive noise vector which is not
correlated with signals. ZM×1(t) = [z1(t), z2(t), . . . , zM(t)]T is the measurement at time t, AM×P(t) =
[a(θ1), a(θ2), . . . , a(θP)]

T is array manifold, SP×1(t) = [s1(t), s2(t), . . . , sP(t)]
T denotes the acoustic

sources matrix, and

a
(
θp

)
=

[
1, e− j 2π

λ d sinθp , . . . , e− j 2π
λ (M−1)d sinθp

]
(2)

is the steering vector with λ denoting the wavelength of the carrier, and d is the array space.
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2.2. α Stable Distribution

Most of the traditional research methods estimating the DOA are based on Gaussian noise models.
In practical situations, such as radar echo and low-frequency atmospheric noise, they consist of
impulse noise with a short duration and large amplitude. The performance of the algorithm will
drop significantly when the Gaussian noise model is still modeled in an impulse noise environment.
The α stable distribution is a good example of such a type with significant spike noise and a Gaussian
distribution. The α stable distribution’s probability function does not have the closed form, which can
be conveniently described by its characteristic function as

φ(t) = e{ jat−γ|t|α[1+ jβsgn(t)$(t,α)]} (3)

where

$ =

{
tan απ

2 ,α , 1
2
π log|t|,α = 1

(4)

sgn(t) =


1, t > 0
0, t = 0
−1, t < 0

(5)

α is the characteristic exponent, whose size can affect the degree of impulse and the range is
0 < α ≤ 2. γ is a dispersion parameter whose mean is consistent with the variance of the Gaussian
distribution. β is a symmetric parameter, and the distribution at β = 0 is a symmetric α stable (SαS)
distribution. a is the positional parameter. When α = 2, β = 0, it is a Gaussian distribution model.
When α = 1, β = 0, it is the Cauchy distribution model. When α = 1/2, β = −1, it is the Pearson
distribution model. A crucial difference between the Gaussian distribution and the α stable distribution
is that the latter does not have second-order statistics so that its covariance is inaccurate.

3. MeMBer Bayesian Theory of DOA Tracking

3.1. Multi-Target Bayesian Theory

Assume that the state of the sources at time k is xk =
[
θk,

.
θk

]T
, where θk is the DOA and moves at

a speed of
.
θk rad/s. The state and number of sources are changing at time k + 1, which can be described

by RFS. From [20], the sources state set in multiple sources tracking can be regarded as an RFS, namely

Xk =
{
xk,1, · · · , xk,P(k)

}
(6)

where Xk represents a set of sources at time k, and the element of the set may be one or more or null.
Zk denotes the measurement set generated by all sources received time k, and the element is only one.

Single-target Bayesian filtering can be extended to multi-target tracking by modeling the above
source states and measured values. The single target posterior probability density function (pdf)
pk|k(xk|Z1:k) is replaced by the joint multi-target posterior pk|k(Xk|Z1:k). The Bayes joint filter recursion
includes two stages: prediction and update. The prediction and update at time k in [24] are

pk|k−1(Xk|Z1:k−1) =

∫
fk|k−1(Xk|Xk−1)pk−1|k−1(Xk−1|Z1:k−1)δXk−1 (7)

and

pk|k(Xk|Z1:k) =
g(Zk|Xk)pk|k−1(Xk|Z1:k−1)∫

g(Zk|Xk)pk|k−1(Xk|Z1:k−1)δXk
(8)

where δ is the set integral and Z1:k−1 represents all the measurement sets up to time k− 1. g(Zk|Xk) is a
multi-target joint likelihood function and fk|k−1(Xk|Xk−1) is a multi-target state transition probability
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density function. pk|k−1(Xk|Z1:k−1) represents the multi-target joint prediction probability density and
pk|k(Xk|Z1:k) is the multi-target joint posterior probability density function.

3.2. Multi-Target Multi-Bernoulli Filter

A Bernoulli set X has a probability 1− r of being a null set, and has a probability r of containing a
single element x that is distributed via a pdf s(·). The probability of a Bernoulli RFS can be expressed
in [21] as

π(X) =


1− r, X = ∅
rs(X), X = {x}
0, other

(9)

A Multi-Bernoulli RFS X can be considered as union of a fixed number of independent Bernoulli
sets that have existence probability r( j)

∈ (0, 1), j = 1, . . . J and the pdf s( j), such that

X =
J
∪

j=1
X( j) (10)

where the j th Bernoulli set is described by its two parameters: the existence probability r( j) and the pdf

s
(
X( j)

)
. So a Multi-Bernoulli RFS can be characterized by a posterior parameter set

{(
r( j)

k|k , sk|k

(
X( j)

k

))}Jk

j=1
,

where Jk|k indicates the number of sources. Zk =
[
z1,k, z2,k, . . . , zM,k

]T
denotes the sensor measurement

data and Zk ∈ Z, in whichZ is the measurement space of the sensor. Target birth and survival are
determined by birth probabilities pb,k(Xk) and survival probabilities ps,k(Xk), respectively. The source
motion model is represented by the transition probability density fk|k−1(Xk|Xk−1), and the prior
probability of Multi-Bernoulli is described as

p(Xk−1|Z1:k−1) ≈
{
r( j)

k−1|k−1, sk−1|k−1

(
X( j)

k−1

)}Jk−1

j=1
(11)

According to Equation (7), the prediction part can be described as

p(Xk|Z1:k−1) ≈
{
r̂( j)

k|k−1, ŝk|k−1

(
X( j)

k

)}Jk|k−1

j=1

=
{
r( j)

P,k|k−1, sP,k|k−1

(
X( j)

k|k−1

)}JP,k|k−1

j=1
∪

{
r( j)

B,k, sB,k

(
X( j)

k

)}JB,k

j=1

(12)

where
r̂( j)

k|k−1 =
(
1− r( j)

k−1|k−1

)
·

∫
pb,k

(
X( j)

k

)
sk−1|k−1

(
X( j)

k−1

)
dX( j)

k−1

+ r( j)
k−1|k−1 ·

∫
ps,k

(
X( j)

k−1

)
sk−1|k−1

(
X( j)

k−1

)
dX( j)

k−1

(13)

ŝk|k−1

(
X( j)

k|k−1

)
=

ps,k

(
X( j)

k−1

)
r( j)
k−1|k−1·

∫
fk|k−1

(
X( j)

k

∣∣∣∣X( j)
k−1

)
Sk−1|k−1

(
X( j)

k−1

)
dX( j)

k−1

r( j)
k|k−1

+
pb,k

(
X( j)

k

)
·

(
1−r( j)

k−1|k−1

)
·bk|k−1

(
X( j)

k

)
r( j)
k|k−1

(14)

where Jk|k−1 = JP,k|k−1 + JB,k, JP,k|k−1 = Jk−1. The number of Multi-Bernoulli parameter sets for survival
sources and newborn sources are represented by JP,k|k−1 and JB,k, respectively. According to Equation (8),

if the predicted Multi-Bernoulli parameter set can be expressed as
{
r̂( j)

k|k−1, ŝk|k−1

(
X( j)

k

)}Jk|k−1

j=1
, then the

update process can be expressed as

p(Xk|Z1:k) ≈
{
r( j)

k|k , sk|k

(
X( j)

k|k−1

)}Jk

j=1
(15)
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where

r( j)
k|k =

r̂( j)
k|k−1

∫
g
(
Zk

∣∣∣∣X( j)
k

)
ŝk|k−1

(
X( j)

k

)
dX( j)

k

1− r̂( j)
k|k−1 + r̂( j)

k|k−1

∫
g
(
Zk

∣∣∣∣X( j)
k

)
ŝk|k−1

(
X( j)

k

)
dX( j)

k

(16)

sk|k

(
X( j)

k

)
=

g
(
Zk

∣∣∣∣X( j)
k

)
ŝk|k−1

(
X( j)

k

)
∫

g
(
Zk

∣∣∣∣X( j)
k

)
ŝk|k−1

(
X( j)

k

)
dX( j)

k

(17)

where g(Zk|Xk) denotes the likelihood function. If the covariance of the general sensor array at time k
in Gaussian noise environment is Rk, the likelihood function can be expressed as

g(Zk|Xk) =
1

πMdet(Rk)
exp

(
−(Zk −A(Xk)Sk)

HR−1
k (Zk −A(Xk)Sk)

)
(18)

The frame of Formula (18) is not held in impulse noise, so we propose to replace the likelihood
function with a spatial spectrum method.

4. Improved Algorithm for Likelihood Function

In the practical engineering application, to guarantee the real-time and effectiveness of the
estimation, the observation matrix of the array is obtained with a limited number of snapshots.
Assuming L observations at time k, the array covariance matrix is calculated as R̂k = X(tk)X(tk)

H/L.
We assume that the noise vector N(t) is independent to the target signal and has a SαS distribution
with a characteristic exponent of α. From [25], if the array observation matrix Zk at time k is obtained,
the FLOM matrix is defined as

ψi, j = E
{
Zi, j(k)

∣∣∣Z j,i(k)
∣∣∣p−2

Z∗ j,i(k)
}

1 < p < α ≤ 2 (19)

where ψi, j represents the (i, j)th element of Ψk, and (·)∗ represents conjugate operation. The dimension
of matrix Ψk is M×M. In [25], the authors derived the form of the FLOM matrix as

Ψk = a(θk)RsaH(θk) + rIM (20)

where Rs and r represent the source and additive noise of the FLOM matrix, respectively. As can be
seen from Equation (20), the (i, j)th FLOM matrix element is defined as

ψi, j =

L∑
l=1

Zi(k)
∣∣∣Z j(k)

∣∣∣p−2
Z j
∗(k)

L
(21)

Fractional moment p must satisfy 1 < p < α ≤ 2. The FLOM is used to replace the covariance
matrix of the signal in impulse noise, and then the eigendecomposition is performed on Ψk in the
MUSIC algorithm to obtain the noise subspace Un. The form of the FLOM-MUSIC spatial spectrum
estimation function is

g(Zk|Xk) = PFLOM−MUSIC(Xk) =

∣∣∣∣∣∣ 1
aH(CXk)UnUnHa(CXk)

∣∣∣∣∣∣ζ (22)

where C = [1, 0], and the CXk represents source azimuth information. a(·) is a space vector, and
ζ ∈ R+ represents an exponential weighting of the spatial spectrum. The response of the traditional
MUSIC spatial spectral beamformer in an impulse noise environment is distorted, which can result in a
significant degradation in the performance of the resampling step. After being weighted, the particles
can be moved to the high likelihood region to the resampling performance.
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5. UT-MeMBer DOA Particle Filter Tracking Algorithm

In this section, we describe the particle filter implementation of the UT-MeMBer algorithm.

From [22], if the multi-target probability density parameter set at time k− 1 is
{(

r j
k−1|k−1, s j

k−1|k−1

)}Jk−1

j=1
,

then the spatial posterior probability density at time k− 1 and can be expressed as:

s( j)
k−1|k−1(x) =

Nk−1∑
i=1

ω
(i, j)
k−1 x(i, j)k−1 , j = 1, . . . , Jk−1 (23)

where s j
k−1|k−1 is the spatial posterior probability density, which can be approximated as the weighted

particle set
{
ω
(i)
k−1, x(i)k−1

}Nk−1

i=1
. Nk−1 is the total number of particles, where x(i)k−1 represents the state of

the i th particle, including angle and speed, i.e., x(i)k−1 =
[
θk−1,

.
θk−1

]T
. ω(i)

k−1 denotes the weight, usually

satisfying
∑Nk−1

i=1 ω
(i)
k−1 = 1.

According to (12), the spatial posterior probability density of the prediction step consists of two
items and can be written as

s( j)
k|k−1(x) =

Nk|k−1∑
i=1

ω
(i, j)
k|k−1x(i, j)k|k−1, j = 1, . . . , Jk|k−1 (24)

where Nk|k−1 = Nk−1 + NB,k and Jk|k−1 = Jp,k|k−1 + JB,k represent the number of predicted particles and
predicted MeMBer parameter sets, respectively. All particles can be sampled from two parts:

x(i, j)k|k−1 =

 x(i, j)k−1,UT, i = 1, . . . , Nk−1

βk(xk|Zk−1), i = Nk−1 + 1, . . . , Nk−1 + NB,k
(25)

Among them, NB,k denotes the number of newborn particles at time k, x(i, j)k−1,UT is obtained by

UT of x(i, j)k|k−1 [13]. Particle filtering suffers from missing sample diversity, resulting in depletion of
the sampled particles. In order to solve this problem, the surviving particles will be subjected to UT
operations. A set of sigma points with different weights are selected by UT operation, and then the
posterior probability density of the state is approximated by these sigma points. The weight is

ω
(i, j)
k|k−1 =


psr( j)

k−1|k−1

r( j)
k|k−1

·

fk|k−1

(
x(i, j)k|k−1

∣∣∣∣x(i, j)k−1|k−1

)
ρk

(
x(i, j)k|k−1

∣∣∣∣x(i, j)k−1|k−1,Zk

) ·ω(i, j)
k−1 , i = 1, . . .Nk−1

pb

(
1−r( j)

k−1|k−1

)
r( j)
k|k−1

·

bk|k−1

(
x(i, j)k|k−1

)
βk(x(i, j),Zk−1)

·
1
B , i = Nk−1 + 1, . . . , Nk−1 + B

(26)

where ps and pb represent the survival probability of particles and the newborn probability of particles,
respectively. Nk−1 is the number of surviving particles sampled from the transition probability density
fk|k−1, and B is the number of newborn particles from the proposal probability density βk. If the

prediction MeMBer parameter sets can be expressed as
{

r j
k|k−1,

{
ω
(i, j)
k|k−1, x(i, j)k|k−1

}Nk|k−1

i=1

}Jk|k−1

j=1
at time k,

then the update MeMBer parameter sets can be written as
{

r j
k|k,

{
ω
(i, j)
k , x(i, j)k

}Nk

i=1

}Jk

j=1
. The weight is

ω
(i, j)
k = pD,k

(
x(i, j)k|k−1

)
· g

(
Zk

∣∣∣∣x(i, j)k|k−1

)
·ω

(i, j)
k|k−1 (27)
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where pD,k is the detection probability, and the likelihood function g
(
Zk

∣∣∣∣x(i, j)k|k−1

)
calculated by the MUSIC

algorithm can be expressed as

g
(
Zk

∣∣∣∣x(i, j)k|k−1

)
= PFLOM−MUSIC

(
Cx(i, j)k|k−1

)
=

∣∣∣∣∣∣∣∣∣∣
1

a
(
Cx(i, j)k|k−1

)H
UnUH

n a
(
Cx(i, j)k|k−1

)
∣∣∣∣∣∣∣∣∣∣
ζ

(28)

where C = [1,0], and Cx(i, j)k|k−1 represents the azimuth angle information, ζ is the exponential weighting
factor. Un represents the noise subspace obtained by the MUSIC algorithm. The steps of the UT-MeMBer
DOA particle filter tracking algorithm are shown in Algorithm 1.

Algorithm 1 UT-MeMBer DOA particle filter tracking algorithm

Input:

{r( j)
k−1|k−1,

{
ω
(i, j)
k−1 , x(i, j)k−1

}Nk−1

i=1

}Jk−1

j=1
, Zk


Time Update
1. Predict the existence probability: r j

k|k−1 = r j
P,k|k−1 + r j

B,k.

where r j
P,k|k−1 = r j

k−1 ·
∑Nk−1

i=1 ω
(i, j)
k−1 · ps,k

(
x(i, j)k−1

)
denotes the existence probability of survival model,

r j
B,k =

(
1− r j

k−1

)
·
∑NB,k

i=1 ω
(i, j)
k−1 · pb,k

(
x(i, j)k−1

)
represents the existence probability of newborn model.

2. Calculate the predicted state of surviving particles:
[{

x(i, j)k|k−1

}Nk−1

i=1

]
= UT

[{
x(i, j)k−1

}Nk−1

i=1

]
.

-Calculate the array flow matrix A
(
Cx(i, j)k−1

)
;

-Calculate the amplitude of the signal S =
[
A(θ)HA(θ)

]−1
A(θ)HZk;

-Calculate the noise variance σ2 = 1
P

P∑
p=1

∣∣∣Zk −A(θ)S
∣∣∣2;

-Select a weighted sample point of 2nx + 1 for each particle x(i, j)k−1 , where

χ0 = x(i, j)k−1 , W0 = κ/(nx + κ)s= 0

χs = x(i, j)k−1 +
(√

(nx + κ)σ2
)
, Ws = κ/2(nx + κ)s= 1, . . . , nx

χs = x(i, j)k−1 −
(√

(nx + κ)σ2
)
, Ws = κ/2(nx + κ)s = nx + 1, . . . , 2nx

,

κ = 5 is a secondary scaling parameter, nx = 2.
-Each sigma point propagates through a nonlinear function: γs = fk|k−1(χs), s = 1, . . . , 2nx;

-Compute the mean and covariance of γs: ψ =
2nx∑
s=0

Wsγs, P =
2nx∑
s=0

Ws
(
γs −ψ

)(
γs −ψ

)T
;

-Obtain: x(i, j)k|k−1 ∼ N
(
ψ, P

)
;

3. Construct a newborn target weighted particle: x(i, j)k|k−1 ∼ βk(xk|Zk−1), i = Nk−1 + 1, . . . , Nk−1 + NB,k.

4. Calculate the prediction weight ω(i, j)
k|k−1, i = 1, . . . , Nk|k−1 according to (26).

5. Unite weighted particle set:{(
x(i, j)k|k−1,ω(i, j)

k|k−1

)Nk|k−1

i=1

}Jk|k−1

j=1
=

{(
x(i, j)p,k−1,ω(i, j)

p,k−1

)Nk−1

i=1

}Jk−1

j=1
∪

{(
x(i, j)B,k ,ω(i, j)

B,k

)NB,k

i=1

}JB,k

j=1
where Jk|k−1 = Jk−1 + JB,k, Nk|k−1 = Nk−1 + NB,k.

Measurements Update

6. For each particle x(i, j)k|k−1, Calculate the likelihood function g
(
Zk

∣∣∣∣x(i, j)k|k−1

)
according to (28).

7. Update existence probability:

r j
k|k =

r j
k|k−1·

Nk|k−1∑
i=1

g
(
Zk

∣∣∣∣x(i, j)k|k−1

)
ω
(i, j)
k|k−1pD,k

(
x(i, j)k|k−1

)
1−r j

k|k−1+r j
k|k−1·

Nk|k−1∑
i=1

g
(
Zk

∣∣∣∣x(i, j)k|k−1

)
ω
(i, j)
k|k−1pD,k

(
x(i, j)k|k−1

) . where j = 1, · · · , Jk|k−1.

8. The updated weight is calculated by (27) and normalized ω(i, j)
k = ω̃

(i, j)
k /

(∑Jk|k−1

j=1
∑Nk|k−1

i=1 ω̃
(i, j)
k

)
.

Resample Step

9.
{(

x(i, j)k|k−1,ω(i, j)
k|k−1

)Nk|k−1

i=1

}Jk|k−1

j=1
→

{(
x(i, j)k ,ω(i, j)

k

)Nk

i=1

}Jk

j=1
.

Output:
{

r j
k,

(
x(i, j)k ,ω(i, j)

k

)Nk

i=1

}Jk

j=1
.
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Algorithm 1 gives the pseudo-code of UT-MeMBer DOA particle filter tracking algorithm.
The prediction is made in steps 1–5. Step 6 calculates each predicted particle likelihood function which
is replaced by the MUSIC spatial spectral function. The update existence probability is calculated in
step 7. Step 8 calculates the normalized weight. Particle resampling is performed in step 9. The particle

set
{{
ω
(i, j)
k , x(i, j)k

}Nk

i=1

}Jk

j=1
approximates the spatial probability density function s j

k|k, and the estimation

of updated source can be expressed as xk =
∑N

i=1 ω
(i, j)
k · x(i, j)k .

6. Simulation Results

Since the traditional MUSIC algorithm cannot solve the multi-source tracking problem when
target number is varying, this paper uses FLOM matrix to substitute the covariance matrix to
obtain the corresponding MUSIC spatial spectrum, which can be as the particle likelihood function.
We proposed a UT-MeMBer DOA tracking algorithm under RFS framework, which can be named as
UT-MB-FLOM-MUSIC algorithm. The Generalized Signal to Noise Ratio (GSNR) is defined as

GSNR = 10 log
(
E
{ ∣∣∣s(k)∣∣∣2}/γ

)
(29)

where γ represents the noise dispersion parameter, and GSNR represents the ratio of signal intensity
and noise dispersion. In the simulation, different characteristic indices α describe the degree of impact
of different noises.

In the following simulation experiments, the estimated performance is evaluated by the root mean
square error (RMSE), which is defined as

RMSE =
1
P

P∑
p=1

1
MC

MC∑
j=1


√√√

1
K

K∑
i=1

(
xi j − xi j

)2

 (30)

where xi j and xi j represent the estimated values and real values of the azimuth angle in the jth Monte
Carlo (MC) simulation experiment at time i, respectively, and P indicates the number of sources at time
i.

Assuming that the sources xk =
[
θk(t),

.
θk(t)

]T
move with a constant velocity

.
θk(t) rad/s,

the constant velocity (CV) model is given as

xk = Fkxk−1 + Gvk (31)

where the transfer matrix Fk and G are defined by

Fk =

[
1 ∆T
0 1

]
; G =

[
∆T2/2

∆T

]
(32)

respectively, where ∆T = 1s denotes the time step, and vk is a zero-mean real Gaussian process used to
model the disturbance on the source velocity, i.e., vk ∼ N(0, Σk) with Σk = 1.

Experimental conditions are as follows: The number of array elements is M = 10, d = λ/2,
the observation time is K = 50 s , L = 100, GSNR = 10 dB, MC = 100, and ξ = 5. The source
survival probability ps,k(xk) = 0.99, and the source detection probability pD,k(xk) = 0.98. In the
UT-MB-FLOM-MUSIC algorithm prediction step, we assume that there are six new sources at each
time, i.e., JB,k = 6, all obeying a uniform distribution on [−π/2 , π/2] and each new source produces
300 particles, i.e., NB,k = 300. In the update step, the MUSIC spatial spectral function is used to replace
the likelihood function and is exponentially weighted, which improves the feasibility of the algorithm.
In the impulse noise model, the noise is Gaussian noise when α = 2. The DOA estimation method
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based on the MeMBer can be named as MB-MUSIC algorithm, and the DOA estimation method based
on the MeMBer of FLOM vector can be named as MB-FLOM-MUSIC algorithm.

6.1. Scenario 1: The Number of Targets Is Not Time-Varying

Consider a linear multi-source scenario with two sources. Since the PASTD algorithm cannot
track the time-varying target, all the target survival time are 1–50 s. The initial source state are
x1 = [−30;−0.5], and x2 = [5; 0.5].

Figure 1a shows the RMSE of angles for four algorithms when running 100 MC at α = 2,
GSNR = 10 dB, and Figure 1b shows two source trajectories for a single MC. It can be seen from
Figure 1a that the UT-MB-FLOM-MUSIC algorithm proposed in this paper is obviously better than the
traditional PASTD and has the highest accuracy when the number of targets is constant. It can be seen
in Figure 1b that the algorithm can effectively track the target trajectory, while the PASTD algorithm
deviates from the real trajectory at several times.Sensors 2019, 19, x FOR PEER REVIEW 10 of 16 
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We show the RMSE for tracking the multi-source motion when α = 1.3, GSNR = 10 dB, MC = 100,
and L = 100 in Figure 2a. It can be seen from Figure 2a that the RMSE of the UT-MB-FLOM-MUSIC
algorithm is smaller than that of the other three algorithms. The accuracy of the MB-MUSIC algorithm
is significantly reduced in impulse noise, and the PAST algorithm is more accurate than MB-MUSIC.
It can be seen from Figure 2b that the MB-MUSIC algorithm cannot effectively track the target
trajectory in impulse noise, and the PASTD algorithm also has the problem of inaccurate target tracking.
Based on the fact that the above target numbers are unchanged, we will analyze the target time-varying
DOA tracking.

6.2. Scenario 2: The Number of Targets Is Time-Varying

Consider a linear multi-source scenario with three sources. The number of sources is time-varying
due to births and deaths, the survival time of the four sources is 1–50 s, 10–50 s, 20–45 s, and the initial
source states are x1 = [−30;−0.5], x2 = [5; 1.0], and x3 = [60;−2.0].

Figure 3a shows the RMSE of angles for three algorithms for running 100 MC at α = 2, L = 100
and GSNR = 10 dB, and Figure 3b shows three sources trajectory for a single MC. It can be seen from
Figure 3 that the likelihood function of the MUSIC spatial spectrum instead of the Multi-Bernoulli
particle filter update stage can effectively estimate the target number and motion state, and also verify
the feasibility of the literature [14] in the Gaussian noise environment. Although the error is large
at time 35, the overall error is below 2 degrees. It can also be seen from Figure 3a that the RMSE
of the UT-MB-FLOM-MUSIC algorithm is also smaller than other algorithms even in the Gaussian
noise environment.
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Figure 3. RMSE of angle under α = 2, L = 100 and GSNR = 10 dB: (a) The RMSE of 100 MC; (b) source
trajectory of Single MC.

Since Gaussian noise does not reflect true signal interference, the α stable distribution can reflect
the impact of impulse noise. Figure 4 shows the RMSE and cardinality estimation error plots for
three algorithms running 100 MC when the characteristic index α is different and the GSNR = 10 dB,
L = 100. It can be seen from Figure 4a that, in α = 1.1 ∼ 1.9, the RMSE error of the three estimation
algorithms first decreases, and finally tends to be flat. It also can be seen that the RMSE of the
UT-MB-FLOM-MUSIC algorithm is significantly smaller than the MB-FLOM-MUSIC and MB-MUSIC
algorithms when α = 1.1 or α = 1.2, so that the UT-MB-FLOM-MUSIC algorithm has a better effect
when handling the impulse noise environment. Since the characteristic index is close to 2 when α = 1.8
or α = 1.9, Figure 4b shows that the cardinality estimation error of the three algorithms approaches 0.
It also shows that it is feasible to use the MUSIC spatial spectrum as a substitute for the likelihood
function when the noise environment is close to Gaussian noise while the MUSIC algorithm cannot
effectively estimate the number of targets in an impulse noise environment.

In Figure 5, we show the RMSE and cardinality estimation for tracking the multi-source motion
when α = 1.3 and GSNR = 10 dB, MC = 100. It can be seen from Figure 5 that the RMSE of the
UT-MB-FLOM-MUSIC algorithm is smaller than that of the other two algorithms. Although the RMSE
will increase when the new target appears or disappears, it will decrease rapidly at the next time step.
This phenomenon shows that the Multi-Bernoulli filter has a large recognition performance for the
target and can quickly track the state of the target. Table 1 shows the RMSE and computing performance
of the MB-MUSIC algorithm, MB-FLOM-MUSIC algorithm and the UT-MB-FLOM-MUSIC algorithm
at one MC.
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Table 1. Running Time (CV model).

Algorithm RMSE Running Time/s

MB-MUSIC 7.6012 2.94
MB-FLOM-MUSIC 1.1396 9.59

UT-MB-FLOM-MUSIC 0.2698 114.67

The operating environment includes an Intel (R) Core (TM) i5-8500 CPU @ 3.00 GHz processor and
a 64-bit operating system MATLAB 2014. It can be seen from Table 1 that the UT-MB-FLOM-MUSIC
algorithm RMSE is smaller than other algorithms when the running time is too long.

Figure 6 analyzes the RMSE and probability of convergence (PROC) for three algorithms running
100 MC when α = 1.3 and GSNR = 0–16 dB. where PROC = 1

K
∑K

i=1
∑MC

j=1 1i j/MC× 100%, and 1i j is

defined as 1i j =

{
1,

∣∣∣xi j − xi j
∣∣∣ < ε

0, otherwise
. let ε = 1. It can be seen from Figure 6a that the MB-FLOM-MUSIC

and UT-MB-FLOM-MUSIC algorithms have higher accuracy than the MB-MUSIC in an impulse noise
environment, and the UT-MB-FLOM-MUSIC algorithm has higher accuracy under the high GSNR.
It can be seen form Figure 6b that as the SNR increases, the PROC increases. And at the same GSNR,
the performance of the MB-FLOM-MUSIC algorithm is more significant.
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Figure 7 shows the RMSE of three algorithms running 100 MC when α = 1.3 and the snapshot
number L = 50, 100, 150. It can be seen that the UT-MB-FLOM-MUSIC algorithm has the smallest
RMSE and it works best when the snapshot number is L = 150.
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6.3. Scenario 3: The Number of Targets Is Time-Varying and Maneuvering

Consider a nonlinear multi-source scenario with three sources. The number of sources is
time-varying due to births and deaths, and the survival time of the three sources is 1–50 s, 10–50 s,
20–45 s, and the initial source state are x1 = [−30;−0.5], x2 = [5; 1.8], and x3 = [60;−2.0]. The state
transition matrix of the collaborative turning (CT) model is

Fk =

[
1 sin(Tω)/ω
0 cos(Tω)

]
(33)

where ω = 0.25 rad and other experimental conditions are the same as scenario 1.
Figure 8 shows the maneuvering target trajectory of three algorithms running one MC when

α = 1.3, L = 100, and GSNR = 10 dB. It can be clearly seen from Figure 8 that the three methods
lose the target when the target crosses at time 33, but after time 36, the MB-FLOM-MUSIC algorithm
and the UT-MB-FLOM-MUSIC algorithm can still capture the target state. Compared with the
MB-FLOM-MUSIC algorithm, the target state estimation value of the UT-MB-FLOM-MUSIC algorithm
is closer to the true value.
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matrix of the collaborative turning (CT) model is  

( )
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ω ω

ω
 

=  
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0 cosk

T
T

F  (33) 

where ω = rad0.25  and other experimental conditions are the same as scenario 1. 
Figure 8 shows the maneuvering target trajectory of three algorithms running one MC when α 

= 1.3, L = 100, and GSNR = 10 dB. It can be clearly seen from Figure 8 that the three methods lose the 
target when the target crosses at time 33, but after time 36, the MB-FLOM-MUSIC algorithm and the 
UT-MB-FLOM-MUSIC algorithm can still capture the target state. Compared with the MB-FLOM-
MUSIC algorithm, the target state estimation value of the UT-MB-FLOM-MUSIC algorithm is closer 
to the true value. 
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In Figure 9, we show the RMSE and cardinality estimation for tracking the multi-source motion
when α = 1.3 and GSNR = 10 dB, MC = 100. It can be seen from Figure 9a that the RMSE of the
UT-MB-FLOM-MUSIC algorithm is smaller than that of the other two algorithms. As can be seen from
Figure 9b, when the target is maneuvering, the target is not captured by the three algorithms from time
33, but after time 36, the MB-FLOM-MUSIC algorithm and UT-MB-FLOM-MUSIC algorithm can still
estimate the number of targets in time. Compared with the result of Figure 5b, the performance to
capture targets of the UT-MB-FLOM-MUSIC algorithm is significantly weakened.
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Table 2 shows the RMSE and computing performance of the MB-MUSIC algorithm,
MB-FLOM-MUSIC algorithm and the UT-MB-FLOM-MUSIC algorithm. Compared with the results
in Table 1, the RMSE and running time of the three algorithms are increased when the target is
maneuvered. The RMSE of UT-MB-FLOM-MUSIC algorithm is smaller than other two algorithms
when the running time is long.

Table 2. Running Time (CT model).

Algorithm RMSE Running Time/s

MB-MUSIC 8.7728 3.67
MB-FLOM-MUSIC 1.3198 10.73
UT-MB-FLOM-MUSIC 0.6102 135.30



Sensors 2019, 19, 4031 14 of 15

7. Conclusions

A DOA tracking algorithm based on the UT-MeMBer particle filter in an impulse noise environment
is proposed in this paper. Since the FLOM matrix is used instead of the covariance matrix, the spatial
spectrum based on FLOM can well reflect the real DOA in impulse noise environment. For the
persistent surviving particles, the sigma point is selected by UT to approximate the posterior density
of the state to improve the performance of the particle. Then, the MUSIC spatial spectral function
of the FLOM matrix is used to represent the likelihood function of the particle. And the weighting
of the likelihood function can further increase the weight of the particles in the high likelihood
region. The results show that the UT-MB-FLOM-MUSIC algorithm is more effective than the PASTD,
MB-MUSIC, and MB-FLOM-MUSIC algorithms in an impulse noise environment. The advantage of
this algorithm is that the MeMBer filter can operate the array data more directly, and can effectively
track the target number of time-varying DOA. The shortcoming of this algorithm is that it takes a long
time. Our future work will focus on how to improve the efficiency of the algorithm, maneuvering
target tracking in other noisy environments, etc.

Author Contributions: The work presented here was carried out in collaboration between follow authors. S.-y.W.,
R.-h.C., and Q.-t.X. defined the research theme. J.Z. and X.-d.D. designed the methods and experiments, carried
out the simulation experiments. J.Z. interpreted the results and wrote the paper.

Funding: This work is supported by National Natural Science Foundation of China (Grant 61561016, 61962012),
Guangxi Natural Science Foundation (Grant 2016GXNSFAA380073), Guangxi Key Laboratory of Cryptography
and Information Security (GCIS201611), Guangxi Colleges and Universities Key Laboratory of Data Analysis and
Computation, and the GUET Excellent Gradute Thesis Program (Grant 17YJPYSS23).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, H.; Viberg, M. Two decades of array signal processing research. IEEE Signal Process. Mag. 1996, 13,
67–94.

2. Van Trees, H.L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory; John Wiley
& Sons: Hoboken, NJ, USA, 2004.

3. Zhou, C.; Gu, Y.; Fan, X.; Shi, Z.; Mao, G.; Zhang, Y.D. Direction-of-Arrival Estimation for Coprime Array via
Virtual Array Interpolation. IEEE Trans. Signal Process. 2018, 22, 5956–5971. [CrossRef]

4. Zhou, C.; Gu, Y.; Shi, Z.; Zhang, Y.D. Off-Grid Direction-of-Arrival Estimation Using Coprime Array
Interpolation. IEEE Signal Process. Lett. 2018, 25, 1710–1714. [CrossRef]

5. Shi, Z.; Zhou, C.; Gu, Y.; Goodman, N.A.; Qu, F. Source estimation using coprime array: A sparse
reconstruction perspective. IEEE Sens. J. 2017, 17, 755–765. [CrossRef]

6. Zhou, C.; Gu, Y.; Zhang, Y.D.; Shi, Z.; Jin, T.; Wu, X. Compressive Sensing based Coprime Array
Direction-of-Arrival Estimation. IET Commun. 2017, 11, 1719–1724. [CrossRef]

7. Yang, B. Projection approximation subspace tracking. IEEE Trans. Signal Process. 1995, 43, 95–107. [CrossRef]
8. Yang, B. Convergence analysis of the subspace tracking algorithms PAST and PASTD. In Proceedings of the

IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta, GA, USA, 9 May 1996;
pp. 1759–1762.

9. Chan, S.C.; Wen, Y.; Ho, K.L. A robust past algorithm for subspace tracking in impulsive noise. IEEE Trans.
Signal Process. 2006, 54, 105–116. [CrossRef]

10. Liao, B.; Zhang, Z.G.; Chan, S.C. A New Robust Kalman Filter-Based Subspace Tracking Algorithm in an
Impulsive Noise Environment. IEEE Trans. Circuits Syst. II Express Briefs 2010, 57, 740–744. [CrossRef]

11. Chan, S.C.; Zhang, Z.G.; Zhou, Y. A new adaptive Kalman filter-based subspace tracking algorithm and
its application to DOA estimation. In Proceedings of the IEEE International Symposium on Circuits and
Systems, Island of Kos, Greece, 21–24 May 2006; pp. 129–132.

12. Nikias, C.L.; Shao, M. Signal Processing with Alpha-Stable Distributions and Applications; John Wiley and Sons
Inc.: Hoboken, NJ, USA, 1995; pp. 10–15.

13. Zha, D.; Qiu, T. Underwater sources location in non-Gaussian impulsive noise environments.
Digit. Signal Process. 2006, 16, 149–163. [CrossRef]

http://dx.doi.org/10.1109/TSP.2018.2872012
http://dx.doi.org/10.1109/LSP.2018.2872400
http://dx.doi.org/10.1109/JSEN.2016.2637059
http://dx.doi.org/10.1049/iet-com.2016.1048
http://dx.doi.org/10.1109/78.365290
http://dx.doi.org/10.1109/TSP.2005.861072
http://dx.doi.org/10.1109/TCSII.2010.2056414
http://dx.doi.org/10.1016/j.dsp.2005.04.008


Sensors 2019, 19, 4031 15 of 15

14. Shao, M.; Nikias, C.L. Signal processing with fractional lower order moments: Stable processes and their
applications. IEEE Proc. 1993, 81, 986–1010. [CrossRef]

15. Li, S.; He, R.; Lin, B.; Sun, F. DOA estimation based on sparse representation of the fractional lower order
statistics in impulsive noise. IEEE CAA J. Autom. Sin. 2018, 5, 98–106. [CrossRef]

16. Shi, Y.; Mao, X.P.; Qian, C.; Liu, Y.T. Robust relaxation for coherent DOA estimation in impulsive noise.
IEEE Signal Process. Lett. 2019, 3, 410–414. [CrossRef]

17. Zhang, J.; Qiu, T. A robust correntropy based subspace tracking algorithm in impulsive noise environments.
Digit. Signal Process. 2017, 62, 168–175. [CrossRef]

18. Risfic, B.; Arulampalam, S.; Gordon, N. Beyond the Kalman Filter: Particle Filters for Tacking Application;
Artech House: London, UK, 2004; pp. 35–62.

19. Zhong, X.; Premkumar, A.B.; Madhukumar, A.S. Particle filtering for acoustic source tracking in impulsive
noise with alpha-stable process. IEEE Sens. J. 2012, 13, 589–600. [CrossRef]

20. Mahler, R. Statistical Multi-Source Multi-Target Information Fusion; Artech House, Inc.: London, UK, 2007;
pp. 228–234.

21. Ristic, B.; Vo, B.T.; Vo, B.N.; Farina, A. A Tutorial on Bernoulli Filters: Theory, Implementation and
Applications. IEEE Trans. Signal Process. 2013, 61, 3406–3430. [CrossRef]

22. Zhang, G.; Zheng, C.; Sun, S.; Liang, G.; Zhang, Y. Joint Detection and DOA Tracking with a Bernoulli Filter
Based on Information Theoretic Criteria. Sensors 2018, 18, 3473. [CrossRef] [PubMed]

23. Vo, B.T.; Vo, B.N.; Cantoni, A. The cardinality balanced multi-target Multi-Bernoulli filter and its implementations.
IEEE Trans. Signal Process. 2009, 57, 409–423.

24. Choppala, P.B.; Teal, P.D.; Frean, M.R. Adapting the Multi-Bernoulli filter to phased array observations
using MUSIC as pseudo-likelihood. In Proceedings of the International Conference on Information Fusion,
Salamanca, Spain, 7–10 July 2014; pp. 1–6.

25. Tsakalides, P.; Nikias, C.L. The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing
estimation in impulsive noise environments. IEEE Trans. Signal Process. 2002, 44, 1623–1633. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/5.231338
http://dx.doi.org/10.1109/JAS.2016.7510187
http://dx.doi.org/10.1109/LSP.2018.2889913
http://dx.doi.org/10.1016/j.dsp.2016.11.011
http://dx.doi.org/10.1109/JSEN.2012.2223209
http://dx.doi.org/10.1109/TSP.2013.2257765
http://dx.doi.org/10.3390/s18103473
http://www.ncbi.nlm.nih.gov/pubmed/30326658
http://dx.doi.org/10.1109/78.510611
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Formulation 
	Array Signal Model 
	 Stable Distribution 

	MeMBer Bayesian Theory of DOA Tracking 
	Multi-Target Bayesian Theory 
	Multi-Target Multi-Bernoulli Filter 

	Improved Algorithm for Likelihood Function 
	UT-MeMBer DOA Particle Filter Tracking Algorithm 
	Simulation Results 
	Scenario 1: The Number of Targets Is Not Time-Varying 
	Scenario 2: The Number of Targets Is Time-Varying 
	Scenario 3: The Number of Targets Is Time-Varying and Maneuvering 

	Conclusions 
	References

