
sensors

Article

A Lane Detection Method Based on a Ridge Detector
and Regional G-RANSAC

Zefeng Lu †, Ying Xu *,† , Xin Shan, Licai Liu, Xingzheng Wang and Jianhao Shen

College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China;
luzefeng_work@163.com (Z.L.); shanxin6812@126.com (X.S.); saiiasllc@163.com (L.L.);
xingzheng.wang@szu.edu.cn (X.W.); shenjianhao@email.szu.edu.cn (J.S.)
* Correspondence: yxu@szu.edu.cn; Tel.: +86-0755-2653-2036
† These authors contributed equally to this work.

Received: 6 August 2019; Accepted: 16 September 2019; Published: 18 September 2019
����������
�������

Abstract: Lane detection plays an important role in improving autopilot’s safety. In this paper,
a novel lane-division-lines detection method is proposed, which exhibits good performances in
abnormal illumination and lane occlusion. It includes three major components: First, the captured
image is converted to aerial view to make full use of parallel lanes’ characteristics. Second, a
ridge detector is proposed to extract each lane’s feature points and remove noise points with an
adaptable neural network (ANN). Last, the lane-division-lines are accurately fitted by an improved
random sample consensus (RANSAC), termed the (regional) gaussian distribution random sample
consensus (G-RANSAC). To test the performances of this novel lane detection method, we proposed
a new index named the lane departure index (LDI) describing the departure degree between true
lane and predicted lane. Experimental results verified the superior performances of the proposed
method over others in different testing scenarios, respectively achieving 99.02%, 96.92%, 96.65% and
91.61% true-positive rates (TPR); and 66.16, 54.85, 55.98 and 52.61 LDIs in four different types of
testing scenarios.

Keywords: lane division lines’ detection; ridge detector; BP neural network; feature extraction; RANSAC

1. Introduction

Lane-division line detection plays a critical role in improving the safety level of intelligent electric
vehicles (IEVs). Currently, there are two main methods to detect lane-division-lines: feature-based detection
and model-based detection. Feature-based detection extracts the edge location distribution, connected
shadow area, color and texture differences from graphs to detect lane-division-lines [1–3]. Zhang proposed
a Hough transform based fitting-lane method for tracking [4]. Yoo used gradient-enhancing conversion for
illumination-robust lane detection [5]. Geiger designed a Bayes model to discriminate lane-division line
pixels from other pixels [6]. Peng proposed a lane-division line detection method with the statistical Hough
transform based on a gradient constraint [7]. To extract significant features, Ma converted the color space of
RGB to the CIELab color model and detected the lane-division-lines by using k-means clustering [8]. Son
proposed a lane detection method based on the color feature and clustering method [9]. Jung proposed a
lane-division line detection method based on the Haar feature [10]. Wang used lane detection by combining
the self-clustering algorithm, fuzzy C-mean, and fuzzy rule to process the spatial information and Canny
algorithm to extract edge features [11]. Other feature-based detection methods [12–17] also achieved good
performances in normal-conditions scenarios; however, the main drawback of this approach is that it is
easily disturbed by noise, as it ignores the model of the lane-division-lines.

Aiming to solve this shortcoming, many model-based detection methods are proposed. Zhou
proposed a novel lane detection method based on the geometrical model and Gabor filter [18]. Wang
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proposed a lane detection approach based on inverse perspective mapping [19]. Baofeng proposed
a detection system with a linear approximation method [20]. Although lane-division-lines detection
technology has shown great development [21–26], feature extraction is still heavily influenced by complex
road situations, such as light variance, under-road road signs and shadow interference [27]. Hence,
more researchers are focusing on deep learning-based detection methods [28–32], which are showing
better results, but these models heavily depend on the quality of training samples [33]. The artificial
neural network is applied to remove noise from the image or feature map. Rashidha proposed an
adaptive-size median filter for pulse noise removal based on a neural network [34]. With the development
of computation, a deeper neural network was applied to reduce noise in samples. Kim Y proposed an
adaptive filter based convolutional neural network [35]. Kuang removed noise by a deep convolution
neural network, which showed good performances in various, unknown-noise scenarios [36].

In this paper, we aim to solve this problem by combining the advantages of feature detection and
model detection methods. In particular, we propose a ridge detector to extract ridges from the aerial
view map. Then, we remove the noise according to the lane-division-lines model. A sample set is
generated by combining a ridge-positive sample and a noise-negative sample. In order to improve
the robustness of the ridge detector, we fully utilize the information between frames. Specifically, we
design a six-dimensional feature for each sample point to retrain a three-layer backpropagation (BP)
neural network of each ten frames [37]. The six-dimensional feature consists of the abscissa; ordinate
values; 3 × 3 convolution filter, 7 × 7 convolution filter and 11 × 11 convolution filter feature values;
and the frequency within ten frames. We use the detection data set to update the neural network
weights in real-time for the next ten frames’ detection. The confidence level for each of the ridge
points is decided based on the results of ridge detector. The confidence values are decided by the
corresponding pixels of the two-dimensional Gaussian distribution’s covariance matrix. To robustly fit
the ridge points, we sample three ridge points from three different areas then generate k new points by
two-dimensional Gaussian inverse-transformation sampling for each selected ridge point. Last, we fit
the 3k + 3 points by the random sample consensus (RANSAC) algorithm, in which the least-squares’
objective function is solved by the stochastic sub-gradient descent (SGD). In this research, we used an
adaptable neural network (ANN) to discriminate noise and ridge points, and improved the traditional
RANSAC algorithm by considering the confidence of remaining ridge-feature points.

The remainder of this paper is organized as follows. In Section 2, related work is introduced.
In Section 3, the lane-division line feature extraction method, based on an adaptable ridge detector
and the between-frames neural network, is proposed, and the regional gaussian distribution random
sample consensus (G-RANSAC) fitting method is proposed as well. The experimental results are
shown in Section 4, and finally, the conclusion is drawn in Section 5.

Nomenclature: Let I stand for real matrix of an image; Ii, j stands for the row i column j element of
matrix I. h and w represent for height and width of an image, respectively. Symbol ⊗ represents for
convolution operation; min(I) and max(I) represent the minimum and maximum element of matrix
I, respectively.

2. Related Work

Lane-division lines can be detected using a static camera sensor or vehicle-mounted camera sensor.
For the static camera sensor, the application scenarios include precise vehicle positioning and intelligent
transportation. The main methods include method are based on the trajectories of vehicles [38,39]
and pixel-entropy [40]. For the vehicle-mounted camera sensor, the application scenarios include
intelligent vehicles and advanced driver assistant systems (ADAS) [41,42]. In this paper, we focus on
lane-division line detection based on vehicle-mounted camera sensor.

Lane detection methods based on a moving camera sensor are divided into two steps, lane
feature extraction, and feature points fitting. For feature extraction, Sobel and Canny edge features are
usually used as the lane division lane feature, but the edge feature is susceptible to noise interference.
To solve this problem, a ridge detected method based on ridge-feature is proposed [43], which contains
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two matrix-convolution operations, two matrix-differential operations, three matrix-point product
operations, and a divergence calculation. In this paper, we propose a simpler ridge detection method
based on lane width with better results in real time, as shown in Section 4.1.

For feature point fitting, Hough transform is the usual method [15], but it is an inefficient method,
thus J Guo proposed a lane-division, lane-feature-fitting method based on RANSAC [44]. The main
steps of this method are the following: (1) Fewer fitting points are selected randomly from the whole
point set. (2) The model is fit based on the selected points in step 1 by the least-square method. (3) Step
1 is repeated until the maximum iterative number is reached. (4) The best fitting model from multiple
iterations is selected, according to whole point set’s lowest error. Compared with Hough transform,
this method improves fitting efficiency. However, randomly selecting fitting points from whole feature
points is a bad strategy for lane detection; the reason is illustrated in Figure 9b. Therefore, in Section 3.4
of this paper, we propose to divide the ridge-feature map into three regions, and then resample, based
on the Gaussian distribution according to ridge coefficient. The experimental results show significantly
improved fitting efficiency.

3. Materials and Methods

The detection algorithm is proposed here, which is divided into five sub-sections, as shown in
Figure 1. In Section 3.1, a graphical preprocessing method based on inverse perspective transformation
is presented to obtain the aerial view map. In Section 3.2, a feature extraction method based on
an adaptable ridge detector is developed to extract the feature of ridges in the lane-division-lines.
In Section 3.3, we extract a six-dimensional feature for each pixel to attain the neural network, which
is used to discriminate between noise and ridge points. In Section 3.4, the regional G-RANSAC is
proposed to robustly fit the lane-division-lines. In Section 3.5, we propose a new index, named the
lane departure index (LDI), to test the performances of this lane detection method.
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3.1. A Graphical-Preprocessing-Method Based Inverse-Perspective Transformation

As the frame captured from the camera is an RGB-image with noise, preprocessing methods consist
of a gray image transformation and using a 5 × 5 median filter to reduce image noise. However, there
are many additional interferences from image background information. Therefore, we select the region
of interest (ROI) by inverse perspective transformation to attain the aerial view map, which eliminates
perspective-side effects. According to the lane-division line standard [43], we choose a 35 m by 11.5 m
region in the Cartesian coordinate system. The principle of the inverse perspective transformation is
shown in Figure 2; (xv, yv, zv) represents the vehicle coordinate system and (c, r) represents the image
coordinate system. In the inverse perspective transformation, we convert the image coordinate system
(c, r) into a real-world, three-dimensional coordinate system (xv, yv, 0). The transforming relationship
is described as follows: xv = hcTG

(
2α

sx−1 r− α+ θ
)

sin
(

2α
sx−1 c− α+ γ

)
+ d

yv = hcTG
(

2α
sy−1 r− α+ θ

)
cos

(
2α

sy−1 c− α+ γ
)
+ l

c ∈ N+, r ∈ N+, 0 < c ≤ sx, 0 < r ≤ w− sy (1)

where (d, l, h) represent the camera’s center coordinates in the vehicle coordinate system; and T and G
denote the transfer and rotation matrices, respectively. sx and sy stand for the image resolution; θ is
the angle between optical axis and the zv = 0 plane; γ is the angle between optical axis and the vehicle
coordinate system’s axes, yv; α denotes half of the camera view angle.
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We convert the image to an aerial view map with Equation (1).

3.2. Ridge Detector

In general, ridges are low-level features in gray images. In comparison with edge features,
ridge-features are more suitable to describe lane-division-lines in situations such as vehicle shadow
interference, worn-out ground signs and insufficient illumination [19]. As shown in Figure 3, the ridge
is the center line. In the traditional ridge detected method in Section 2, the gradient vector calculation
and multiple matrix operation require high computational cost.

According to the geometry of lane-division-lines in the aerial view map Ia, we proposed a simple
ridge detector based on lane width. As shown in Figure 4a, we define the green point Ii, j

a as row i
column j pixel’s value, in the image coordinate system. Row i denotes ordinate and column j denotes
abscissa; we define 2τ as the lane-division line transverse pixel number in the aerial view map. Ir

stands for ridge-feature map, which is defined by Equation (2).

Ii, j
r =

(
Ii, j

a − Ii, j−τ
a

)
+

(
Ii, j

a − Ii, j+τ
a

)
i ∈ N+, j ∈ N+, 0 < i ≤ h, τ < j ≤ w− τ

(2)

where τ denotes half number of lane-division line transverse pixels.
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As shown in Figure 4b, vin is defined as the pixel value of the point in a lane-division line and vout

is defined as the pixel value of the point outside a lane-division line, where vin > vout. The green point
Ii, j

a represents the ridge point value, vin; its left and bright yellow point are outside the lane-division
line with a vout value. The blue point represents non-ridge point with a vin value, its left yellow point is
outside the lane-division line with a vout value, and a bright yellow point is in a lane-division line with
a vin value. The term

(
Ii, j

a − Ii, j+τ
a

)
of a green point is larger than the term

(
Ii, j

a − Ii, j+τ
a

)
of a blue point,

and the term
(
Ii, j

a − Ii, j−τ
a

)
of a green point equivalent to the term

(
Ii, j

a − Ii, j−τ
a

)
of a blue point. According

to Equation (2), the ridge-feature value Ii, j
r of a green point is larger than the ridge-feature value Ii, j

r of a
blue point.

In order to increase the difference between the Ii, j
r of a ridge point and a non-ridge point, on the

basis of Equation (2), we add a punishment term
∣∣∣∣Ii, j+τ

a − Ii, j−τ
a

∣∣∣∣, as shown in Equation (3). At the ridge
point, the punishment term equates to zero, but the term of the non-ridge point is larger than zero.

Ii, j
r =

(
Ii, j

a − Ii, j−τ
a

)
+

(
Ii, j

a − Ii, j+τ
a

)
−

∣∣∣∣Ii, j+τ
a − Ii, j−τ

a

∣∣∣∣ (3)

We simplify Equation (3) to obtain the following ridge detector mathematical model:

Ii, j
r =

(
−Ii, j−τ

a + 2Ii, j
a − Ii, j+τ

a

)
−

∣∣∣∣Ii, j+τ
a − Ii, j−τ

a

∣∣∣∣ (4)
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According to Equation (4), we calculate the row i column j ridge-feature value Ii, j
r for each pixel

Ii, j
a , 0 < i ≤ h, τ < j ≤ w− τ, which is shown in matrix form:


Ih,1+τ

r · · · Ih,w−τ
r

...
. . .

...
I1,1+τ

r · · · I1,w−τ
r

 =


(
−Ih,1

a + 2Ih,1+τ
a − Ih,1+2τ

a

)
−

∣∣∣∣Ih,1+2τ
a − Ih,1

a

∣∣∣∣ · · · (
−Ih,w−2τ

a + 2Ih,w−τ
a − Ih,w

a

)
−

∣∣∣∣Ih,w
a − Ih,w−2τ

a

∣∣∣∣
...

. . .
...(

−I1,1
a + 2I1,1+τ

a − I1,1+2τ
a

)
−

∣∣∣I1,1+2τ
a − I1,1

a

∣∣∣ · · · (
−I1,w−2τ

a + 2I1,w−τ
a − I1,w

a

)
−

∣∣∣I1,w
a − I1,w−2τ

a

∣∣∣


=


(
−Ih,1

a + 2Ih,1+τ
a − Ih,1+2τ

a

)
· · ·

(
−Ih,w−2τ

a + 2Ih,w−τ
a − Ih,w

a

)
...

. . .
...(

−I1,1
a + 2I1,1+τ

a − I1,1+2τ
a

)
· · ·

(
−I1,w−2τ

a + 2I1,w−τ
a − I1,w

a

)
−


∣∣∣∣Ih,1+2τ

a − Ih,1
a

∣∣∣∣ · · · ∣∣∣∣Ih,w
a − Ih,w−2τ

a

∣∣∣∣
...

. . .
...∣∣∣I1,1+2τ

a − I1,1
a

∣∣∣ · · · ∣∣∣I1,w
a − I1,w−2τ

a

∣∣∣


(5)

We redefine ridge-feature map Ir:

Ir =


Ih,1+τ

r · · · Ih,w−τ
r

...
. . .

...
I1,1+τ

r · · · I1,w−τ
r

, (6)

aerial view map Ia:

Ia =


Ih,1

a · · · Ih,w
a

...
. . .

...
I1,1

a · · · I1,w
a

 (7)

and one-dimensional ridge filters R and P:

R = [−1, 0, . . . , 0︸  ︷︷  ︸
τ−1 zeros

, 2, 0, . . . , 0︸  ︷︷  ︸
τ−1 zeros

,−1] (8)

P = [1, 0, . . . , 0︸  ︷︷  ︸
2τ−1 zeros

,−1] (9)

where τ denotes half the number of the lane-division line’s transverse pixels.
According to Equations (6)–(9), we simplify Equation (5):

Ir = R⊗ Ia − |P⊗ Ia| (10)

According to Equation (10), we can convert the aerial view map Ia to ridge-feature map Ir.
We obtain the normalized ridge-feature map In by Equation (11).

In =


Ih,1+τ
r −min(Ir)

max(Ir)−min(Ir)
· · ·

Ih,w−τ
r −min(Ir)

max(Ir)−min(Ir)
...

. . .
...

I1,1+τ
r −min(Ir)

max(Ir)−min(Ir)
· · ·

I1,w−τ
r −min(Ir)

max(Ir)−min(Ir)

 (11)

Pictorial examples of ridge-feature extraction are shown in Figure 5.
In describes the possibility of a pixel belonging to a ridge point set; we set the value of In as the

confidence level for the regional G-RANSAC algorithm in Section 3.4.
Thus, we attain the statistical histogram of In and select the highest bin corresponding value as

the threshold t to covert In to a binary ridge binary image Ib. According to the experimental results,
the mathematical morphology process is applied to image Ib to remove areas with pixel numbers less
than 30.



Sensors 2019, 19, 4028 7 of 22

Sensors 2019, 19, x FOR PEER REVIEW 6 of 22 

 

ridge point, the punishment term equates to zero, but the term of the non-ridge point is larger than 
zero. 𝑰 , = 𝑰 , − 𝑰 , + 𝑰 , − 𝑰 , − 𝑰 , − 𝑰 ,  (3) 

We simplify Equation (3) to obtain the following ridge detector mathematical model: 𝑰 , = −𝑰 , + 2𝑰 , − 𝑰 , − 𝑰 , − 𝑰 ,  (4) 

According to Equation (4), we calculate the row 𝑖 column 𝑗 ridge-feature value 𝑰 ,  for each 
pixel 𝑰 , , 0 < 𝑖 ≤ ℎ, 𝜏 < 𝑗 ≤ 𝑤 − 𝜏, which is shown in matrix form: 𝑰 , ⋯ 𝑰 ,⋮ ⋱ ⋮𝑰 , ⋯ 𝑰 , = −𝑰 , +𝟐𝑰 , −𝑰 , − 𝑰 , −𝑰 , ⋯ −𝑰 , + 𝟐𝑰 , −𝑰 , − 𝑰 , −𝑰 ,⋮ ⋱ ⋮−𝑰 , +𝟐𝑰 , −𝑰 , − 𝑰 , −𝑰 , ⋯ −𝑰 , + 𝟐𝑰 , −𝑰 , − 𝑰 , −𝑰 ,

= −𝑰 , +𝟐𝑰 , −𝑰 , ⋯ −𝑰 , + 𝟐𝑰 , −𝑰 ,⋮ ⋱ ⋮−𝑰 , +𝟐𝑰 , −𝑰 , ⋯ −𝑰 , + 𝟐𝑰 , −𝑰 , − 𝑰 , −𝑰 , ⋯ 𝑰 , −𝑰 ,⋮ ⋱ ⋮𝑰 , −𝑰 , ⋯ 𝑰 , −𝑰 ,
 

(5) 

We redefine ridge-feature map 𝑰 : 

𝑰 = 𝑰 , ⋯ 𝑰 ,⋮ ⋱ ⋮𝑰 , ⋯ 𝑰 , , 
(6) 

aerial view map 𝑰 : 

𝑰 = 𝑰 , ⋯ 𝑰 ,⋮ ⋱ ⋮𝑰 , ⋯ 𝑰 ,  
(7) 

and one-dimensional ridge filters 𝑹 and 𝑷: 

 
(8) 
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where 𝜏 denotes half the number of the lane-division line’s transverse pixels. 
According to Equations (6)–(9), we simplify Equation (5): 𝑰 = 𝑹𝑰 − |𝑷𝑰 | (10) 

According to Equation (10), we can convert the aerial view map 𝑰  to ridge-feature map 𝑰 . 
We obtain the normalized ridge-feature map 𝑰  by Equation (11). 

𝑰 = ⎣⎢⎢
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⎥⎥⎤ (11) 

Pictorial examples of ridge-feature extraction are shown in Figure 5. 
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are removed.

3.3. 6-Dimensional Feature Extraction and Retraining a BP Neural Network for Removing Noise

In this section, we propose an adaptable classification method for binary ridge-feature image Ib to
discriminate noise and ridge points. The noise point is comprised of another objection noise point and
imaging noise point. No-objection noise is caused by the sign on the ground, tree shadow, or other
vehicles; therefore, they appear in particular areas. We remove the no-objection noise point by pixel
position information according to the lane-division line model. The imaging noise points are randomly
distributed and caused by the camera sensor, but it is a separate and accidental process. Therefore, we
remove the imaging noise points by calculating the number of surrounding feature points and the
frequency of 10 consecutive frames. The frequency affects the real-time performance and adaptability
of neural network. The frequency of 10 was selected based on experimental results.

A six-dimensional feature Fi, j for the row i column j pixel is proposed to discriminate noise and
ridge points, which is as follows:

Fi, j =
[
i, j, Ni, j

3 , Ni, j
7 , Ni, j

11, ki j
]

N3 = ones(3) ⊗ Ib
N7 = ones(7) ⊗ Ib

N11 = ones(11) ⊗ Ib

(12)

where Ib stands for binary ridge-feature image; i, j denotes row i column j; N3, N7 and N11 denote
the convolution feature matrices; ones(n) is a n-rank square matrix’s element equal to 1; Ni, j

3 is the

row i column j element of the convolution feature matrix N3; Ni, j
7 is the row i column j element of

convolution feature matrix N7; Ni, j
11 is the row i column j element of convolution feature matrix N11;

and ki j represents for the frequency of pixel (i, j) within 10 frames.
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According to the lane-division line model, binary ridge image Ib can be divided into two sets.
The ridge point set is expressed as Ib+, in which abscissa i ∈= (25, 60) or (150, 190) or (285, 300), which
came from experiment result in Figure 6. However, the constant bounds are ineffective when in the
vehicle change lane. Variable bounds are an effective method to handle this scenario, which will be
exploited in the feature. The noise point set is expressed as Ib−. Point set Ib+ would be processed by a
well-trained BP neural network and further divided into ridge point subset Ib++ and no-ridge point
subset Ib+−. The ridges’ subset Ib++ is be fitted to the line.
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To improve the detection robustness, within each 10 frames, we retrain the BP neural network by
a positive sample set Ib++ and negative sample sets Ib+− and Ib−. Cross-entropy is applied as a loss
function, and the sigmoid function is adopted as an activation function. The structure of the BP neural
network is shown in Figure 7.
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3.4. Regional G-RANSAC

The RANSAC algorithm is applied to fit the point set, which contains a number of noise points [43].
However, random sampling from the whole point set is not a good strategy for lane model fitting.
As shown in Figure 8, we improve RANSAC algorithm by considering ridge point confidence and
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sampling areas. The binary ridges feature map Ib is divided into three areas Ib_t, Ib_m and Ib_b, shown
in Figure 9a. We randomly select a ridge point from each area, defined as (xt, yt), (xm, ym), and (xb, yb),
respectively. Fitting efficiency would be improved in Figure 9c, compared with Figure 9b.Sensors 2019, 19, x FOR PEER REVIEW 9 of 22 
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The feature points selection method is suitable for lane fitting, but it is still possible to select noise
points. Therefore, we assume that the selected row, i column, j ridge point and Ii, j

b coordinate ( j, i), is
subject to two-dimensional Gaussian distribution, in which probability density function is defined
as follows:

f j,i(x, y) =
1

2π
√(
σ2

1σ
2
2

) exp

−1
2

(x− u1

σ1

)2

+
( y− u2

σ2

)2
 x ∈ N+, y ∈ N+, 0 < x ≤ w, 0 < y ≤ h (13)
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where
(

u1

u2

)
=

(
j
i

)
means vector, and σ1 and σ2 are the covariance matrix Σi, j’s elements. We

hypothesis that variables x and y are non-correlated, hence covariance matrix Σi, j is defined as

Σi, j =

[
σ1

2 0
0 σ2

2

]
.

The covariance matrix Σi, j describes the uncertainty degree of selected point Ii, j
b belonging to the

ridge point set. In other words, the selected point Ii, j
b in the ridge point set is the fitting target, so we

set the covariance matrix Σi, j as a small value to limit the inverse transformation resampling range.

The other case is that the selected point Ii, j
b is not in the ridge point set; then, we set a big covariance

matrix Σi, j, giving a chance for this point to generate ridge points at the inverse-transformation
sampling stage.

We then define the confidence level Ci, j as the probability of selected point Ii, j
b , which belongs the

to ridge point set. Ci, j denotes the row i, column j element of the ridge points’ confidence matrix C,
which is defined in Equation (14):

C =
ones(3) ⊗ In

9
(14)

where ones(3) is when the three-rank square matrix’s element equals 1. In stands for normalized
ridge-feature map. Covariance matrix Σi, j is calculated with confidence Ci, j of the point Ii, j

b in binary
ridge-feature map Ib, as shown in Equation (15):

Σi, j =

 α
Ci, j 0
0 α

Ci, j

 (15)

where α denotes scale coefficient.
In summary, the selected point Ii, j

b initiates a two-dimensional Gaussian distribution with
mean vector ( j, i) and covariance matrix Σi, j. Because abscissa j and ordinate i are non-correlated,
the two-dimensional Gaussian distribution can be converted into two one-dimensional Gaussian
distributions, N

(
µ, σ2

)
. Therefore, abscissa distribution x ∼ N

(
j, α

Ci, j

)
and ordinate distribution

y ∼ N
(
i, α

Ci, j

)
arise; their probability density functions are shown in Equations (16) and (17), respectively.

f (x) =
1√

2π× α
Ci, j

exp

− (x− j)2

2 α
Ci, j

 (16)

f (y) =
1√

2π× α
Ci, j

exp

− (y− i)2

2 α
Ci, j

 (17)

The corresponding cumulative distribution function is shown in Equations (18) and (19).

F(x) =
1√

2π× α
Ci, j

∫ x

−∞

exp

− (x− j)2

2 α
Ci, j

dx (18)

F(y) =
1√

2π× α
Ci, j

∫ y

−∞

exp

− (y− i)2

2 α
Ci, j

dy (19)

where exp(x) denotes an exponential function, α denotes a scale coefficient and ( j, i) is the coordinate
point of ridge-feature map Ir. In Equations (18) and (19), ( j, i) represents the mean vector of the
Gaussian distribution.
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We describe Equations (18) and (19) by the error function er f (x) = 2
√
π

∫ x
0 e−η

2
dη, as shown in

Equations (20) and (21), respectively.

Φx(z) =
1
2

1 + er f

 z− j√
2 α

Ci, j


 z ∈ N+, 0 < z ≤ w (20)

Φy(t) =
1
2

1 + er f

 t− i√
2 α

Ci, j


 t ∈ N+, 0 < t ≤ h (21)

The inverse function of Φx(z) and Φy(t) is shown in Equations (22) and (23).

Φx
−1(p) =

√
2
α

Ci, j × er f−1(2p− 1) + j min(Φx(z)) ≤ p ≤ max(Φx(z)) (22)

Φy
−1(q) =

√
2
α

Ci, j × er f−1(2q− 1) + i min
(
Φy(t)

)
≤ q ≤ max

(
Φy(t)

)
(23)

where α denotes scale coefficient, and ( j, i) is a coordinate point of ridge-feature map Ir, in Equations
(18) and (19). ( j, i) denotes the mean vector of the Gaussian distribution.

According to inverse transformation sampling [45], we attain the selected point sequence
xi1, yi1

...
xik, yik

 by


Φx
−1(p1),Φy

−1(q1)
...

Φx
−1(pk),Φy

−1(qk)

, where k represents the inverse transformation sampling numbers.

(p1, p2, . . . , pk) and (q1, q2, . . . , qk) are subject to uniform distribution


xi1
...

xik

, which is subject to

N

(
j, α

Ci, j

)
and


yi1
...

yik

, which are subject toN
(
i, α

Ci, j

)
.

The traditional RANSAC algorithm, which randomly fits selected points by least-squares, in
which the objective function is l, is shown in Equation (24).

min l =
∑n

i=1
(yi − f (xi))

2 (24)

where n represents the number of fitting points, (xi, yi) denotes the ith fitting points and f (xi) denotes
the fitting model. We define f (x) = ax2 + bx + c, for each xi, where xi belongs to (0, w]. In this paper,
we choose the stochastic sub-gradient descent (SGD) method [46] to solve Equation (24), because the

number of selected point sequence


xi1, yi1

...
xik, yik

 is large if the inverse-transform sampling parameter k is

large. The objective function’s partial derivatives with respect to a, b and c are as follows:

∂L
∂a

= 2
∑n

i=1

∑k

j=1

(
ax2

i j + bxi j + c− yi j
)
x2

i j (25)

∂L
∂b

= 2
∑n

i=1

∑k

j=1

(
ax2

i j + bxi j + c− yi j
)
xi j (26)

∂L
∂c

= 2
∑n

i=1

∑k

j=1

(
ax2

i j + bxi j + c− yi j
)

(27)
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where n represents the number of randomly selected points and k represents the number of inverse
transform sampling.

The stochastic sub-gradient descent for solving the least-squares receives four input parameters:
(i) step size λ, (ii) the number of iterations tmax, (iii) the number of examples to use for calculating
sub-gradient l, (iv) and the fitting point sequence X. Algorithm 1 describes the proposed method
in pseudocode.

Algorithm 1 The stochastic sub-gradient descent for solving least-squares

1: Input: λ, tmax, l, X
2: Initialize: a(1) = 1, b(1) = 1, c(1) = 1;
3: For t = 1, 2, . . . , tmax do
4: Choose Xt ⊆ X, where |Xt| = l
5: Set ηt =

1
λt

6: a(t+1)
← a(t) − ηt

∂L
∂a , b(t+1)

← b(t) − ηt
∂L
∂b , c(t+1)

← c(t) − ηt
∂L
∂c

7: End for.

3.5. Lane Departure Index (LDI)

The true-positive rate (TPR) and false-positive rate (FPR) are common indices in lane detection [16],
which is used to measure the ratio of correctly fitting frames to the total frames, described as follows:

TPR =
NTP
NLT

(28)

FPR =
NFP
NLT

(29)

where NTP (number of true-positive) is the number of correctly predicted lane detections; NLT (number
of lanes positive) is the real lane number in the test video; and NFP (number of false-positive) is the
number of wrongly predicted lane detections.

However, for a lane-division line, the judgment of TPR and FPR indices are binary: correct
predictions or wrong predictions. It is very dangerous for an autopilot system to predict a lane division
lane inaccurately, so it is necessary to find an index to describe the departure degree between the
predicted lane and real predicted in a single frame.

Herein, we propose a new measure index termed the lane departure index (LDI) to describe the
departure degree. The curve-line lane model is simplified to ten straight lines based on ten points of
curved lane, as shown in Figure 10a and defined in Equation (30).

LDI = 100−
∑m

j=1
∑n

i=1

(
1 +

d ji
w

)
×

[
α1

(
θR1_ ji − θP1_ ji

)2
+ α2

(
θR2_ ji − θP2_ ji

)2
+ · · ·+ α10

(
θR10_ ji − θP10_ ji

)2
]

i ∈ N+, j ∈ N+, 0 < i ≤ n, 0 < j ≤ m, αl =
1

10 , l ∈ N+, 0 < l ≤ 10
(30)

where d ji denotes the abscissa error between ith real lane, and ith predicted lane of jth frame when the
ordinate is zero; α1 to α10 are the weight of ten simplified straight line; θR1_ ji denotes the first simplified
straight line of ith real lane in jth frame; θP1_ ji denotes the first simplified straight line of ith predicted
lane in jth frame; θR2_ ji denotes the second simplified straight line of ith real lane in jth frame; θP2_ ji
denotes the second simplified straight line of ith predicted lane in jth frame; θR10_ ji denotes the tenth
simplified straight line of ith real lane in jth frame; θP10_ ji denotes the tenth simplified straight line of
ith predicted lane in jth frame; m denotes video frame number; and n denotes the number of the jth
frame real lane-division line.

Shown in Figure 10b, as a particular case of a two-degree polynomial curve lane, Equation (30)

also holds true for a straight lane, and the terms
(
θR1

ji − θ
P1
ji

)
,
(
θR2

ji − θ
P2
ji

)
, · · · , and

(
θR10

ji − θ
P10
ji

)
are

equal to each other.
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4. Results

In this section, three experiments are carried out. In Section 4.1, there is a comparison experiment
about the operating speed of the ridge-feature model [43]. The proposed method is given and the
computational complexity is analyzed. In Section 4.2, the median filter, regional noise removing
method and BP neural network are applied to remove noise adaptability, and their effectiveness
is verified. In Section 4.3, the effectiveness of fitting method regional G-RANSAC is verified by
comparing with traditional RANSAC and the Hough transform. Lastly, in Section 4.4, the comparative
experimental results of the whole proposed method and other lane detection methods are given to
verify the improvement in challenging scenarios.

4.1. An Analysis of the Ridge-Feature Extraction Method’s Operating Speed

The traditional ridge-feature extraction method [43] contains two matrix convolution operations,
two matrix differential operations, three matrix point product operations and a divergence calculation.
The proposed method in Equation (10) contains two matrix convolution operations and a matrix
subtraction operation.

We compared the running speed of the traditional ridge-feature extraction method and the
proposed method. Software platform: MATLAB R2018b. Hardware platform: CPU: Intel Core i5-4570
CPU (3.20 GHz), Memory: 32 GB and GPU: NVIDIA GeForce GTX 1080 Ti. Testing video: shown in
Table 3.

As shown in Table 1, compared with method [43], the proposed method operating speed is
improved 2.56, 2.70, 2.55 and 2.50 times in the four testing scenario videos respectively.

Table 1. Comparison experiment about the operating speed of the traditional method and the
proposed method.

Testing Scenario Video Method [43] (Frame/s) Proposed Method (Frame/s)

Scenario 1 32 82
Scenario 2 30 81
Scenario 3 31 79
Scenario 4 34 85
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4.2. A BP Neural Network Applied to Remove Noise

We chose 100 frames from a driving video and retrained the BP neural network for each 10 frames
and tested the neural network with the next 10 frames. The neural network’s receiver operating
characteristic (ROC) curve is shown in Figure 11. There are nine ROC curves in Figure 11, representing
each 10-frame training of the neural network. With training, the neural network performance got
better. More specifically, the classification performances of the BP neural network for the next 10
frames are listed in Table 2. The results illustrate that the neural network’s accuracy is equal to 0.830 at
the beginning and after nine retraining frames, the accuracy increase to 0.889, which verifies that the
neural network is adaptable for the current detection scenario.

In order to test the degree of improvement of the BP neural network applied to removing noise,
we compared the proposed method with a hybrid median filter [47] and the regional noise removing
method [48] in four different types of testing scenarios, which are listed in Table 3, including a scenario
with normal illumination and good pavement; one with intense illumination and shadow interruption;
another with normal illumination and a sign-on-the-ground interruption; and finally, one with poor
illumination and vehicle interference. The fitting method is by the traditional RANSAC algorithm.
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Table 2. Result of the BP neural network for different frames.

Train Dataset Test Dataset Accuracy mAP

1–10 frames 11–20 frames 0.830 0.753
11–20 frames 21–30 frames 0.855 0.776
21–30 frames 31–40 frames 0.861 0.802
31–40 frames 41–50 frames 0.860 0.816
41–50 frames 51–60 frames 0.877 0.832
51–60 frames 61–70 frames 0.882 0.847
61–70 frames 71–80 frames 0.881 0.854
71–80 frames 81–90 frames 0.886 0.865
81–90 frames 91–100 frames 0.889 0.883

As shown in Table 4, in the normal illumination and good pavement scenario video, the performance
of the proposed method is similar to hybrid median filter and regional noise removing, but the proposed
method is better than hybrid median filter and regional noise removing in abnormal illumination and bad
pavement conditions. Furthermore, the proposed method achieves a more stable and better performance
in different scenarios. This experiment aims to verify the effectiveness of the proposed de-noising method,
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as the general fitting method, the traditional RANSAC algorithm, is applied to fit ridge-feature points to
generate results in Table 4, the results in bold means the best performance in the corresponding scenarios.

Table 3. Different testing video scenarios.

Testing Scenario Video Illumination Condition Pavement Condition Frame Number

Scenario 1 normal good 2327
Scenario 2 intense shadow interrupt 2139
Scenario 3 normal road sign interrupt 2231
Scenario 4 poor vehicle interrupt 2391

Table 4. Comparative results of noise removing methods.

Testing Scenario Video Noise Removing Methods TPR (%) LDI

Scenario 1
Hybrid median filter 93.81 42.88

Regional noise removing 94.92 50.19
Proposed method 95.13 52.31

Scenario 2
Hybrid median filter 83.91 32.71

Regional noise removing 86.32 35.45
Proposed method 92.21 40.16

Scenario 3
Hybrid median filter 85.03 33.16

Regional noise removing 86.12 37.52
Proposed method 91.32 49.19

Scenario 4
Hybrid median filter 85.91 32.02

Regional noise removing 84.23 35.54
Proposed method 90.43 39.51

4.3. Regional G-RANSAC Fitting Method Verification

The experimental parameters are shown as follows: scale coefficient α = 1.2, fitting point number
n = 3, inverse transformation sampling number k = 100, RANSAC iteration number 60, SGD step size
λ = 0.01, SGD iterations t = 200 and the number of examples to use for calculating sub-gradient l = 10.

To compare with Hough transform and the traditional RANSAC algorithm, we tested the proposed
method in four different types of testing scenarios: normal illumination and good pavement; intense
illumination and shadow interruption; normal illumination and a sign-on-the-ground interruption;
and finally, one with poor illumination and vehicle interference (as listed in Table 5). The proposed
de-noising method described in Section 3.3 is applied to experiment in Table 5, the results in bold
means the best performance in the corresponding scenarios.

Table 5. Comparative results of fitting methods in different test scenarios.

Testing Scenario Video Fitting Method TPR (%) LDI

Scenario 1
Hough transform 98.87 54.88

Traditional RANSAC 95.13 52.31
Proposed method 99.02 66.16

Scenario 2
Hough transform 88.71 37.21

Traditional RANSAC 92.21 40.16
Proposed method 96.92 54.48

Scenario 3
Hough transform 85.67 33.22

Traditional RANSAC 91.32 49.19
Proposed method 96.65 55.98

Scenario 4
Hough transform 83.21 30.10

Traditional RANSAC 90.43 39.51
Proposed method 91.61 52.61
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The proposed method achieved 99.02%, 96.92%, 96.65%, and 91.61% TPR in the four different
testing scenarios, respectively. In addition, for the LDI, the proposed method achieved 20.55% and
26.48% more than the Hough transform and traditional RANSAC in normal illumination and good
pavement conditions; 46.41% and 35.66% more in intense illumination and shadow interruption
scenarios; 68.51% and 13.80% more in normal illumination and sign on the ground interruption
scenarios; and 74.78% and 33.16% more in poor illumination and vehicle interferance scenario.

In Figure 12, the comparative results of traditional RANSAC and regional G-RANSAC are shown.
Figure 12a,c,e show the fitting by traditional RANSAC algorithm. Figure 12b,d,f is fitting by regional
G-RANSAC. Shown in Figure 12a–d, the traditional RANSAC algorithm selects fitting points from
the whole ridges’ point feature map, which increases the probability of selecting noise points. We
proposed selecting fitting points from three divided areas to improve the fitting effectiveness. Shown
in Figure 12e,f the traditional RANSAC algorithm missed the feature point, hence the fitting effect
in Figure 12e is poor, but the proposed method considers the Gaussian distribution of feature points
based on a ridges’ confidence, thus improved the robustness of lane fitting.

4.4. Lane Detection Frame Verifying Experience

Here, the proposed lane detection frame tests are shown. We chose recent lane detection methods
to verify the effectiveness of the proposed lane detection method. Comparative methods are listed
in Table 6. Testing scenario videos are the same video as above, including scenarios with normal
illumination and good pavement; intense illumination and shadow interruption; normal illumination
and a sign-on-the-ground interruption; and finally, one with poor illumination and vehicle interference.
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Table 6. Comparison of lane detection methods.

Lane Detection Preprocess Feature Extraction Lane Model Fitting Method

Method 1 [4] Median filter Sobel filter Straight line Hough transform
Method 2 [9] ROI selection based on vanishing point Canny filter Straight line Least square

Method 3 [38] Gray image Vehicle trajectories Straight line Least square
Proposed method Inverse perspective transformation Ridge detector Parabola Regional G-RANSAC

As shown in Table 7 (the results in bold means the best performance in the corresponding
scenarios), the proposed method has better performances than method 1 in four different types of
testing scenario videos; the improvement is significant in the testing scenario of occlusion interruption,
including sign interruption and vehicle interruption. The method 1 lane fitting by Hough transform,
achieved 98.13% TPR and 64.10 LDI in normal illumination and good pavement condition testing
scenarios, but 82.75% TPR 30.32 LDI and 85.14% TPR 33.17 LDI in sign interruption and vehicle
interference scenarios, respectively. The results indicate that Hough transform is not good at the
occlusion interruption scenario.

Table 7. Comparative results of lane detection methods.

Testing Scenario Video Lane Detection Method TPR (%) LDI

Scenario 1

Method 1 98.13 64.10
Method 2 94.54 49.28
Method 3 50.64 30.94

Proposed method 99.02 66.16

Scenario 2

Method 1 88.23 38.23
Method 2 87.75 31.18
Method 3 48.81 21.96

Proposed method 96.92 54.85

Scenario 3

Method 1 82.75 30.32
Method 2 87.41 34.19
Method 3 50.37 29.40

Proposed method 96.65 55.98

Scenario 4

Method 1 85.14 33.17
Method 2 82.66 29.90
Method 3 47.32 27.16

Proposed method 91.61 52.61

Method 3, based on vehicle trajectories, performed badly: 50.64%, 48.81%, 50.37% and 47.32%
TPR; and 30.94, 21.96, 29.40 and 27.16 LDI in the four different types of testing scenarios, respectively.
Additionally, method 3 fails to detect lane-division-lines in some situations; for example, when there
is no preceding vehicle or the preceding vehicle changes lanes. However, compared with scenario
1, method 3 only reduced TPR 0.27% in scenario 3, while the proposed method reduced it 2.37%.
The reason is that method 3 focuses on vehicle trajectories rather than lane-division line, so the fitting
result is not affected by the sign marking on the ground.

The proposed method has satisfactory performances in four different types of testing scenarios,
achieving 99.02%, 96.92%, 96.65% and 91.61% TPR; and 66.16, 54.85, 55.98 and 52.61 LDI in the four
different types of testing scenarios, respectively. The results show that the proposed method is effective
in challenging scenarios.

In Figure 13a, because of good lighting conditions and road conditions, there are few noise points
in the ridge-feature map, resulting in good detection. In Figure 13b, the testing scenario has shadow
interruption due to strong lighting, whereas the proposed method can remove shadow noise points
and show good lane-division line fitting. In Figure 13c, the sign on the ground is the main interference,
but the lane-division line model and BP neural network has the capability to discriminate between
ridge pixel points and sign pixel points, which results in a good git. In Figure 13d, the scenario has poor
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illumination, vehicle interfere generates a lot of noise points and it lacks key ridge points; however,
with the advantage of the G-RANSAC algorithm, the proposed method can fit the lane-division line
with a small number of ridge points.

Herein, the drawbacks of the proposed method are described. First, as the proposed method fitting
model, Parabola, cannot provide perfect fitting when the lane-division line bends continuously, shown
in Figure 14a. Second, the proposed method fails to detect lane-division-lines when its abscissa crosses
three ranges (25, 60) and (150, 190) and (285, 300) at same time, shown in Figure 14b. Third, the proposed
method fails to detect lane-division-lines when the vehicle itself changes lane, shown in Figure 14c,d.
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Figure 13. The proposed method detects the lane in four different types of scenarios. (a) Scenario 1
with normal illumination and good pavement. (b) Scenario 2 with intense illumination and shadow
interruption. (c) Scenario 3 with normal illumination and sign-on-the-ground interruption, and
(d) scenario 4 with poor illumination and vehicle interference.
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Figure 14. Incorrect detection with the proposed method. (a) The left lane-division line is not a good fit.
(b) Detection failure of the left lane division. (c) Detection failure of lane division. (d) The left predicted
lane division does not match the left, real lane-division line.

5. Conclusions

In this paper, we proposed a lane-division-lines detection method based on ridge detector and
regional G-RANSAC. The main innovation is summarized as: First, we removed noise points by an
adaptable neural network. The experimental results verified that the adaptable neural network achieves
better detection performance than a hybrid median filter and regional noise removing, in challenging
scenarios. Secondly, we improved the traditional RANSAC by considering the confidence levels of
pending fitting points. The experimental results indicate that the regional G-RANSAC achieves better
detection performance in TPR and LDI compared to traditional RANSAC and Hough transform in different
scenarios. Last, we compared the whole proposed method with other lane detection methods on four types
of testing scenario videos, including a scenario with normal illumination and good pavement; one with
intense illumination and shadow interruption; another with normal illumination and a sign-on-the-ground
interruption; and finally, one with poor illumination and vehicle interference. The experimental results
show, regardless of normal or challenging scenarios, the proposed method achieves 0.91%, 9.85%, 10.57%
and 7.60% improvements in TPR; and 3.21%, 43.47%, 84.63% and 58.61% improvements in LDI in the four
different types of testing scenarios compared to the other lane detection methods, especially in the sign
and vehicle interference scenario. Since the proposed method cannot adaptively separate the lane-division
line regions on the abscissa, the lane-division line cannot be well fitted in the case where the lane dividing
line bends continuously and the vehicle changes lanes. Variable region bounds are an effective method to
solve the problem [49], which will be studied in the future.
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