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Abstract: Wi-Fi-based indoor position sensing solutions have the advantages of easy integration in mobile
phones and low cost by using existing Wi-Fi access points. The mainstream methods are commonly based
on the received signal strength indicator (RSSI), which suffers from multipath interference in complicated
indoor environments. Through the in-depth analysis of the multipath interference, an RSSI-assisted
time difference of arrival (TDoA) method is proposed for Wi-Fi-based indoor position sensing in this
work. The key idea is to compensate for the multipath interference in the received signals based on
the coarse estimation using RSSI and TDoA calculation. A prototype system has been implemented to
validate the proposed method. Experimental results have demonstrated the effectiveness of the proposed
method, especially for handling the multipath interference with small propagation delay difference.
Experimental results show that the indoor position sensing system can achieve a 90th percentile error
of 0.3 m. The proposed method can also achieve moderate computational complexity and moderate
real-time performance compared to other methods.

Keywords: indoor position sensing; RSSI; TDoA; multipath interference; Wi-Fi

1. Introduction

In recent years, with the rapid development of personal mobile devices, the location based service has
become increasingly indispensable in the daily life. The global position system (GPS) [1] has been widely
used in the outdoor environment for positioning and navigation. However, the satellite signal is heavily
attenuated inside buildings, making the GPS incapable of indoor position sensing. Since many people
spend the vast majority of time indoors, it is important to develop real-time indoor position technologies
which require minimal prior knowledge of the surroundings.

The demands of indoor position sensing arise in various applications, such as human guiding [2],
public security [3], classified advertisements [4], valuables monitoring [5], emergency rescue [6],
underground parking [7] and augmented reality [8]. Researchers have investigated a wide variety of
wireless signals with different physical properties or protocols for indoor position sensing, including
infrared signals [9], ultrasound signals [10], and radio signals such as the Bluetooth [11], radio frequency
identification (RFID) signals [12], ultra-wideband (UWB) signals [13], and Wi-Fi signals. Among those
techniques, the Wi-Fi-based indoor position sensing has the advantages of low infrastructure cost and
high reliability, since Wi-Fi networks are now extensively accessible in the residential areas, office spaces,
and commercial districts. As shown in Figure 1, the Wi-Fi-based position sensing solution can provide the
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seamless positioning service in most of the current indoor environments using the existing Wi-Fi access
points (APs).

Mobile Node Base Station Target Position

Figure 1. The Wi-Fi-based indoor position sensing.

The fundamental principle of Wi-Fi-based indoor position sensing is conducted in three phases.
Firstly, Wi-Fi frames between the targeted mobile device and the APs (i.e., base stations) are collected
as the raw data. Secondly, the key feature is extracted from the raw data which contains the position
information. Finally, the feature information is processed using the position calculation algorithms to
estimate the position of the targeted mobile device. Unlike the line-of-sight (LoS) signal transmission
path in a GPS, indoor position sensing is confronted with complicated communication channel situations.
The key challenges include multipath propagation, fading, noise and the environmental dynamics [14].

A number of Wi-Fi-based indoor position sensing methods have been reported in the literature.
Roughly, those methods can be classified into two categories, namely, the received signal feature-based
methods, and the propagation time-based methods [15–38]. The received signal strength indicator (RSSI)
fingerprint is the most widely adopted feature to indicate position information in favor of its simplicity
and accessibility [15–25]. Generally, the fingerprint based schemes are conducted in two phases, i.e., an
offline phase followed by an online phase. In the offline phase, the RSSI vector from all the detectable APs
is collected at a reference point (RP). By traversing all RPs in the object region, the fingerprint database is
established. After the site survey, the position information is featured by the signal pattern. At a certain
RP, the RSSI values are distinguished by the AP names or media access control (MAC) address. Thus, it is
not required to know the exact positions of all APs, which leads to the advantage of deployment flexibility.
In the online phase, the target position is estimated by comparing the current RSSI vector to the fingerprint
database using the matching algorithms such as the maximum likelihood [15], k-nearest neighbors [16],
support vector machine [17], random forest [18], Bayesian network [19], Gaussian process [20] and an
artificial neural network [21]. The key system parameters, such as the number of APs, the density of RPs
and the time span of signal collection determine the positioning precision. Duc V. Le et al. [22] used a
deep belief network to train an unsupervised deep feature learning model, and this method helped to
reduce the number of labeled fingerprints. In most fingerprint schemes, the RSSI values are extracted from
the MAC layer. In contrast, [23,24] acquired the channel state information (CSI) from the physical layer



Sensors 2019, 19, 3983 3 of 20

(PHY), which is fine-grained for the channel characterization. Wang et al. [25] collected the amplitude
and phase of 30 subcarriers from three antennas to establish the fingerprint database. Bisio et al. [26,27]
proposed a probabilistic fingerprinting method which helped to reduce the computational complexity and
energy consumption of the RSSI-based methods. Nevertheless, the offline phase in the received signal
feature-based methods is laborious and time-consuming, and the positioning precision is prone to the
surrounding changes.

The time of arrival (ToA) and the time difference of arrival (TDoA) methods are the commonly
used propagation time-based methods [28–38]. The signal propagation time or propagation time
difference between the mobile device and the APs is extracted from the received signals by the APs.
Afterwards, the position calculating algorithm converts time information to range information. In the ToA
methods [28,29] the signal transmitter (the mobile device) and all receivers (APs) are required to be strictly
synchronized with nanosecond accuracy. In the TDoA methods [30–38], the propagation time difference for
different receivers is measured, and then the transmitter position is calculated. The time synchronization
is required among the receivers in the TDoA systems. The conventional position calculation algorithms
include the direct solving method [30], the non-iterative maximum likelihood estimation method [31]
and the Taylor-series method [32]. König et al. [33] calculated the TDoA by cross-correlating the received
signal with a time continuous Barker code sequence. Exel et al. [34] designed synchronized receivers to
precisely obtain the arrival time of the predefined timestamp. The super-resolution technique (SRT)
was also adopted to estimate the non-LoS components, such as the ESPRIT [35], MUSIC [36], and
MinNorm [37] methods, which separate the signal subspace from the noise subspace with the eigenvalue
decomposition of covariance matrix. To reduce the computational burden, the Matrix Pencil (MP) algorithm
was introduced [38]. To further improve the performance of the ToA or TDoA methods in a real indoor
environment, extra attention needs to be paid to the multipath interference effect which largely downgrades
position sensing accuracy.

In this work, a Wi-Fi-based indoor position sensing method with multipath interference mitigation is
proposed. The major accomplishments of this work include:

1. The mechanism of the position sensing accuracy loss due to the multipath interference effect
is analyzed theoretically, and the multipath strength indicator is defined to measure the
interference quantitatively.

2. A novel RSSI-assisted TDoA method is proposed to mitigate the impact of the multipath interference.
Especially, the proposed method is capable of handling the circumstances with small propagation
delay difference.

3. The prototype of an RSSI-assisted TDoA position sensing (RTPS) system has been implemented in a
software defined radio (SDR) platform. The prototype system shows advantages of high accuracy,
high robustness, and low computational complexity compared to other methods in the literature.

This work gives a new method to fuse the classical RSSI and TDoA methods for the performance
improvement, with the cost of extra signal processing steps compared to the classical methods. Unlike the
TDoA methods in the literature, the proposed method can be used to handle the multipath effect with very
small propagation delay difference between the LoS and non-LoS signals. The key contribution of this
work is to use the RSSI result to coarsely estimate the multipath interference, and then to use the coarse
estimation information to improve the TDoA measurement performance. To the best of our knowledge,
there is no similar method reported by other research groups that combines both methods in such a way.

The rest of this paper is organized as follows. Section 2 investigates the effect of multipath interference,
and gives details of the proposed RSSI-assisted TDoA method to solve this problem. Section 3 introduces
the RTPS prototype structure and signal processing flow. The experimental setup and results are given in
Section 4. The work is summarized in Section 5.
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2. RSSI-Assisted TDoA Method with Multipath Interference Mitigation

The proposed indoor position sensing system is based on the IEEE 802.11b [39] Wi-Fi protocol, and it
can also be applied to other wireless local area network (WLAN) protocols. The IEEE 802.11b system is a
spread spectrum system. At the transmitter (mobile node) side, a pseudo-noise (PN) sequence is adopted
to spread the spectrum of the baseband signal. The TDoA values are calculated by letting the mobile node
send a frame repeatedly, and then cross-correlating the signals received by the base stations.

There are a few factors that affect the TDoA estimation accuracy. This work focuses on the non-ideality
caused by the multipath interference. Figure 2a shows an example of the multipath propagation with
one LoS path and two non-LoS paths in an indoor environment. In the non-LoS paths, the signals from
the transmitter are reflected by the obstacles (e.g., the wall, the floor and the furniture), and propagate
in multiple directions with different fading and delay. Compared to the LoS signal, the non-LoS signals
propagate through longer distances with more path loss. The received signal at the base station side is the
summation of the LoS and non-LoS signals, as shown in Figure 2b.

Mobile Node TX

LoS

non-LoS 1

non-LoS 2

Base Station RX

(a) (b)

Figure 2. Multipath propagation: (a) Signal propagation with the LoS path and two non-LoS paths;
(b) Actual received signal is a combination of LoS signal and non-LoS signals.

It can be shown that the accuracy of the TDoA calculation is greatly affected by the multipath
interference. The proposed RSSI-assisted TDoA method is introduced to mitigate this problem. In this
section, the conventional TDoA method will be introduced first, and then the proposed RSSI-assisted
TDoA method will be described in details.

Although the target of this work is to provide a 2D position sensing method, the basic idea will be
explained for the 1D position sensing case in which the mobile node moves along the line connecting two
base stations. The presented method for a 1D case can be easily expanded to the 2D case.

2.1. Conventional TDoA Method for Position Sensing

To focus on the multipath effect, the non-ideal factors such as the frequency offset and the noise
interference are not taken into consideration in this analysis. According to the IEEE 802.11b protocol, at
the transmitter of the mobile node, the direct sequence spread spectrum (DSSS) PHY with the Barker code
{dn} = {+1,−1,+1,+1,−1,+1,+1,+1,−1,−1,−1} is used to spread the spectrum of the modulated
signals. The transmitted baseband signal s (t) is represented by

s (t) = ∑
n

dn · r (t− nTc) (1)
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where {dn} is the transmitted sequence after DSS, r (t) is the raised cosine function, and 1/Tc = 11 Mbps
is the chirp rate. The time domain channel impulse response (CIR) with the multipath propagation is
modeled as

h (t) =
N

∑
i=0

ai · δ (t− τi) (2)

in which N is the number of non-LoS channels, ai = |ai| ejθi defines the complex attenuation of each
propagation channel including the LoS channel Ch0 and the non-LoS channels Ch1, ..., ChN , and τi denotes
the propagation time of the ith channel (i = 0,1, ..., N). To represent the situation with two base stations,
two CIRs are differentiated by additional subscripts.h1 (t) = ∑N1

i=0 a1,i · δ (t− τ1,i)

h2 (t) = ∑N2
i=0 a2,i · δ (t− τ2,i)

(3)

For simplicity, it is assumed that τ1,0 = 0, and let ∆t = τ2,0 − τ1,0. With the electromagnetic wave
propagation speed known as c, ∆t actually represents the position information which needs to be solved,
if the mobile node moves between the two base stations and the distance between the two base stations L
is fixed. For example, when ∆t = 0, the position of the transmitter is in the middle of the two base stations.
When ∆t > 0, the transmitter is more closer to the first base station, the distance to the first base station is
calculated as L/2− c∆t/2.

At the base station sides, the baseband signals received by the two receivers are described as
y1 (t) = s (t) ∗ h1 (t) = a1,0s (t) +

N1

∑
i=1

a1,icos (ωc∆τ1,i) s (t− ∆τ1,i)

y2 (t) = s (t) ∗ h2 (t) = a2,0s (t + ∆t) +
N2

∑
i=1

a2,icos (ωc∆τ2,i) s (t + ∆t− ∆τ2,i)

(4)

in which ωc is the transceiver carrier frequency, ∆τ1,i = τ1,i − τ1,0 is the propagation delay difference
between the LoS path and the ith non-LoS path, and so is ∆τ2,i.

First consider the situation that there is no multipath effect, and the two received signals are
simplified to {

y1 (t) = a1,0s (t)

y2 (t) = a2,0s (t + ∆t)
(5)

The received signals are quantized to two sequences y1 (nTs) and y2 (nTs), using the baseband
ADCs with a sampling rate of 88 Msps. The ADC sampling clock cycle period is denoted as Ts. Denote
the cross-correlation between y1 (t− τ) and y2 (t) as R (τ) = E [y1 (t− τ) y2 (t)]. The actual calculated
cross-correlation is discrete, and denoted as Ri (i = 0,±1,±2, ...) = R (iTs). Ri with N elements from
y1 (nTs) and y2 (nTs) is calculated as

Ri =
N

∑
n=1

y1 (nTs − iTs) y2 (nTs) , i = −N/2 + 1, ..., 0, ..., N/2 (6)

The processing flow of TDoA calculation is shown in Figure 3. The maximum Ri is found as Pk with
the corresponding time shift tk. Roughly, tk can be used to approximate ∆t, and the accuracy is actually
limited by the time resolution Ts. To achieve a fine resolution, the quadratic fitting method [40] is used.
In the quadratic fitting, the cross-correlation curve is viewed as a convex parabola in the neighborhood
of discrete peak point (tk, Pk), and three discrete points (tk−1, Pk−1), (tk, Pk) and (tk+1, Pk+1) are used to
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perform the fitting. Note that Pk = R (tk), tk−1 = tk − Ts, and tk+1 = tk + Ts. The quadratic equation
coefficients [a, b, c]T are calculated bya

b
c

 =

t2
k−1 tk−1 1
t2
k tk 1

t2
k+1 tk+1 1


−1 Pk−1

Pk
Pk+1

 (7)

Cross-

Correlation

y1(nTs-iTs) y2(nTs)

Ri,  i = -N/2+1, ,0, ,N/2  

Search maximum 

and the neighbors

(tk-1,Pk-1) (tk,Pk) (tk+1,Pk+1)

Quadratic Fitting

p=at
2
+bt+c

a,b

TDoA

Estimation

∆test = -b/2a

Figure 3. TDoA estimation based on cross-correlation calculation and quadratic fitting.

The time shift of the peak point on the fitted parabola is given by − b
2a , which can be used as an

estimation of ∆t, i.e.,

∆test = −
b

2a
(8)

The distance to the base station is calculated as
d1est_t =

L
2
− c∆test

2

d2est_t =
L
2
+

c∆test

2

(9)

As proved in [41], if there is only the white noise in the channel, the quadratic fitting method gives an
estimation error variance calculated as

σ2 =
1
N

3
4π2W2

(
1 + 2SNR

SNR2 + 1
)

(10)

in which N is the length of correlation sequence, W is the noise bandwidth of white noise, and SNR
is received signal-noise ratio. To find an appropriate N, the numerical simulation has been performed.
Figure 4 shows the estimated TDoA versus different N. In this simulation, the actual TDoA is 1 ns, and the
SNR is set to 15 dB. Based on Figure 4, the correlation length N is chosen to be 2200.
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Figure 4. Estimated TDoA vs. correlation sequence length N (1 ns TDoA).

2.2. Proposed RSSI-Assisted TDoA Method

Now consider the situation with a multipath effect. There may exist multiple non-LoS channels in
a certain environment. Note that the non-LoS signals fade quickly due to the reflection/refraction loss
and the longer propagation paths compared to the LoS path. For a given short time interval in which the
RSSI and TDoA are measured, usually only one non-LoS path needs to be considered, which may give the
signal strength comparable to that of the LoS path. Without loss of generality, in the following analysis
only the major non-LoS component is included in the received signal y1 (t) and y2 (t).

Thus, Equation (4) is simplified to{
y1 (t) = a1,0s (t) + a1,1cos (ωc∆τ1,1) s (t− ∆τ1,1)

y2 (t) = a2,0s (t + ∆t) + a2,1cos (ωc∆τ2,1) s (t + ∆t− ∆τ2,1)
(11)

Rewrite Equation (11) as
y1 (t) = a1,0

[
s (t) +

a1,1

a1,0
cos (ωc∆τ1,1) s (t− ∆τ1,1)

]
y2 (t) = a2,0

[
s (t + ∆t) +

a2,1

a2,0
cos (ωc∆τ2,1) s (t + ∆t− ∆τ2,1)

] (12)

Now define the multipath strength indicator (MPSI) as follows, which can be used to measure the
impact of multipath interference.

MPSIi =
ai,1

ai,0
cos (ωc∆τi,1) , i = 1, 2 (13)

Since the non-LoS path propagation distance is larger than that of the LoS path, it is expected
∣∣∣ ai,1

ai,0

∣∣∣
is less than 1, and |MPSIi| is also less than 1. If MPSI > 0, the total signal strength received by the base
station will be larger than that through the LoS path only, and vice versa.
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After normalization, Equation (12) can be written as{
y1 (t) = s (t) + MPSI1s (t− ∆τ1,1)

y2 (t) = s (t + ∆t) + MPSI2s (t + ∆t− ∆τ2,1)
(14)

With the multipath interference present, the calculated peak cross-correlation and its neighbors, i.e.,
P
′
k−1, P

′
k and P

′
k+1, are different from those without the multipath interference denoted as Pk−1, Pk and Pk+1.

P
′
k−1 = Pk−1 + MPSI1R (Ts + ∆t + ∆τ1,1) + MPSI2R (Ts + ∆t− ∆τ2,1)

+ MPSI1MPSI2R (Ts + ∆t + ∆τ1,1 − ∆τ2,1)

P
′
k = Pk + MPSI1R (∆t + ∆τ1,1) + MPSI2R (∆t− ∆τ2,1)

+ MPSI1MPSI2R (∆t + ∆τ1,1 − ∆τ2,1)

P
′
k+1 = Pk+1 + MPSI1R (Ts − ∆t− ∆τ1,1) + MPSI2R (Ts − ∆t + ∆τ2,1)

+ MPSI1MPSI2R (Ts − ∆t− ∆τ1,1 + ∆τ2,1)

(15)

Obviously, the additional terms added to Pk−1, Pk and Pk+1 will cause error to the TDoA estimation
using the aforementioned quadratic fitting method. It has been observed and then verified through the
numerical simulation that only a negative MPSI will introduce large estimation error. Figure 5 shows how
different MPSI1 and MPSI2 combinations affect the TDoA estimation result. If both MPSI1 and MPSI2

are positive (less than 0.5), P
′
k−1, P

′
k and P

′
k+1 are just vertically shifted upward compared to Pk−1, Pk and

Pk+1, the peak estimation using quadratic fitting is barely affected. On the other hand, if either MPSI1 or
MPSI2 is negative, the vertical shifts between P

′
k−1, P

′
k, P

′
k+1 and Pk−1, Pk, Pk+1 are not balanced, and the

quadratic fitting will leads to a horizontally shifted peak position estimation, in other words, a ∆test with
some error compared to ∆t.
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The above phenomenon suggests that if the negative non-LoS component in y1 (t) and y2 (t) can be
recognized and compensated for, the estimation error due to the multipath interference can be mitigated.
Also note that the TDoA estimation is quite robust for positive MPSI up to 0.5 which is validated by
various numerical simulations; this compensation can be accomplished by roughly adding a compensation
signal yc (t) with positive and relatively large MPSI such as 0.5 to the received y1 (t) or y2 (t). yc (t) can
be constructed as follows

yc (t) = acs (t− τc) (16)

in which ac is chosen to make the amplitude of yc (t) is roughly 0.5 times that of y (t) which is compensated.
An empirical method to obtain the appropriate τc is to find τc that minimizes ∑t |s (t− τc)− y (t)|, and this
method has been verified through both numerical simulations and experiments. After the compensation,
y
′
1 (t) = y1 (t) + yc1 (t) and y

′
2 (t) = y2 (t) + yc2 (t) are processed using the TDoA method described in

previous part of this section to obtain the fine position estimation. The remaining question is then how to
recognize the polarity of MPSI in the received signals.

In this work, the received signal strength indicator (RSSI) is used to recognize the polarity of the
MPSI. For each base station, the RSSI is calculated using N = 2200 sampling points. The distance d
between the mobile node and the base station is then obtained using the log-normal shadowing model [42]
described by

RSSI = RSSI0 − 10nlog10
d
d0

(17)

in which RSSI is the received signal strength indicator (in dB) by the base station at the distance d from
the transmitter, d0 is the reference distance, RSSI0 is the signal strength at the reference distance, and n is
the path loss exponent. RSSI0 and n are fixed for a system with given transmitted signal power, antennas
and d0, and can be measured for a real system. The estimated distance dest_rssi is calculated as

dest_rssi = d010
RSSI0−RSSI

10n (18)

For the system with two base stations, the estimated distances between the mobile node and the two
base stations based on the RSSI are denoted as d1est_rssi and d2est_rssi, respectively. If there is no multipath
interference or any other non-ideal factor, it is expected that the summation of d1est_rssi and d2est_rssi is
exactly the distance L between the two base stations, when the mobile node moves between the base
stations. If d1est_rssi + d2est_rssi > L, it can be inferred that the received signal is attenuated due to the
negative MPSI, which makes the estimated distance larger than the true value. In this work, the following
procedure is used to determine the polarity of MPSI1 and MPSI2, and implement the compensation.

1. If d1est_rssi + d2est_rssi > (1 + α) L, it is surmised that both MPSI1 and MPSI2 are negative, and the
compensation signal yc1 (t) and yc2 (t) will be found and added to y1 (t) and y2 (t), respectively.

2. If (1 + β) L < d1est_rssi + d2est_rssi < (1 + α) L, it is surmised that either MPSI1 or MPSI2 is negative,
and the compensation will be applied to the one selected from y1 (t) or y2 (t) which has larger dest_rssi.

3. If L < d1est_rssi + d2est_rssi < (1 + β) L and there is large difference between
∆dest_rssi = d2est_rssi − d1est_rssi and ∆dest_t = d2est_t− d1est_t (specifically two conditions: i. the polarity
of ∆dest_rssi is different from that of ∆dest_t; ii. ∆dest_rssi and ∆dest_t have the same polarities, but
∆dest_rssi/∆dest_t is less than a threshold, i.e., 0.1), the compensation will be applied to the one selected
from y1 (t) or y2 (t) which has larger dest_rssi.

4. No compensation will be applied for all the other conditions.

The values of α and β can be found and optimized through simulations and experiments. In this
work, α and β are chosen to 1.4 and 1.1, respectively, for the 1D position sensing case.
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In summary, the proposed RSSI-assisted TDoA method for the 1D position sensing is composed of
the following steps, which is also shown in Figure 6. Note that only the polarity of the MPSI instead of
the non-LoS component itself is estimated based on the RSSI. The compensation is only used to change the
non-LoS component polarity, but not to precisely eliminate the non-LoS component.

Step I: Use the cross-correlation calculation and the quadratic fitting to coarsely estimate the mobile
node position d1est_t and d2est_t;

Step II: Use the RSSI to coarsely estimate the mobile node position d1est_rssi and d2est_rssi;
Step III: Based on the coarse estimation in two preceding steps, determine the polarity of the multipath

interference in the received signals, and compensate for the multipath interference in the signals y1 (t)
and/or y2 (t) received by the base stations;

Step IV: Repeat Step I by using the signals after compensation y
′
1 (t) and y

′
2 (t) to obtain the fine

estimation of the mobile node position.

TDoA

Calculation
Compensation

Parameter

Estimation

TDoA

Calculation

RSSI

Calculation

y1 
y2 

y'1

y'2

{ac,τc}1 

{ac,τc}2 
∆t'est

∆test

RSSI1 

RSSI2 

TDoA-distance

Conversion

RSSI-distance

Conversion

d1est_t

d2est_t

d1est_rssi

d2est_rssi

Step I 

Step II 

Step III Step IV 

Figure 6. Processing flowchart of the proposed RSSI-assisted TDoA method.

The same method is used for the 2D position sensing, and the detailed processing procedure will be
explained in Section 4.

3. Prototype System for Method Validation

To validate the proposed RSSI-assisted TDoA method, a prototype system has been implemented.
In this section, the hardware and signal processing implementation of the proposed TDoA position sensing
method are presented.

3.1. Prototype System Hardware and Firmware

The overall architecture of the proposed indoor position sensing system is given in Figure 7, which is
composed of one mobile node, two or three base stations depending on the 1D or 2D sensing, and a data
processing unit. Both the mobile node and the base stations are implemented using the NI USRP software
defined radio devices. The mobile node automatically sends the positioning request by broadcasting the
probe request frame periodically. In the base stations, a dedicated baseband receiver following the RF
front-end is employed to mitigate the carrier frequency offset and improve the received SNR. The proposed
RSSI-assisted TDoA algorithm is implemented in the PC based data processing unit that is connected to
the base stations using cables.
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Figure 7. Overall system architecture.

The mobile node is implemented using an NI USRP-2920 device, and the related functional blocks are
shown in Figure 8. For the scenario where the mobile node sends a positioning request, the probe request
frame is selected as the request signal. The probe request frame is in the category of the management frame,
strictly in compliance with the IEEE 802.11b protocol. The MAC service data unit (MSDU) is implemented
in the host PC and sent to the baseband FPGA in the USRP-2920 device through FIFO. In the MAC layer
implemented in the FPGA, the MAC protocol data unit (MPDU) is generated by joining the MAC header
to MSDU. In the PHY layer, the MPDU is prefixed with the physical layer convergence protocol (PLCP)
preamble and header. Then, the In-phase (I) and Quadrature-phase (Q) signals are processed in turn by
the scrambler, the modulator, the DSSS and the pulse shaping filter. The I/Q baseband signals are then
converted to the analog signals using the DACs, and up-converted to the 2.4 GHz frequency band.

MAC 

Data
FIFO

MAC 

tx

PHY 

tx

DAC 
Up 

Conversion

DAC 
Up 

Conversion

Host LabVIEW FPGA RF

I

Q

Figure 8. Functional diagram of the mobile node.

The base stations are implemented using NI USRP-2952R devices. Each USRP-2952R device
is composed of two receiving channels, and each channel serves as a base station. Therefore, two
USRP-2952R devices are needed to implement three base stations. Note that all the base stations need to
be synchronized. The two receiving channels within each single device is inherently strictly synchronized.
Two USRP-2952R devices are synchronized by deploying the master–slave mode. The slave USRP-2952R
device is synchronized to the master device by receiving a time reference signal from the master through a
coaxial cable. Three base stations are identical, consisting of the RF front end, the ADCs and the baseband
receiver. The baseband receiver processes the received signal r to generate the baseband signal y for
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the subsequent protocol parsing and the proposed RSSI-assisted TDoA method. The architecture of the
baseband receiver in the base station is depicted in Figure 9.

Matching 

Filter

Timing 

Synchronizer

Frame 

Detector

Phase 

Recovery

Barker code 

Re-correlator

Envelope 

Sampling

Demodulator Descrambler CRC
MPDU

Received 

Signal 

r

Baseband 

Signal 

y

Figure 9. The architecture of baseband receiver.

The phase recovery block is specially designed to compensate for the carrier frequency offset between
the mobile node transmitter and the base station receivers. The frequency offset results in an additional
envelope in the received signal, and will finally cause the drift in the cross-correlation calculation.
The classic frequency offset correction algorithms are based on the Fast Fourier Transform (FFT), which
requires a large number of data points. In this work, the Coordinate Rotation Digital Computer (CORDIC)
algorithm proposed in [43] is adopted to solve the frequency offset issue. The received signal is described as

r (n) = s (n) · exp [j (2π∆ f nTs + ∆ϕ)] (19)

in which s (n) represents the sampled version of the transmitted baseband signal given in Equation (1),
∆ f is the frequency offset, ∆ϕ is the phase offset, and Ts is the ADC sampling period at the receiver side.
The conjugate multiplication z of two sampling points spaced by N is expressed as follows

z = r (n) · r∗ (n + N)

= s (n) · s∗ (n + N) · exp (−j2π∆ f nTs)

= |s (n)| · |s (n + N)| · exp [j (ϕn − ϕn+N)] · exp (−j2π∆ f nTs)

(20)

The envelope sampling block ensures that r (n) and r (n + N) are from the signal envelope. With
DBPSK modulation, ϕn − ϕn+N is either 0 or π. Therefore, ∆ f can be derived from

∆ f =

∣∣∣∣ 1
2πNTs

arctan
(

Im (z)
Re (z)

)∣∣∣∣ (21)

in which Im (z) and Re (z) are the imaginary part and real part of z. In the actual implementation, ∆ f is
calculated and averaged based on eight sets of {r (n) , r (n + N)}.

3.2. Signal Processing Flow for Position Sensing

The 1D position sensing is quite simple, and can be performed directly following the procedure
described in Section 2. The overall data processing flow for 2D position sensing is shown in Figure 10.
In the 2D position sensing case, the positioning request signal arrives at three base stations with the
propagation time ti (i = 1, 2, 3). At the base station side, the down-converted received signal ri is
sampled by the 88 Msps ADCs. The baseband receiver calibrates the frequency offset and outputs
the MPDU. The protocol parser labels the continuous arriving frames with the designated source address
and timestamp. The baseband signals yi (i = 1, 2, 3) from three base stations with the identical label
are grouped in pairs as the input of the proposed RSSI-assisted TDoA method. Three time difference
estimations, i.e., ∆t

′
1est between base station #1 and #2, ∆t

′
2est between base station #2 and #3, and ∆t

′
3est
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between base station #3 and #1, are obtained. The set of
{

∆t
′
1est, ∆t

′
2est, ∆t

′
3est

}
is then used to calculate the
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Figure 10. Signal processing flow for 2D position sensing.

The conventional position calculating algorithms based on the TDoA include the Fang method [30],
Chan method [31] and the Taylor-series method [32]. In the Taylor-series method [32], the iterative
local least squares (LS) solution with an initial position guess is robust with high tolerance to the TDoA
estimation errors, and this method is adopted for the position calculation in this work.

The presented method can be easily extended to the 3D positioning solution by modifying the
processing flow in Figure 10: (1) increase the number of base stations (4 base station minimally); (2) calculate
6 TDoA values (the TDoA values between every two base stations) using the RSSI-assisted method in
Section 2, if 4 base stations are used; (3) change the 2D coordinate calculation to the 3D coordinate
calculation using the TDoA values.

4. Simulation and Experimental Results

The proposed RSSI-assisted TDoA method has been validated through both the numerical simulation
and the experiments using the prototype system.

4.1. Simulation Results

In order to evaluate the algorithm’s performance, the numerical simulation is performed using
MATLAB. The simulation of 1D position sensing with one mobile node and two base stations is described
in this section. In this simulation, the mobile node is placed at a fixed position, and the theoretical TDoA is
set to ∆ t = −1 ns. The propagation channel between the mobile node and either base station consists of
the LoS path and one non-LoS path with MPSI ∈ [−0.5, 0.5]. Totally 49 combinations of {MPSI1, MPSI2}
are simulated, and 5000 measurements with random phase noise in the received signal are calculated for
each combination.

Figure 11a shows the TDoA calculation results with the received SNR equal to 15 dB. In the simulation,
the propagation delay difference is very small (∆τ ∈ [0.45 ns, 0.6 ns]), which is far less than the ADC
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sampling period Ts = 1/88 MHz = 11.36 ns. The conventional cross-correlation method gives a TDoA
with quite a large error which can be up to 1.5 ns, and the error is correlated to the multipath interference.
With the proposed method presented in Section 2, the maximum TDoA estimation error is reduced to only
0.5 ns. Figure 11b shows the mean error (ME) of TDoA estimation for different received SNR. The ME of
the proposed method is about half of that by using the conventional cross-correlation method.
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Figure 11. Simulation results of 1D TDoA estimation with different multipath and SNR conditions: (a) TDoA
calculations of the conventional cross-correlation and the proposed method for 49 MPSIs cases and 15 dB
SNR; (b) TDoA mean error for different received SNR.

4.2. 1D Position Sensing Experiment

To validate the proposed method, experiments on the prototype system are conducted in a meeting
room. The 1D position sensing experiment setup with one mobile node and two base stations is shown
in Figure 12. The receiving antennas of two base stations are arranged 2 m apart, and the mobile node
moves along the straight line between two base stations. The mobile node broadcasts the probe request
frame with a fixed interval of 10 ms. The probe request frame arrives at the receiving antennas via the LoS
path and the non-LoS paths caused by the reflection by the desk surface, the surrounding chairs and walls.
Seven test positions are uniformly distributed with 0.1 m space. The mobile node remains stationary at
each test position for 5 s to collect adequate raw data.

The RSSI values of two base stations are shown in Figure 13a. The theoretical values are derived
from the log-normal shadowing model as the reference. It can be found that the measured RSSI values
deviate significantly from the theoretical values at position #6 and #7, which reflects the impact of the
multipath interference. It is worth mentioning that small deviation does not represent the corresponding
test position is immune to the multipath interference. The TDoA calculation results using the conventional
cross-correlation and the proposed method are shown in Figure 13b. It is clear that the TDoA results
calculated by the proposed method are closer to the theoretical prediction at all the seven positions.
Lategahn et al. [44] presented a fusion method of RSSI and TDoA, which chose the relatively reliable
result as the target position. However, it can be seen that the Lategahn method will not work well in this
experiment setup, especially at position #6 and #7, for which neither the RSSI method nor the conventional
TDoA method can give a good position estimation. In contrast, the proposed RSSI-assisted TDoA method
gives a reliable position estimation, even at position #6 and #7.
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Figure 12. 1D position sensing experimental setup to validate the proposed method.
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Figure 13. 1D position sensing experimental results at 7 test positions: (a) RSSI values of base station #1 and
#2; (b) TDoA calculation results of the conventional cross-correlation method and the proposed method.

4.3. 2D Position Sensing Experiment

The experimental setup for 2D position sensing is shown in Figure 14. It consists of one mobile node
and three base stations. The mobile node moves on the surface of the table. Three base stations are strictly
synchronized by sharing the clock source.

Figure 15a shows the distribution histogram of the measured TDoA values between two base stations,
by repeating the proposed method 500 times and the mobile node staying at one randomly selected
position. At this position, the theoretical TDoA value is −1.33 ns. The measured TDoA result has a
distribution close to a Gaussian distribution. The average measured TDoA is about −1.85 ns, and all the
results are distributed in the range of ±0.15 ns. The maximum TDoA error is about 0.65 ns, which means
that the maximum position estimation error is about 0.2 m. Figure 15b shows the cumulative distribution
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function (CDF) of the 2D position estimation errors using the proposed method and the conventional
TDoA method. It is clearly seen that the proposed method gives a higher position estimation accuracy,
with 90% of the measurement errors less than 0.3 m.

 #1  #2

 #3

Figure 14. 2D position sensing experimental setup to validate the proposed method.
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Figure 15. Experimental results of 2D position sensing: (a) Histogram of TDoA results distribution with
the mobile node at a fixed test position; (b) Cumulative distribution function of estimation errors by using
two methods.

The performance of the presented RSSI-assisted TDoA method is summarized and compared to three
representative works in the literature, as shown in Table 1. 90% of the position sensing errors in this work
is less than 0.3 m. This result is actually better than that of the other works listed in Table 1. Note that [38]
reported a root mean square (RMS) error of 0.23 m, and equivalently, the 90th percentile error would
be more than 0.4 m. The proposed method gives the best position sensing accuracy. Compared to the
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other works in Table 1, the proposed method has also achieved moderate computational complexity and
moderate real-time performance.

Table 1. Performance summary and comparison.

[45] [46] [38] This Work

Position sensing method RSSI TDoA SRT RSSI-assisted TDoA

Positioning error (m)
0.66

(average)
1.5

(the 90th percentile)
0.23

(RMS)
0.3

(the 90th percentile)

Offline phase Complicated None None Few

Computational complexity o(n) o(n2) o(n3) o(n2)

Real-time performance + - – -

5. Conclusions

In this work, we analyzed how multipath interference affects indoor position sensing accuracy, and
the multipath strength indicator is introduced to quantify the impact. An improved cross-correlation-based
TDoA method is proposed by using RSSI calculation for coarse estimation. The main idea is to compensate
for the multipath interference in the received signals with the RSSI values and the coarse TDoA results.
To validate the effectiveness of the proposed method, a prototype system has been implemented in a
software defined radio platform. Both the simulation and experimental results have demonstrated that
the proposed method is effective to mitigate the multipath interference effect in position sensing with
affordable computation overhead. Although the proposed method is validated based on the IEEE 802.11b
Wi-Fi protocol, it can be easily transplanted to other wireless systems without any constraint on the signal
type, channel bandwidth, MAC protocol, etc., which is valuable in IoT applications with self-organizing
sensor networks.

Future work will probably focus on the verification of the proposed method in real application
scenarios, by building an indoor position sensing system based on real mobile devices and off-the-shelf
Wi-Fi access points. The proposed method will be extended to 3D position sensing situations with more
base stations deployed in a 3D indoor space. Also, efforts will be made to verify the method on other
wireless communication protocols.
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