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Abstract: The Internet of Things (IoT) and Demand Response (DR) combined have transformed the
way Information and Communication Technologies (ICT) contribute to saving energy and reducing
costs, while also giving consumers more control over their energy footprint. Unlike current price
and incentive based DR strategies, we propose a DR model that promotes consumers reaching
coordinated behaviour towards more sustainable (and green) communities. A cooperative DR system
is designed not only to bolster energy efficiency management at both home and district levels, but also
to integrate the renewable energy resource information into the community’s energy management.
Initially conceived in a centralised way, a data collector called the “aggregator” will handle the
operation scheduling requirements given the consumers’ time preferences and the available electricity
supply from renewables. Evaluation on the algorithm implementation shows feasible computational
cost (CC) in different scenarios of households, communities and consumer behaviour. Number of
appliances and timeframe flexibility have the greatest impact on the reallocation cost. A discussion
on the communication, security and hardware platforms is included prior to future pilot deployment.

Keywords: cooperative smart community; scheduling algorithm; consumer preferences; renewables

1. Introduction

There exists a global aim to conceive novel sustainable services and energy infrastructures
to balance supply and demand. Over the last decade, many sustainable development initiatives
across the globe have been promoting regulatory campaigns, such as pricing or optional/mandatory
thermal retrofit policies, looking at the engagement of cost-effective social behaviour and/or a social
pro-environmental morality [1]. To this regard, the Internet of Things (IoT) and Demand Response
(DR) combined have transformed the way Information and Communication Technologies (ICT)
contribute to saving energy and reducing costs, while also giving consumers more control over
their energy footprint [2,3]. Connected devices (e.g, household items, machines, vehicles or gadgets)
can automatically influence each other in order to increase the overall potential for energy efficiency
and the range of management systems’ involvement.

DR programmes, designed to stimulate changes in consumers’ electric usage patterns, thus appear
to bolster not only energy efficiency, but also renewable energy resource management initiatives.
Current DR strategies are based on providing end-users with individualised tailored advice
about their particular habits with incentive payments for load reductions when needed to ensure
reliability [4]. For instance, as control and communication technologies become more widely
accessible, electricity prices and information are delivered more effectively to consumers. This allows
consumers to identify and more easily target discretionary loads that can be curtailed or shifted.
On one hand, we can find new challenges to the analysis of these loads and the extraction of
consumer/community patterns that produce more automatic and user-friendly DR systems as
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well as driven by congestion management instead of being price-based. On the other hand, this
automation should be enabled by on-site energy controls fed by near-real-time pricing information
without significant customer effort or intervention. Furthermore, the real exploitation of renewable
sources for energy supply presents multiple challenges not only to utilities, grid and system
operators, but also to the consumer that knows very little about its availability or potential from
microproduction [5] and energy harvesting processes [6,7]. For instance, according to the Eurostat
survey (https://ec.europa.eu/eurostat) (Figure 1), only 19% of the final energy consumption in
residential sector comes from renewable resources.

Figure 1. Final energy consumption in the European residential sector from Eurostat survey 2017.

Our proposal intends to bridge the aforementioned gap between utilities and consumers by
leveraging consumer cooperation towards a joint daily schedule of their household appliances
operation using supply generated from renewable energy sources. In this work, we assume the
existence of an Utility entity (a set of energy providers or substations) generating, accumulating,
storing and ultimately serving electricity to the consumers. This role, the Utility, is therefore in charge
of allocating the available supply from the different energy sources at disposal of the community; it is
not, however, dealing with the final destination of the supply (whether to power low-energy electronics
or bigger appliances). As an application scenario, imagine a smart community of electricity consumers
who, empowered by a better access to their consumption controls and appliance interconnection,
are provided with sufficient incentives to coordinate and adjust their energy demands for a certain
purpose. These consumption controls are coordinated by a Home Energy Management System,
which enables energy management at homes. By doing this, consumers are able to visualise the energy
data and make optimum use of energy by controlling their electrical appliances. They autonomously
adapt their energy consumption by means of sharing nearly real-time electricity demand information.
An aggregator device, capable of shifting the consumers’ use of the resource, will be able to make
the overall consumption pursue common goals such as being sustainable, ecofriendly or cheaper.
On the other hand, utilities, allowed to perform real-time billing, profiling and fault detection, are also
creating incentives for users consuming renewable sources (e.g., guaranteeing the lowest price if the
load demand does not exceed a certain threshold). They produce, store, distribute and serve the supply
to the consumers who will now benefit from additional information about the supply availability.
It has to be observed that neither utilities nor consumers are considering microgenerated energy in
the current model. Hence, it is responsibility of the aggregator the computation and rescheduling
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of the total daily load of the community to avoid overloading the utility supply from renewables.
This scheduling represents an optimisation problem whose main factors are the 24 h-vector of the
next day’s supply from renewable sources and the duration and activation time preferences of every
consumer’s appliance.

In this work, we present a cooperative DR system designed to promote behavioural changes
in small or large communities with common interests. The involved entities will reach binding
agreements and coordinated behaviour through the aggregator, a device that collects 24-h vectors
with the consumers’ demands and the expected supply from renewables. It also centralises the
supply allocation algorithm that optimises the distribution of the available green supply between the
consumers taking into consideration their time preferences of appliance activation. Experimentation
on the algorithm implementation is conducted using estimated values and benchmarks. We include
the analysis of the power consumption in watts for most commonly used appliances taking average
measures informed by manufacturers; for each appliance type, we show the efficiency label (according
to EU normative), the estimated cost while in operation mode and standby mode as well as the average
consumption in 24 h time. In addition, we evaluate the algorithm over different strategies of player
order selection as well as over the application of four heuristics that optimise the objective search.
Evaluation results throw feasible computational cost in all these different programming configurations
as well as considering a series of scenarios for household and community settings, and consumer
behaviours. Finally, from the empirical results we can discuss on the hardware and networking
requirements for an efficient pilot deployment.

The paper is organised as follows. We discuss the related work in Section 2. Section 3
states the system model and design decisions. We describe the simulation of the implemented
scheduling algorithm and estimate the performance cost in Section 4. Technical considerations in
terms of communication, network protocols, security and hardware platforms are drawn in Section 5.
Finally, Section 6 concludes and establishes future research directions.

2. Related Work

The starting point of our research can be found in the works by the authors of [8,9], where an
adaptive model for DR is envisioned over the deployment of smart meter networks. Special focus is
taken on the software design in order to facilitate the integration and scalability of the community
system future development. An example of a DR aggregator model is designed in the work by the
authors of [10] to facilitate renewable energy integration, where end consumers play a key role.

One of the major challenges in the energy efficiency context is the way to involve end-users in
energy markets. This fact can be exemplified in the works by the authors of [11,12], where systems
are designed to facilitate DR for residential prosumers. For instance, the work by the authors
of [12] shows a system based on an aggregator of residential prosumers that participate in the
day-ahead energy market to minimise operation costs by controlling appliances. The performance
of an optimisation-based residential energy management scheme is presented in the work by the
authors of [13]. This work applies a constrained swarm intelligence model to minimise the total cost of
household electricity consumption. As it has been stated by the authors of [14], models based on DR,
smart technologies and intelligent controllers can lead to a considerable energy consumption reduction.

The vast majority of the related work addresses energy-efficient solutions and optimisation
algorithms from a single consumer/home viewpoint. The appliance scheduling optimisation solution
in the work by the authors of [15] considers time ranges and consumer preferences along with
different types of appliance consumption profiles. Their solution is based on the Mixed Integer Linear
Programming (MILP) technique under “Gurobi” solver, which is addressed to minimise both the total
energy cost and the peak load of all the home appliances used per day. This model is unscalable
though. Similarly, household load scheduling is also approached in the work by the authors of [16]
by the MILP optimisation model. The MILP model and a heuristic algorithm accounting for a typical
household user are simulated taking into account overall costs, climatic comfort level and timeliness.
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MILP is also the technique applied to load shifting by the authors of [17] to optimise the interaction
between an aggregator and smart consumers’ operation. The specific DR program incentives and the
consumers’ needs are the main parameters that a Smart Home (SH) controller considers to reshape
the consumers’ demand profile through shifting the operation of flexible loads. Focused on users’
individual preferences, the work by the authors of [18] sets priorities and preferred time intervals
for load scheduling, along with making efforts to optimise the consumption curves of household,
commercial and industrial consumers.

A remarkable interaction between the utility and its consumers is modelled through a two-step
centralised game in [19], where consumers reduce the peak-to-average power ratio by optimising
their energy schedules. The utility supplier pulls consumers in a round-robin (RR) fashion and
provides them with energy price parameter and current consumption summary vector. Each user,
then, optimises its own schedule and reports it back to the supplier, which, in turn, updates its energy
price parameters before pulling the next consumers. Also centralised but considering renewable
energy technologies to improve energy efficiency and reduce costs through optimisation algorithms,
approaches in the work by the authors of [20] focus on the context of microgrids and storage
at residential and commercial building environments. In addition, heuristics based on genetics
algorithms [21] and neural networks [22] work on the scheduling of the consumer consumption to
save the peak formation. Their simulation results show that the proposed algorithms reduce the
peak-to-average ratio and help users minimise their energy expenses without compromising comfort.

Applying a distributed and an autonomous Demand Side Management (DSM) within
a neighbourhood, the consumers’ schedulers in the work by the authors of [23] are assumed to
be built inside smart meters and connected to the power grid and a local area network. In order to
reduce the total energy cost, these schedulers interact automatically by running a distributed algorithm
to find the optimal energy consumption schedule. Subscribers also receive incentives to use the
schedulers via a novel pricing model derived from a game-theoretic analysis. The authors of [24]
formulate a power allocation game, where multiple companies, leaders and their consumers are the
followers to reach a unique pure-strategy Nash equilibrium via a distributed algorithm. Authors find
that the multi-period scheme, compared with the single-period one, provide more incentives for energy
consumers to participate in DR. For a comprehensive description of the many algorithms that can be
used to solve the resource allocation problem, see the work by the authors of [25].

In summary, several optimisation Pareto-efficient approaches to the load and/or consumption
adaptive scheduling have been the focus of much attention in demand side management, SHs,
wireless sensor networks, broadband networks, and smart grids [26,27].

3. System Model

Our proposal embraces the use of renewable resources aiming three main actors: Consumer,
Aggregator and Utility. Figure 2 illustrates the main roles and processes within the adopted cooperative
DR framework.

The first actor, Consumer, provides the home energy usage to be managed and automatically
controlled by Home Energy Management System (HEMS) that performs three main functions:
(1) schedule demand, (2) appliance control and (3) information provider. It selects the daily scheduling
preferences, managing a profile for collaboration in a DR system and viewing its account and consume
information. The consumer can manage them from a portable device (i.e., an app installed on
a mobile phone or tablet) that is connected to a communication network for preferences scheduling.
A community will comprise a set of consumers sharing electricity supplier or substation. HEMS pulls
scheduling information and generates processed data to the Aggregator. HEMS is also responsible for
collecting information from the Aggregator and controlling a variety of home appliances.
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Figure 2. Smart cooperative system divided into Home Area Network (HAN), Neighbour Area
Network (NAN) and Wide Area Network (WAN).

In our proposal, Consumers adapt their energy consumption cooperatively on a centralised
way, that is, sharing their demand schedule with a data collector, which facilitates the integration
of energy consumption information into a common view. This integration is performed over the
so-called Aggregator, the second actor, which implements an optimised resource allocation algorithm
as a response to supply conditions, in particular, targeting renewable sources. The Aggregator is
defined as the optimal system providing energy management services in order to efficiently manage
demand in SH [28]. HEMS acts as a central node and receives the demand scheduled information from
the Aggregator. Then it loads the power consumption preferences to each appliance and establishes
communication for managing the appliances. The Aggregator allows the local distribution of the energy
provided, according to the availability of renewable resources. This energy management system will
be connected to the Utility, the third actor, which is a set of energy suppliers shared by customers.
We presume utilities implement a distributed generation that allows to gather energy from mainly
renewable sources addressed to give lower environmental impacts and improve supply security.

3.1. Consumer System Design

Let N denote an ordered set of Consumers that are willing to cooperate in the pursuit of global
community targets (i.e., becoming greener) by sending their data to the Aggregator. Each consumer
i ∈ N has a set of household appliances labeled as Ai. Fixed energy load is identified by factors such as
the consumers’ habits, their behaviours and their use of appliances, as well as a variable load resulting
from the use of such appliances and other equipments. Formulae and benchmarks can be used to
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estimate appliance and home electronic energy use in kilowatt hours (kWh) as well as household local
records.

Bearing in mind a discrete time slot system, and without loss of generality, we assume that time
granularity is one hour per day. Regarding the appliances, each Consumer is supposed to preallocate
a certain amount of fixed demand and variable consumption planned for the next 24 h [29]. For each
appliance, aij ∈ Ai, we assume both daily fixed and variable energy consumption scheduling vectors at
each time slot t ∈ {0, . . . , 23} to control its non-shiftable and shiftable consumption respectively.

We define fDt
i,aij

and vDt
i,aij

by denoting the corresponding one-hour fixed and variable energy
consumptions respectively. Variable energy demand is characterised by its flexibility, as the Consumer
preference for an appliance starting in a specific period of time is taken into consideration. For each
appliance, there is an execution window (i.e., a closed interval) that selects a minimal starting time,
and a maximal ending time labelled by ti

beg and ti
end. ti

sched is defined as the working time of appliance

“i” and matches the range of operation start time ti
sched ∈ [ti

beg, ti
end]. L is defined as the duration of the

planned operation of appliance aij in the next day. Load needs to be switched on for a time between
two predefined moments: ∀ij ∈ Ai, ti

sched ≥ ti
beg. In this line, load also needs to be switched off: ∀ij

∈ Ai, ti
sched ≤ ti

end. In other words, Consumer i will set the following data for its appliance aij ∈ Ai
(see Table 1).

Table 1. Appliance configuration.

Appliance Configuration

Consumption
(kWh)

Fixed consumption
(kWh)

Duration
(hours)

Time
ON

Time
OFF

vDt
i fDt

i L tbeg tend

• Fixed consumption (kWh) when appliance aij is in standby status
• Consumption (kWh) when aij is on
• Duration (hours/minutes) of the planned operation of appliance aij in the next day
• Point in time (hour, e.g., 8am) of preferred start of appliance aij activation
• Point in time (hour, e.g., 12pm) of preferred end of appliance aij operation

A centralised home controller provides access to all the appliances and devices at home via
wireless networks; it will receive and apply the 24-hour reallocated vector from the Aggregator to
systematically activate/deactivate every appliance without human intervention.

Moreover, we have developed an energy consumption scheduling app based on the Adobe
XD template [30], which provides the consumer with an interface to control, monitor, visualise and
program the functioning of appliances. More specifically, it allows the configuration and setting of
the aforementioned data for each appliance aij. Figure 3 depicts a usage sequence to explain how the
application works. The app allows users to check the resources used in the previous 24 h as well as to
select the appliance in relation to the dwelling zones such as the kitchen or the bathroom, among others.
At this stage, consumer will be able to indicate the time range and the duration of activation for each
appliance. The last window summarises the introduced demand information. It also provides an
estimated power cost in operation and standby for each appliance (according to benchmark analysis in
Table 2). Consumers have to give consent by sending these data to the home controller. Finally, a vector
is sent to the Aggregator with the data structure shown in Table 1.
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Figure 3. Consumer scheduling app.

Data aggregation is defined as a centralised system with aggregation tasks that communicates
with the Utility and the Consumers as shown in Figure 4. An algorithm is originally designed to
optimise the allocation of the expected electricity supply from renewables among the community’s
Consumers related to their chosen preferences.

Sequence	diagram

Consumer  APP

Visualization

Generate vector
configuration

Display error

User

Log into app

Correct?

Set
appliances'

fixed
demand

Set time
preferences

for
appliances
with flexible

demand

Set
appliances'

variable
demand

Send vector
configuration to

aggregator

Consumer i's
controller

Correct?

vDfD

L, st, et

Aggregator

Compile 24h - supply
from renewable

(RWt)

>Yes

Fixed demand
computation

(fDit)

Compile 24h - demand
vectors from N

consumers

Compile 24h -
demand vectors from

consumers
(vDit)

Optimization
model for n

consumer 24h  -
demand vector

Objective
function based on

scheduling
parameters from
appliances and

renewables
resources

Dispatch
privately

24h -
rescheduled

demand
to

consumers
(vDit + fDit)

Dispatch
privately 

24h -
community

to
Utility

 
(RWt)  

No

Utility

Serve 24h -
community

demand

Estimate supply from
renewable

Figure 4. Sequence stating main processes and message exchange among the system’s players.
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3.2. Aggregator System Design

As an example of a renewable source efficient use, the Utility provides essential information on
reliable renewable source and fossil energy programmed for the next 24 h by replacing carbon-intensive
energy. The energy supply generated from a set of renewable sources at a time slot t ∈ {0, . . . , 23} is
denoted by RW t. fU t represents the energy supply at time t generated from a set of fossil sources.
The Utility centralises the distribution of the energy, the notification to the Aggregator, and the billing
process. The renewable supply vector RW is essential for the Aggregator in the optimisation of a
fair allocation of such supply between the Consumers’ fixed (non-shiftable) and variable (shiftable)
energy demands.

The daily fixed demand for consumer i ∈ N is denoted by fDi = ∑23
t=0 ∑aij∈Ai

fDt
i,aij

as the
aggregated load of non-shiftable local consumption of the appliances and frequent behaviours.
The Aggregator can then easily compute the daily fixed demand for the whole community of consumers
at a time t as fDt = ∑N

i fDt
i . On a daily basis, the Aggregator verifies that the total energy consumed by

all appliances in the system fulfils the daily utility service provided by the Utility. It is critical
that the community does not reach the worst case such as ∑N

i ∑23
t=0 fDt

i � ∑23
t=0RW t. On the

contrary, aggregation of the variable energy is more complex given the consumers’ time preferences.
The Aggregator will execute a fair-share rescheduling of the community’s requested variable demand
per hour vDt

i aiming at ∀t ∈ {0, . . . , 23}, ∑N
i ( fDt

i + vDt
i ) ≤ RW

t. We will show refinements of the
proposed scheduler algorithm looking at the max–min fairness, Pareto-efficiency, envy-freeness,
and truthfulness while serving Consumers’ preferences. Perhaps the simplest way to give each
Consumer equal chance against all other is to recursively apply a ”round-robin” strategy in the
allocation of each Consumer’s needs. Fair random assignment is one of the refinement methods to be
compared. A global centralised optimisation problem is faced here, where only a “Nash bargaining
solution” is possible such as ∀i ∈ {1 . . .N}, µt

i = fDt
i + min{DFC(vDt

i )} ≤ RW
t.

Therefore, solutions to the optimisation problem should satisfy ti
sched and L while avoiding

overconsumption atRW t. The formulation is explained in Algorithm 1 (Demand Calculation Function,
DCF ) and it will be shaped as its minimum, i.e., min.DFC(·) upon request of Algorithm 2. In DFC
function, a search for the optimum time slot for every appliance activation takes place given its
activation time, its preference interval and the available supply in kW from the renewable utility.
In particular, taking into account Ai, ti

sched, ti
beg and ti

end variables, the optimisation will determine how
appropriate an adjustment is by minimising the total overconsumption (in hours) of the community
appliances against the available renewable supply at a certain time slot.

Finally, upon reaching the optimisation objective, the Aggregator will notify the community that
an agreement has been reached and privately release the reallocated demand vector −→µ i∀i ∈ N to
each Consumer.
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Algorithm 1 Demand Calculation Function (DCF )
1: RWt(renewable vector) = {σ1, . . . , σ24}
2: N = size(Ai)
3: Defining variables ti

beg, ti
end

4: for ihour time to the total number of hours do

5: if ihour doesn’t belongs to interval [ti
beg, ti

end] then

6: fDt
i computation

7: end if
8: end for
9: for iappliance 1 to size of appliances configuration (Ai) do

10: RW t = RW t −−Ai( fDt
i )

11: end for
12: Ai(vDt

i ) = Ai(vDt
i )−−Ai( fDt

i )
13: Ai(Dt

i (Dt
i < 0)) = 0

14: Ai( fDt
i ) = Ai( fDt

i )−−Ai( fDt
i )

Objective Function F (Ai,RW t, ti
sched)

Require: Ai configuration: vDt
i , fDt

i ,Li, ti
beg, ti

end
Ensure: ti

beg < ti
end

15: HC initialisation (consume Hourly Energy)
16: for iappliance 1 to size of appliance configuration do

17: Set ti
beg

18: Set ti
end based on Li and ti

beg
19: for ihour time to the total number of hours do

20: if ihour belongs to interval [ti
beg, ti

end] then

21: HC(ihour)← HC(ihour) +Ai(vDt
i )

22: else

23: HC(ihour)← HC(ihour) +Ai( fDt
i )

24: end if
25: end for
26: end for
27: RW ts = RW t −−HC t

28: RW ts(RW ts < 0) = 0
29: Demanded_RW t ← min(RW t,HC t)
30: R1 = sum(RW ts);R2 = max(HC t)
31: Result = sum(R1 +R2)
32: return Result, Demanded_RW t,HC t(ti

sched)

Algorithm 2 RR strategy

1: Generate parameters for consumer allocation
2: Define global variableRW
3: while (user < N ) and (min(RW) >= 0) do

4: if Optimisation needs then

5: Load consumer preferences. Ai size from preference array
6: Call Optimisation Function under variables preferences: RW , Ai, N
7: Number of user ++
8: if (RW equals to 0) then

9: Break
10: end if
11: end if(No consumer to optimise)
12: end while
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3.3. Proposed Algorithm: A Fair Division Game

The Aggregator can apply different approaches to optimisation search within the aggregated load
vector vD. It contains all consumer appliances’ scheduling that could be shifted within their preferred
activation time frame. This scheduling problem at the Aggregator can be seen as a division game given
a set of players (either the consumers in N or all its appliances ) and a set of assets (the supply from
renewables in RW). In our algorithm we have opted for a turn-based sequential game played by
Appliance instead of Consumer for optimisation purposes.

The scheduling problem has to produce a fair division of RW , i.e., a set of rules that, when
properly used by the players, guarantees at the end of the game each player will have received a
fair share of the assets. In our view, a fair share means that consumers’ preferences on the appliance
activation are considered by the Aggregator with equity and privacy. As in turn-based sequential
games, defining the order under which players start within a turn could be approached in terms of (A)
Round-Robin (RR) start: the first player selection policy is RR; (B) random RR; (C) ranking: the first
player being the same every time; and (D) randomness: the first player is randomly selected (likewise
the sequence order), as follows.

(A) The RR principle, known from other fields such as network scheduling and processor queuing,
is based on a process/game/technique, where each task/person/device takes an equal share
of something in turn. The RR scheduling can allocate the available electricity from renewables
both simple and fairly among the Consumers/ Appliances, because (1) the consumers’ number is
known and fixed and (2) the reallocation process is centralised by the Aggregator which, starting
on its own, will satisfy the demand of the Consumers/Appliances in a periodically repeated order.
We include pseudocode of our algorithm’s main function in the round robin strategy, being
the rest pseudocodes similar with exception of the player turn selection on Algorithm 2-line 3.
RR results in max–min fairness if the Consumers/Appliances’ demands are equally sized; otherwise,
fair queuing that establishes a fair share size would be desirable.

(B) A random RR scheduling: A similar process as in A), though the election of first Consumer
is random.

(C) A picking-sequence has several merits as a fair division protocol [31]. Assuming that
each agent has a (private) ranking over the set of objects, the allocator must find a policy
(i.e., a sequence of agents that maximises the expected value of some social welfare function).
Moreover, picking sequences are a natural way of allocating (indivisible) items to agents in a
decentralised manner: at each stage, a designated agent chooses an item among those that remain
available. The goal of the method is to identify the fairest sequence.

(D) A random process could, or could not, introduce efficiency (no other “random” assignment
dominates) in the aforementioned methods while keeping them Pareto-efficient, envy-free and
giving good approximation to the social welfare. Efficiency in terms of computational time is
also at stake.

4. System Validation

In this section, we measure the Computational Cost (CC) of the implemented scheduling algorithm
evaluating the suitability of a number of four heuristics applied to the optimisation search and on
a series of different case scenarios of consumer communities. In particular, the evaluation of the
heuristics and their behaviour on our algorithm under the same input parameters will assist in the
selection of the hardware platform for an efficient deployment.

4.1. Optimisation Algorithms Used

We adopt heuristic techniques to perform a partial random search of optimal solutions to our
objective, i.e., either when the reallocation demand is met or when the number of predefined iterations
is reached. We have identified and implemented the following four optimisation methods to guide the
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search of a workable solution, i.e., the nearest local minimum standard strategy in our Algorithm 1
as follows.

(i) Simulated Annealing (SA) [32] finds a local minimum solution for our Algorithm 1 (DCF ) starting
at an initial operation time ti

sched. As explained in Algorithm 3, SA starts generating trial point
based on current estimates and evaluates the function by accepting a new value generated after T
parameter is set. The solution must consider the [ti

beg, ti
end] time constraints. ti

sched can randomly

generate and filter by L. In case of better D, the original one D′, ti
sched′ could be accepted as better

solution if D′ is worst than D. After the internal counter reaches its threshold, T is cooled down
and re-select the best solution again with the reset counter.

Algorithm 3 Optimisation based on SA algorithm

1: Let T > 0 as initial parameter
2: Let N (T ) as maximum number of iterations
3: while stop criterion has not been met do

4: Randomly generate a fasible solution tsched
5: Evaluate ti

sched, D = f(ti
sched)

6: n = 1
7: while while n <= N (T ) do

8: Generate solution ti
sched′ based on ti

sched
9: Evaluation of ti

sched′ ; D
′ = f(ti

sched′ ); δ = f(ti
sched′ )–f(ti

sched)
10: if f(t′osi) < f(ti

sched) then

11: ti
sched = ti

sched′
12: else

13: if δ >= 0 and u< exp((f(ti
sched′ )–f(ti

sched))/T ) then

14: ti
sched = ti

sched′
15: end if
16: end if
17: n = n+1
18: end while
19: T reduction and update ti

sched at each reduction
20: end while

(ii) Genetic algorithm (GA) [33] is identified as a method mainly used to solve optimisation problems
based on a natural selection process similar to biological evolution. GA finds an optimal operative
time from our Algorithm 1 (DCF ) for the Ai variables. As explained in Algorithm 4, GA can find
a solution beginning with random population of points. GA repeatedly modifies a population
of individual solutions. At each step, GA produces a next generation population based on
a randomly selection of individuals from the current population. After that, the population
turns into an optimal solution. The evaluation number is increased when the method finishes by
calculating one generation P . Each generation is a feasible solution for the appliance scheduling
(ti

sched per appliance). In the evaluation stage, the best solution ti
sched, which has the lowest

demand, is inserted to the best solution set. Mutation and crossover operators are selected to
generate the next evaluation from the current generation. The mutation operator randomly
shifts the scheduled start times of some appliances in order to generate newly solutions that may
have a better result in demand efficiency. They are screened with the constraints to filter out the
infeasible ones. The crossover driver swaps scheduled ti

sched under feasible solutions.
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Algorithm 4 Optimisation based on GA algorithm

1: Generate Solutions. Build a set of PopSize P solution
2: Reformulation of solutions. Selection of a local search method to each solution in P
3: while number of evaluations < MaxEval do

4: ti
sched introduction to P. Evaluation of solution in P and update

5: Probability of survival based on the quality of the solution
6: P solution is partially selected to apply the mutation and crossover operation
7: Number of evaluation ++
8: Constraint validate P for each ti

sched. Discard solutions which are disqualified
9: end while

(iii) Pattern Search (PS) [34] polls the values around the current point and determines the direction that
will minimise our Algorithm 1 (DCF ) starting at an initial operation time ti

sched. For each possible
direction, an all linear combination of the current position is created, and each pattern is multiplied
by the size of the mesh to obtain a new one. As presented in Algorithm 5, PS investigates nearest
neighbourhood of a possible solution always in the range of lower and upper bounds [ti

beg, ti
end]

for each appliance. This solution seeks to find a better one. A failure improvement generation
by neighbours (L and D) would reduce the search step (∆). Search finishes when the step gets
sufficiently short, ensuring the convergence to a local minimal overconsumption.

Algorithm 5 Optimisation based on PS algorithm

1: Initialise predefine default search step ∆0; ti
sched and ∆=∆0

2: while Termination condition not reached do

3: init current solution D= (ti
sched+L*∆)

4: Evaluate nearest neighbours in D
5: if betters in D then

6: Update the current solution to the best neighbour in D; ∆=∆0
7: else

8: Search step reduction ∆=∆0/2
9: end if

10: end while

(iv) Particle Swarm Optimisation (PSO) [35] is a stochastic search method and simulates the social
behaviour of particles used to find parameters that minimise a given objective. The optimisation
determines the minimum value and the best location evaluating our Algorithm 1 (DCF )
through iterations.

Algorithm 6 illustrates this search procedure, which is initialised with the generation of particles
assigning initial velocities and positions. The operative appliances time is defined as a set of lower
and upper bounds [

−→
tbeg,
−→
tend], where the solution is found in operation time range

−→
tbeg = (ti1

beg, ..., tij
beg),

and
−→
tet = (ti1

end, ..., tij
end). The vectors −→x = (xi1, ..., xij) and −→v = (vi1, ..., vij) are the current position and

velocity, respectively. Each individual adjusts its position according to a linear combination of its
inertia ω, the best location of individual particle −→p = (pi1, ..., pij) and the best location of particle
swarm −→g = (gi1, ..., gij). The confidence degree is determined by the random operators φp and φg in
the range [0,1] together with the confidence coefficients cp and cg. They are responsible for moving in
the direction of the best position of a particle and the global best position. The new displacements are
no more than one way of trying to imitate other individuals. It then iteratively updates the solution
positions (the new location is the old one plus the velocity, modified to keep particles within [

−→
tbeg,
−→
tend],

velocities and neighbours). The solution, above Ai, tries to find the optimal ones. After several
iterations, particles converge to the best solution.
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Algorithm 6 Optimisation based on PSO algorithm

1: Initialise population of particles with random values positions in the search space −→x ∼U[
−→
tbeg,
−→
tend]

2: Set each particle best known position to its initial position −→p ←−→x
3: Initialise each particle velocity to random values −→v ∼U[

−→
−d,
−→
d ] where

−→
d =
−→
beg−−

−→
end

4: Initialise the best known position −→g to the −→x where f (−→x ) is lowest
5: while Termination condition not reached do

6: for Each particle i do

7: if i > 1 then

8: Choose two random numbers φp,φg
9: Adapt velocity −→v ← ω −→v + cpφp(−→p –−→x ) + cgφg(−→g –−→x )

10: Bound −→v for all dimensions i (−→v , -
−→
d ,
−→
d )

11: Update the position of the particle −→x ←−→x + −→v
12: Bound population xi for all dimensions i (−→x ,

−→
tbeg,
−→
tend)

13: end if
14: if f (−→x ) < f (−→p ) then

15: update the particle’s best known position −→p ← −→x
16: end if
17: if f (−→x ) < f (−→g ) then

18: update the particle’s best known position −→g ← −→x
19: end if
20: end for
21: −→g holds the best found position in search space
22: end while

4.2. Performance Analysis

Simulation runs on a computer with the following specifications: CPU: 2.3 GHz Intel Core
i5; Memory: 8 GB 2133 MHz LPDDR3 and MATLAB R2018b [36]. We evaluate the computational
cost of the proposed Algorithm 1 on a series of experiments that represent a variety of possible
scenarios of community sizes, consumption patterns or consumer behaviour as depicted in Table 3.
Experimentation will help us to identify the most influential factor/s in the computation of the
community scheduling.

We have conducted an analysis on the most common appliances’ real consumption estimation
from manufacturers and data sources from the authors of [37], the U.S. Department of Energy (http:
//www.energy.gov/), the National Grid report (http://www.nationalgrid.com), the authors of [38]
and the reports (https://standby.lbl.gov/docs) as well as the manufacturer data to set the scenarios.
Our benchmark is depicted in Table 2. Scenarios were envisioned from the design of a residential
building as in Figure 5. In particular, we have generated eight scenarios as illustrated in Table 4 and
conducted hundreds of experiments for the different factor values to obtain results on a boxplot shape.
On the one hand, we can denote as altruistic or flexible a consumer whose time preferences range is
big (e.g., from 0h to 23 h); such types of communities are represented by Cases 1, 3, 5 and 7. On the
other hand, Cases 2, 4, 6 and 8 illustrate communities on a more selfish setting. Duration is set equally
in both situations.

http://www.energy.gov/
http://www.energy.gov/
http://www.nationalgrid.com
https://standby.lbl.gov/docs
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Table 2. Common household appliance energy use.

ID Appliance Model Watts (W)
Efficiency Ranges
European Union
A, A+, A++, A+++

Estimated
Average
Power in 24 h
(kWh)

Estimated
Standby
Power in 24 h (kWh)

Estimated
Operative
Time in 24 h
(h)

AP1 Water Heater Wesen ECO30 2000 10–14.73 0.010 1–15
AP2 Clothes Dryer Balay 3SB285B 4350 1–2.22 0.015 1–10
AP3 Clothes Washer Eutrotech 1106 1800 1–2.67 0.015 0.5–10
AP4 Iron Rowenta DX1411 2100 0.1–3 0.002 1–3
AP5 Air conditioner Fujitsu STG34KMTA 9400 - 3.9–24.3 0.015 0.3–15

AP6 Room air conditioner Rinnai RPC26WA 2600 - 8–24.3 0.015 3–18
AP7 Heater DeLonghi HSX3324FTS 2400 1–7 0.08 0.1–10
AP8 Fan heater Dyson AM09 2000 - 1–6.7 0.015 0.1–10
AP9 Dehumidifier DeLonghi DEX 210 4–24.3 0.005 1.1–9

AP10 Electric blanket Medisana HDW 120 - 1–3 0.08 1.2–9

AP11 Ceiling Fans Westinghouse Bendan 80 0.5–9 0.01 0.5–5
AP12 Attic Fans Remigton 500 - 4.73–6 0.01 0.1–18
AP13 Tower Fan Sunbeam FA7250 40 - 1.4–3 0.03 0.1–18
AP14 Hoover BGLS4TURBO 750 - 3–6 0.02 0.3–18
AP15 Boiler Greenstar Ri 9000 8–22 0.05 0.1–3

AP16 Coffee maker DeLonghi ECOV 1100 9–12 0.05 0.1–3
AP17 Refrigerator Bosch KDN46VI20 500 8.77–10 0.05 4.77–24
AP18 Dishwasher Bosch SMS88TI36E 1500 0.5–1.5 0.015 0.3–4
AP19 Food processor Becken BFP-400 110 0.5–2 0.015 0.1–5
AP20 Freezer Bosch GSN36BI3P 350 6–8 0.009 0.1–24

AP21 Microwave Balay 3CG5172N0 1700 0.9–3 0.01 0.1–4
AP22 Oven Bosch VBD5780S0 5000 10.96–12 0.01 0.1–8
AP23 Toaster Russell Hobbs 21973 1100 0.2–1 0.01 0.1–1
AP32 Lighting Osram 100 - 0.7–3 0.01 0.1–24
AP25 Vaporizer Philips GC362/80 400 0.3–2 0.07 0.1–8

AP26 Printer HP Officejet 3833 100 - 0.8–1 0.05 0.1–4
AP27 Computer Samsung ls24a450 350 0.7–15.3 0.05 0.1–24
AP26 TV Panasonic TX43E302B 54 0.1–100 0.05 0.1–24
AP29 Kettle Philips HD4644/00 3000 6–19 0.01 0.1–1
AP30 Security Alarm Vbestlife 20 - 0.6-1 0.02 0.1-24

AP31 Auto Cook MUC88B68ES 1200 1–3 0.09 0.1–3
AP32 Air Cleaner Balay 3BC598GN 150 1.1–6 0.01 0.1–6
AP33 Vacuum Cleaner Hoover TH31HO01 1000 0.9–3 0.06 0.2–4
AP34 Electric Fryer DeLonghi F26237 1800 - 13–16 0.05 0.2–3
AP35 LedTV LG 49LJ515V 250 1.9–5 0.05 0.2–24

AP36 Electric Store Dura Heat EUH4000 4000 - 2.4–4 0.05 0.3–23
AP37 Speaker Logitech Z120 180 0.3–4 0.01 0.2–20
AP38 Hair Dryer Rowenta CV3812F0 2100 0.99–4 0.01 0.2–6
AP39 Smart Camera Yi Home 4 - 0.99–2 0.01 0.2–24
AP40 Monitor Sensor iHome 5 - 0.99–10 0.01 0.1–24

Table 3. List of factors for the different case scenarios.

Factor Type Value

Community Size High, Low 30, 5
N. of Appliances High, Low 1200, 40

Distribution of Appliances Same, Different S, D
Fixed Demand High, Low Not influenced by optimisation

Variable Demand High, Low Up to 18 kWh6, Up to 9 kWh6

Consumer Flexibility High, Low 24 h, A duration: L
Vector ofRW Even, Uneven 10 kWh, [10 kWh–20 kWh] 50% SD

Table 4. Possible load-shape situations.

Community Size N N. of Appliances A Distribution of Appliances Fixed Demand
fD (kWh)

Variable Demand
vD (kWh) Consumer Flexibility CF RW Vector per Hour (kWh)

Case 1 From 5 to 30 From 40 to 1200 S Up to 0.43 Up to 9 24 h 10
Case 2 From 5 to 30 From 40 to 1200 S Up to 0.43 Up to 9 L 10
Case 3 From 5 to 30 From 40 to 1200 D Up to 0.43 Up to 9 24 h 10
Case 4 From 5 to 30 From 40 to 1200 D Up to 0.43 Up to 9 L 10
Case 5 From 5 to 30 From 40 to 1200 S Up to 0.43 Up to 18 24 h 10
Case 6 From 5 to 30 From 40 to 1200 S Up to 0.43 Up to 18 L 10
Case 7 From 5 to 30 From 40 to 1200 D Up to 0.43 Up to 18 24 h 10
Case 8 From 5 to 30 From 40 to 1200 D Up to 0.43 Up to 18 L 10
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We will compare our method’s performance with the four different heuristics mentioned in
Section 4.1, i.e., SA, PSO, GA and PS, and evaluate the efficiency of the different strategies presented in
Section 3.3 on the search for the optimisation objective.

Figures 6–9 depict the scheduling cost for the different case scenarios of consumers using strategy
C picking-sequence. These scenarios represent extreme conditions either considering high number
of appliances and/or an uneven distribution of them, and also the flexibility of the consumers’ time
preferences. Communities with selfish settings or fixed consumption display the best results over all
different optimisation procedures (cases 2, 4, 6 and 8).

C

S

S

S
S

S

S

A

Legend:

C

S

A

home Controler

Smart device

Aggregator 

Figure 5. Distribution of the appliances, consumers and aggregator in the community.

(A) (B)

Figure 6. Comparison of the SA, PSO, GA and PS methods for low variable and high fixed consumption
in 24 h CF (A) and L CF (B).
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(A) (B)

Figure 7. Comparison of the SA, PSO, GA and PS methods for low variable and high fixed consumption
in 24 h CF (A) and L CF (B).

(A) (B)

Figure 8. Comparison of the SA, PSO, GA and PS methods for both high variable and fixed consumption
in 24 h CF (A) and L CF (B).

(A) (B)

Figure 9. Comparison of the SA, PSO, GA and PS methods for both high variable and fixed consumption
in 24 h CF (A) and L CF (B).

The CC is higher when consumers have an uneven number of appliances. This effect can be
observed in Figure 7 and in comparison with Figure 6. The same occurs in scenarios with high variable
demand (see Figure 9 and Figure 8). In addition, a high variable demand (Figures 8 and 9) penalises
the CC when compared with low settings (Figures 6 and 7). We find the worst case situation on
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altruistic communities with high variable demand when applying strategy C under SA optimisation.
As Figure 9 (red colour) shows, it takes 30 minutes. Both PSO and GA work with sets of solutions that
interact between themselves. Both perform better due to the number of solutions managed at the same
time. We can also conclude that strategy C under all possible scenarios can be solved within the next
24 h, being PSO the most computationally efficient for scheduling (28sec).

Additional simulation measures the performance of communities of 20 appliances per consumer
in Case 1. Figure 10 (left) compares all the algorithms and shows that PSO achieves a global optimum
solution quickly. GA obtains similar outcomes. Applying SA, Figure 10 (right) shows that the cost
needed for the scheduling increases linearly with the number of appliances.

Figure 10. Different approaches (left) and appliances number results (right).

So far, experiments have been mainly focused on strategy C. Figure 11 depicts the optimised
cost obtained after applying all strategies, and taking into account the different factors (see Table 4).
These factors are differentiated by branches and data are expressed as a percentage of the required CC.

Possible load-shape scenarios

Community Size/N. of Appliances

30/1200

Variable demand

18kWh

24H

Different

Case 7
16.9%
9.3%
100%
85%

Same

Case 5
12.1%
9.74%
93.8%
67.6%

L

Different

Case 8
7.9%
10.1%
70.8%
65%

Same

Case 6
10.2%
6.65%
66.1%
61%

9kWh

Consumer flexibility

24H

Different

Case 3
6.79%
6.65%
66.1%
51.1%

Same

Case 1
28.1%
71.2%
66.7%
50.6%

L

Appliances distribution

Different

Case 4
6.6%
6.2%
45.5%
40%

Same

Case 2
6.1%
6.8%

43.7%
38.97%

5/40

Variable demand

18hWh

24H

Different

Case 7
49.54%
66.2%
69.8%
60%

Same

Case 5
42.4%
69%

77.4%
57.4%

L

Different

Case 8
45.4%
92.9%
68.2%
56.0%

Same

Case 6
42.5%
57.6%
73.1%
55.9%

9kWh

Consumer flexibility

24H

Different

Case 3
37.1%
35.3%
100%
47.1%

Same

Case 1
44.3%
38.1%
77.4%
43.9%

L

Appliances distribution

Different

Case 4
32.7%
27.7%
78.7%
29.9%

Same

Case 2
(A) 42.8%
(B) 26.4%
(C) 53.3%
(D) 27.9%

Figure 11. CC results (in %) after applying different strategies (Section 3.3) performed under SA:
Round-Robin (A), Randomly Round-Robin (B), “having the first consumer always the same” (C) and
randomly (D).
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Strategy C performs badly, with higher CC in all circumstances. This is mainly because the
Aggregator needs more resources when it has to optimise all consumers and their appliances all
together. The simulation performed with consumers by adding their preferences randomly (strategy D)
shows similar cost when compared to strategy C. By contrast, the Aggregator under strategy A optimises
consumers preferences consecutively in an individual way. A new variant of RR is to perform this
strategy when the first consumer starts randomly (strategy B). Both strategies act equally, though
dispersed. Strategy A appears as the most appropriate strategy on our system.

Further conclusions can be extracted globally for all the strategies. The CC is higher in four
possible situations: when users set a very flexible demand need, when the community is large, when the
number of appliances is also large and when a high demand is needed (Figure 11, last branches).
A better performance is achieved under strategy B when consumers demand low variable load,
in a selfish and small community (Figure 11, first branch). The distribution of appliances also
impacts the CC, being higher in large communities with uneven number of appliances per neighbour.
The highest CC, which exceeds the half an hour of computation, is obtained in strategy C scenario under
a high demand flexibility for an optimisation of 30 neighbours with different appliances distribution
per dwelling (Figure 11, last branch).

Finally, Figure 12 compares the CC considering two differentRW vector structure provided from
the available sources at the Utility: uniformRW vector and the 50% standard deviation ofRW values.
For the eight different cases, and using strategy B and SA, testing is performed for communities of
5–30 consumers. In terms of the chosen strategy, both situations display similar behaviours.

Figure 12. Comparison of RW factor from cases 1 to 8 by applying strategy A under SA.

5. Technical Considerations: Communication, Security and Hardware

Discussion on the development of a pilot testbed for our system over the existent smart home
technologies, their security properties and more feasible communication protocols are included in
this section. Extensive work on networking infrastructures has been proposed for smart metering
data transmission [14,39]. Some approaches focus on fiber-optics for a high-speed data exchange
transmission [40], whose deployment cost would only worth when high data transmission rates are
required. Power Line Carrier (PLC) is generally applied to computer networks, wired smart meters
among other purposes such as remote monitoring and direct control applications offered by utility
companies to consumers [41,42]. Note that regulation should be taken into account to allow the use
PLC technologies in outdoor deployments as discussed in the work by the authors of [43].

Infrastructures in a Home Area Network (HAN) comprise the communication technologies
for deploying HEMS integrating the household appliances. Communication protocols for data
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transmission between appliances can be provided with a variety of unwired techniques [28] such as (1)
ZigBee, which offers an adequate range communication with low data rate and power consumption;
(2) Z-Wave, which has been used for short range communication due to the low latency communication
of small data packets in scalable environments; (3) 6LoWPAN, which can be applied to building
automation designs [44] and to home automation architectures [45]; (4) Bluetooth, which is widely used
to exchange data over short distances in low energy usage and fast data exchange [46]; and (5) GSM
networks and WLAN, which provide low latency robust communications [47].

Neighbourhood Area Network (NAN) connects customers’ HEMS on a two-way communication
infrastructure responsible for transmitting their demands and time preferences to the Aggregator,
as well as the traditional control messages and power grid sensing data. Wireless cellular is widely
used in this type of scenarios as described in the work by the authors of [14].

A Wide Area Network (WAN) establishes communication between the Aggregator and the Utility
substations. Distance to cover is in a radius of a thousand meters comprising of two interconnected
networks [48]. Protocols LoRaWan and 5G demonstrate high speed, bandwidth and responsiveness
while operating on various licensed and unlicensed frequency bands. Moreover, LPWAN (LoRa) will
fulfil most of the IoT challenges and applications. By contrast, the introduction of 5G into the IoT
world is still slow and other technologies sound more promising at present time. Table 5 summarises
the main features of the discussed technologies and includes recommendations on more appropriate
application areas.

In terms of security and privacy, HEMS involve the deployment of physical controls, cyber-security
countermeasures as well as privacy leakage prevention [49]. In addition, a gateway architecture for high
system availability is proposed in the work by the authors of [50]. Anonymous authentication applying
zero-knowledge proof of knowledge could be the solution to provide anonymous authentication
between consumers and Aggregator. The latter needs to guarantee compliance with the General Data
Protection Regulation (GDPR). Furthermore, a methodology to assess the security risks within the
HAN domain should be developed as in the work by the authors of [51]. Further details can be
found in the work by the authors of [52], where the authors explain the different IoT security threats
scenarios (e.g., personal information leak) and provide an evaluation method within a situational
smart home framework.

Table 6 identifies the most promising hardware platforms to build our HEMS emphasising
low-cost, compatibility, scalability, easy programming and lightweight properties [48,53]. Raspberry
Pi 3 [54] is a single-board computer with integrated Bluetooth and WiFi module and enough resources
to control the smart appliances and send/receive our system messages. The emergence of cheap
microcontrollers like the Arduino has enabled the implementation of low-cost HEMSs mainly devoted
to obtain the consumption data as to generate demand/load profiles [55]. For example, the work
by the authors of [56] designs and implements a remotely controlled, energy-efficient and highly
scalable HEMS using Zigbee in Arduino Mega board as a central controller. In [57] it is discussed
and evaluated the performance of BeagleBone blue for HEMS developments, an open-source hardware
platform with similar principles of Raspberry Pi. Similarly, the proposal by the authors of [58] develops
a remote monitoring system using “Libelium Waspmot”, a modular device that allows the integration
of different sensors and radio transceivers. Additionally, deep learning implementations on Field
Programmable Gate Array (FPGA) performs fast due to the exploration of parallel computing [59].
Particularly in the work by the authors of [60], Zedboard implementation (Zynq-ARM Cortex-A9
processor) allows the control of unpredictable loads in a deterministic demand management model.
In the work by the authors of [61], the algorithm is modelled in Verilog language on a FPGA allowing
dynamic reconfiguration of the HAN. A HEMS prototype is developed on a Cubietruck board (Linux
based cortex A7 processor) using a WiFi module [62]. It transmits real-time sensing data using TCP/IP
communication protocols.
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Table 5. Wireless networks.

Technology Standard Data Rate Frequency Band Power Consumption Complexity Transmission Range Strengths Application Areas Encryption/Authentication

Bluetooth IEEE802.15.1 24 Mbps (v3.0) 2.4 GHz Low 10 m typical

Small networks
Security, speed
Easy access
Flexibility

HAN
Challenge response
scheme/CRC32

WiFi EEE802.11x
11,54 to 300
Mbps outdoor

2.4 GHz
5 GHz Very high Up to100 m

Popular in HAN
Speed, flexibility HAN

4-Way handshake/
CRC32

Z-Wave 802.11 100Kbps
2.4GHz
868.42 MHz (EU) Low

30 m indoor;
100 m outdoor No interferences HAN, NAN

AES128/
32bit home I.D

Zigbee IEEEE802.15.4 256 Kbps 2.4 GHz Very low 10–100 m
Low cost
Low consume
Flexible topology

HAN,NAN
ENC-MIC-128
Encrypted key/
CRC16

LPWAN
SigFox
LoRaWAN
NB-IoT

0.3 to 50 kbit/s
per channel 915 MHz Low

10 km in
rural settings

Low power
Low cost NAN,WAN

Symmetric key
cryptography/AES 128b

6LoWPAN IEEEE802.15.4 250 Kbps 2.4 GHz Low Up to 200 m Low energy use HAN, NAN
Symmetric key
cryptography/AES 128b

GSM/GPRS
ETSI GSM
EN 301349
EN 301347

14.4 Kbps (GSM)
114 Kbps (GPRS)

935 MHz
Europe
1800 MHz

Low Several Km
Low cost
Signal quality

HAN, NAN
WAN

64 bit A5/1 encryption/
Session key generation

WLAN IEEE 802.11 150 Mbps
2.4 GHz
Europe Low 250m Robustness HAN, WAN

WEP, WPA, WPA2/
Open, Shared EAP

5G 5G Tech Tracker Up to 20 Gbps
3400-3800 MHz
awarding trial
licenses (EU)

Very Low 46 m indoor;
92m outdoor

High speed
Low latency HAN, WAN

Symmetric key encryption/
Mobility management entity

3G UMTS Up to 14.4 Mbps
450,800 MHz
1.9 GHz Low Up to 100 m

Fast Data
Transfer HAN,WAN

CDMA2000/
Authentication and
Key Agreement
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Table 6. Hardware platforms.

Hardware Features Communication Transceivers Operating System Power Consumption Strengths/Weakness

Raspberry Pi 3
1.2 GHz Quad Core
BCM2837 64bit CPU
1GB

4 USB, Wi-Fi,
Bluetooth, optional
ZigBee and Z-Wave

Raspbian
Ubuntu
Windows 10

1.8 W
Open source platform;
Use Python or C++;
Cost: 50e

Arduino
32 MHz Micro controller
based on ATmega2560
32 kB

WiFi, Bluetooth,
ZigBee, GSM Processing-based 0.2W

Open source platform
hardware/software;
High flexibility. Cost: 30e;
Appliances compatibility

BeagleBone

720 MHz
MR Cortex-A8 processor
512 MB

1 USB port, PLC,
Bluetooth, Ethernet Angstrom Linux 1 W

Open source platform
similar to Raspberry;
Easy setting up;
Cost: 90e

RADXA
ROCK Pi 4 is a Rockchip
RK3399 based SBC six
core ARM processor, 1GB

WiFi, Bluetooth 5.0,
USB Port, GbE LAN Linux 2.3 W

Open source platform;
High flexibility;
Cost:50e

Libelium
Waspmote

14.7 MHz
ATmega1281
28 kB

1USB, 802.15.4/ZigBee
LoRaWAN,WiFi PRO
GSM/GPRS,4G modules

Linux 2 W

High flexibility;
Starter kit:200e;
ZigBee,WiFi and
LoRaWAN support

Xilinx Spartan FPGA
16 Mb SPI flash memory,
100 MHz Ethernet, USB port Linux 2 W

SH, Deep Learning,
Autonomous System

PYNQ
Embedded systems Xilinx
Zynq Systems on Chips (SoCs)

Bluetooth, Ethernet,
USB port Linux 2.3 W

IoT hardware
development in Python

Control4Home
Automation

Control4Home owners
enjoy personalised
smart living experiences

Bluetooth, WiFi
Z-Wave and ZigBee Licensed -

Operation with
internet connection;
Not user installation

Nexia Smart home
automation system Z-Wave Licensed -

No knowledge of
installation required/
Only Z-Wave support;
Low compatibility

LG smart
appliance

Control key features on
LG smart appliances
from your smartphone

WiFi Licensed -

No knowledge of
installation required/
Only for LG appliances;
Closed source
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In terms of our DR system, and from preliminary design decisions, our prototype will consist of
a Raspberry testbed as the main processor of the HEMS, as it offers good computing performance at
a very low price. Its interoperability will provide the performance of alternatives protocols such as
ZigBee, WiFi or Z-wave. In the proposed architecture, the WiFi wireless communication between the
Aggregator, HEMS and appliances can transfer the data at around a hundredth millisecond, a suitable
speed for our current application. The proposed centralised DR system (Aggregator) will also operate
in an open-source HW platform.

6. Conclusions

Globally, smart communities are envisioned more efficient as residents gain autonomy and
self-organisation for reducing and shifting any resource consumption. Strategies for energy demand
response applied to smart residential communities can lead to improved scenarios of energy efficiency.
Consumers have the opportunity to reduce their electricity cost and/or peak-to-average ratio through
scheduling their power consumption. In this article, we have described a DR model that integrates
the electricity supply available from renewable energy sources into the scheduling process, which is
centralised via the community Aggregator. We have showed details of community scheduling algorithm
implementation and evaluated it in terms of its computational cost. Empirical comparison of our
algorithm design on different implementation strategies for player turn selection and optimisation
heuristics as well as on a series of case scenarios of community’s consumption patterns showed feasible
results in all cases (less than 1 minute to compute the rescheduled community vector). Simulations
are conducted with data from our own benchmark of appliance power cost. We have also illustrated
development decisions of a mobile app for consumers introducing their demands and time preferences.
Finally, we included the discussion of the preliminary decisions on the hardware requirements and
communication protocols for a pilot deployment. Immediate future work includes the pilot deployment
comprising the algorithm/Aggregator running on the most suitable HW platform as well as the home
controllers that autonomously activate/deactivate the smart appliances. We also plan to refine the
scheduling algorithm as to consider the usage or purpose of the consumption along with the device
type. Furthermore, Utilities and Aggregators in possession of the real-time data from microgeneration
and other energy harvesting generators would enhance the conceptual demand response model.
Finally, a study of the community patterns will be conducted through game theory and evolutionary
computation methods.
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Abbreviations

The following abbreviations are used in this manuscript.

N Consumer number
Ai Appliance number
i Consumer identifier
j Appliance index
aij Consumer i’s appliance identifier
t Certain time
RW 24-hour supply vector from renewables
tbeg Earliest start time appliance
tend Latest final time appliance
tsched Scheduled start time of appliance
D Consumer demand
vD Variable demand
fD Fixed demand
CF Consumer Flexibility
L Duration of the planned operation of appliance aij in the next day
SH Smart Home
HEMS Home Energy Manager System
HAN Home Arena Network
NAN Neighbour Area Network
WAN Wide Area Network
IoT Internet Of Things
ICT Information and Communication Technologies
SG Smart Grid
DSM Demand System Manager
MILP Mixed Integer Linear Programming
SA Simulates Annealing
PSO Particle Search Optimisation
GA Genetics Algorithm
PS Pattern Search
RR Round-Robin
PLC Power Line Carries
CC Computational Cost
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