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Abstract: In this paper, we present a convenient and economical method to fabricate a silver (Ag)-film
semi-coated polystyrene (PS) nanosphere array substrate for surface-enhanced Raman spectroscopy
(SERS). The SERS substrate was fabricated using the modified self-assembled method combined with
the vacuum thermal evaporation method. By changing the thickness of the Ag film, the surface
morphology of the Ag film coated on the PS nanospheres can be adjusted to obtain the optimized
localized surface plasmonic resonance (LSPR) effect. The 3D-finite-difference time-domain simulation
results show that the SERS substrate with an Ag film thickness of 10 nm has tens of times the
electric field intensity enhancement. The Raman examination results show that the SERS substrate
has excellent reliability and sensitivity using rhodamine-6G (R6G) and rhodamine-B (RB) as target
analytes, and the Raman sensitivity can reach 10−10 M. Meanwhile, the SERS substrate has excellent
uniformity based on the Raman mapping result. The Raman enhancement factor of the SERS substrate
was estimated to be 5.1 × 106. This kind of fabrication method for the SERS substrate may be used in
some applications of Raman examination.
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1. Introduction

Surface-enhanced Raman spectroscopy (SERS) [1], as one of the most promising spectroscopy
techniques, has received much attention. Because it helps to obtain the “fingerprint information”
of the target analytes with high sensitivity [2], even to the single molecular level [3], SERS has
been widely explored in the fields of surface physics [4], catalysis [5], biology [6], chemistry [7],
and nanomaterials [8], among others.

To evaluate the performance of SERS substrates, the electric field enhancement characteristic
is a key parameter, but the reliability, uniformity, economic aspect, and throughput should
also be considered [9,10], simultaneously. SERS sensitivity strongly relies on the electric field
enhancement performance of the substrates [11]. Based on the LSPR effect near the noble metallic
nanostructures [12,13], many kinds of methods, such as nanosphere lithography [14–16], E-beam
lithography [17], focused ion beam [18], optical micro-nano processing [19], nanoimprint [20], controlled
chemical reaction [21,22], etc., have been proposed to prepare SERS substrates. It is worth noting that
the self-assembled method is commonly used to fabricate SERS substrates [23–28]. Compared with
the methods mentioned above, the electric field enhancement characteristic of the SERS substrate
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fabricated using the self-assembly method is not optimized, but it is acceptable and meets other criteria
for the evaluation of substrate performance, simultaneously.

Since the self-assembled method was proposed by Bryant and Pemberton [29], many improved
self-assembly methods have been constantly put forward to accommodate different substrate
preparation requirements [30–34]. For example, Quero et al. prepared metallic nanostructures
on the end face of fiber jumper for SERS applications [33] and Kühler et al. fabricated the plasmonic
nanoantenna arrays for biodetection [34], among other researchers. Nevertheless, the self-assembled
method is only used to periodically arrange dielectric nanospheres. Subsequently, various etching
techniques are used to modify the surface morphology of the dielectric nanospheres, then a layer
of noble metallic film is coated on the surface of the dielectric nanospheres to achieve electric field
enhancement [35,36]. Many works focus mainly on modifying the surface morphology of the dielectric
nanospheres using various etching technologies to enhance the electric field as much as possible after
coating the noble metallic film, but little attention has been paid to the effect of metallic film thickness
on the electric field enhancement characteristic.

In this paper, we present a convenient and economical method to prepare a silver (Ag)-film
semi-coated polystyrene (PS) nanosphere array substrate for SERS. The SERS substrate was fabricated
based on the modified self-assembled method combined with the vacuum thermal evaporation method.
Surface morphology and distribution characteristics of the Ag film can be adjusted to obtain an
optimized LSPR effect by adjusting the Ag film thickness. The 3D-finite-difference time-domain
simulation results show that the SERS substrate with an Ag film thickness of 10 nm has tens of times
the electric field intensity enhancement. The Raman examination results show that the SERS substrate
has acceptable reliability and sensitivity using rhodamine-6G (R6G) and rhodamine-B (RB) as target
analytes, and the Raman sensitivity can reach 10−10 M. Meanwhile, the SERS substrate has excellent
uniformity based on the Raman mapping result, and the Raman enhancement factor of the SERS
substrate was estimated to be 5.1 × 106.

2. Fabrication and Characteristics of an Ag-Film Semi-Coated PS Nanosphere Array

The PS nanoparticles were deposited onto the silicon wafer with an arrangement of
monolayer hexagonal close-packed lattice using the Langmuir–Blodgett self-assembly method [12,37].
The fabrication process of the SERS substrate is shown in Figure 1a–c. In order to orderly arrange
the PS nanospheres on the silicon wafer, the silicon wafer was cleaned to remove the contaminants.
The silicon wafers (p-type, 1–10 Ω, 15 × 15 mm, and 500 µm thickness) were ultrasonically immersed
for 15 min with Piranha solution, acetone, ethanol, and deionized water, respectively. Then the silicon
wafer was placed on a flat aluminum block, which was located in a container with a water valve.
The container was filled up with deionized water. The PS nanospheres with a radius of R = 150 nm in
an aqueous solution (5 wt %) were mixed with an equal volume of ethanol. A 1 mL medical needle
was used to inject the PS nanospheres’ mixed liquid onto the water surface at a rate of 0.4 mm/min.
When the PS nanospheres densely covered the surface of the deionized water, we stopped injecting the
PS nanoparticles into the deionized water. A drop of sodium dodecyl sulfate solution with a mass
fraction of 2 wt % was dropped into the deionized water to change the surface tension of the water and
obtain a large-area ordered monolayer structure on the surface of the deionized water. The deionized
water was drained from the container until the surface of the deionized water was below the surface of
the silicon wafer, thus the ordered monolayer PS nanosphere array was transferred onto the surface of
the silicon wafer. The silicon wafer with the PS nanosphere array was annealed at 100 ◦C for 30 min
to tightly attach the PS nanospheres to the silicon wafer, as shown in the sketch map in Figure 1a.
Then the Ag film was deposited onto the surface of the PS nanosphere array using thermal evaporation
with a vacuum of 6 × 10−4 Pa and a rate of 0.2 Å/s, as shown in Figure 1b. Due to the tight arrangement
of the PS nanosphere array, the Ag film can be evaporated on the upper half of the PS nanospheres,
as shown in Figure 1c.
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Figure 1. (a–c) Sketch map of the fabrication process of the Ag-film semi-coated PS nanosphere array;
(d–f) SEM image of the Ag-film semi-coated PS nanosphere array with an Ag film thickness of d = 10 nm
(d), 20 nm (e), and 30 nm (f), respectively.

Figure 1d–f shows the scanning electron microscope (SEM) images of the Ag-film semi-coated PS
nanosphere array with an Ag film thickness of d = 10 nm, 20 nm, and 30 nm, respectively. Note that
the Ag films with different thicknesses exhibit the strange surface topography. Especially in the
case of the Ag film thickness of d = 10 nm, the Ag-film semi-coated on the PS nanosphere is not
continuous, and exhibits a disordered island-like structure distribution with a gap of≈5 nm. In addition,
the Ag film makes contact between two adjacent nanospheres, and the gap mode can be generated
at the edge of the contact point to achieve electric field enhancement, under excitation of light [38].
Therefore, the Ag-film semi-coated PS nanosphere array can be used as a SERS substrate to achieve
Raman signal enhancement.

3. Results and Discussion

As a widely accepted target analyte, R6G has been used to examine the performance of the SERS
substrate. R6G with a concentration of 10−9 M was absorbed on the surface of the SERS substrate
with an Ag film thickness of d = 10 nm, 20 nm, and 30 nm, respectively. The SERS examination was
performed using a home-built Raman spectrum configuration. A He-Ne laser at a wavelength of
632.8 nm was used as the excitation light. With a power of 6.5 mW, it was focused on the surface of
the target analytes. A micro-objective (100×, 0.8) was used to focus the excitation light and collect the
SERS signal, simultaneously. Figure 2a shows the Raman spectra obtained using the SERS substrates
with d = 10 nm, 20 nm, and 30 nm. Note that the SERS signal intensity is strongest in the case of
d = 10 nm, which indicates that the electric field enhancement characteristic of the SERS substrate with
d = 10 nm is better than those with d = 20 nm and 30 nm. Figure 2b is the extinction spectrum of the
SERS substrate with d = 10 nm. Note that the SERS substrate has the LSPR effect within the visible
band, and the optimized excitation wavelength is located at λ = 450 nm. Although the LSPR effect at
λ = 632.8 nm is weaker than that of the short wavelength, it was selected as the excitation wavelength
because it helped to avoid exciting the fluorescence signal of the target analytes.
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Figure 2. (a) Raman spectra of R6G (10−9 M) deposited onto the SERS substrates with a Ag film thickness
of d = 10 nm, 20 nm, and 30 nm; (b) Extinction spectrum of the SERS substrate with a Ag film thickness of
d = 10 nm; (c–e) Electric field intensity distributions near the surface of the SERS substrates with an Ag
film thickness of 10 nm, 20 nm, and 30 nm, respectively; (f) Raman spectra of R6G with concentrations of
10−5 M and 10−6 M deposited onto the Ag-film coated silicon wafer with a Ag film thickness of d = 10 nm.
Inset is the SEM image of the Ag-film coated silicon wafer with an Ag film thickness of 10 nm.

The electric field enhancement characteristics of the SERS substrates with d = 10 nm, 20 nm,
and 30 nm were simulated using the 3D-finite-difference time-domain (FDTD, Lumerical) method.
The model was established by using the structural parameters obtained from the SEM images of
the SERS substrates. The radius of the PS nanospheres was R = 150 nm. The refractive index of
the PS nanospheres was set to 1.6 [39], and the permittivity of Ag was taken from the experimental
measurements of Johnson and Christy. The effect of the Ag nanoparticles’ size distribution was not
considered, and it was treated as a smooth Ag film. The grid was set to 2.0 nm cube, and the simulation
area was a unit of the lattice. A plane electromagnetic wave with a wavelength of 633 nm was used
as the excitation light, and it vertically illuminated the SERS substrate. The simulation results of the
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electric field intensity enhancement are shown in Figure 2c–e. Note that the gap modes can be excited
at the edge of the contact point of two adjacent nanospheres under three Ag film thicknesses [40],
and have almost the same electric field enhancement characteristics. However, the Raman examination
in Figure 1 shows that the electric field intensity enhancement is the best when the Ag film thickness
is 10 nm. It indicates that the island-like structure on the surface of the Ag film can achieve further
electric field enhancement.

The comparative experiment was carried out using the Ag-film coated silicon wafer with a Ag
film thickness of d = 10 nm. The inset in Figure 2f is the SEM image of the Ag film on the silicon wafer;
the Ag film is not smooth and the diameter of the Ag nanoparticles is ≈40 nm. The Raman examination
results are shown as the orange and black curves in Figure 2f, respectively. The SERS sensitivity of
the Ag-film coated silicon wafer was 10−5 M using R6G as probe molecules, because all the Raman
characteristic peaks of R6G could be distinguished clearly with a concentration of 10−5 M, yet they
were unable to be measured with a concentration of 10−6 M. However, based on the Ag-film coated
nanosphere array, all the Raman characteristic peaks of R6G could be measured clearly even with a
concentration of 10−9 M, revealing that the ordered nanosphere array could further change the surface
morphology of the Ag films, and further enhance the electric field intensity.

The sensitivity of the SERS substrate with an Ag film thickness of d = 10 nm was examined using
R6G. The examination result of the Raman spectra in the case of an excitation power of 6.5 mW is
shown in Figure 3a. Note that all the Raman characteristic peaks of R6G can be measured clearly even
when the concentration is down to 10−10 M. This examination result proves that the SERS substrate
with d = 10 nm has a high SERS sensitivity. In addition, in order to examine the reliability of the
SERS substrate, the sensitivity of RB was examined to estimate the performance of the SERS substrate.
Figure 3b shows the examination results of the SERS sensitivity. Note that all the Raman characteristic
peaks of RB can be examined clearly even when the concentration is down to 10−10 M. The examination
results using R6G and RB demonstrate that the SERS substrate with d = 10 nm has excellent sensitivity
and reliability.
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Figure 3. (a) Raman spectra of R6G with different concentrations (10−7, 10−8, 10−9, and10−10 M) adsorbed
on the surface of the SERS substrate. The integration time was 10 s. (b) Raman spectra of RB with different
concentrations (10−7, 10−8, 10−9, and 10−10 M) used to examine the reliability of the SERS substrate.

The Raman enhancement factor of the SERS substrate was also estimated [41]. R6G solutions
with concentrations of 10−7 M and 10−1 M were absorbed on a SERS substrate and a silicon wafer,
respectively. Figure 4 shows the Raman spectrum examination result. The intensity of the Raman
characteristic peak at 1511 cm−1 was selected to calculate the Raman enhancement factor, and the
Raman enhancement factor was calculated to be 5.1 × 106 for the SERS substrate.
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thickness of d = 10 nm, and the intensity of the Raman characteristic peak at 610.7 cm−1 was adopted 

Figure 4. Raman spectrum of R6G with concentrations of 10−7 M and 10−1 M absorbed on the SERS
substrate (red curve) and the silicon wafer (black curve), respectively.

To examine the uniformity of the SERS substrate with an Ag film thickness of d = 10 nm, Raman
mapping was performed using a home-built Raman mapping system under excitation of a focused
Gaussian beam. A square region of 20 × 20 µm, as shown in Figure 5a, was scanned with a step value of
500 nm. R6G with a solution of 10−5 M was absorbed on the surface of the SERS substrate. The intensity of
the Raman characteristic peak at 610.7 cm−1, as shown in Figure 5b, was used to reconstruct the image of
the Raman mapping. Figure 5c is the Raman mapping result reconstituted with the peak of 610.7 cm−1.
Furthermore, a line scan of the Raman mapping was taken along the white curve in Figure 5c, as denoted
by the histogram result in Figure 5d. The relative standard deviation (RSD) was calculated as RSD = 7.91%.
The result indicates that the SERS substrate with d = 10 nm has a high uniformity.
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Figure 5. (a) Schematic diagram of Raman mapping excited via a focused Gaussian beam. (b) A typical
Raman spectrum of R6G with a solution of 10−5 M absorbed on the SERS substrate with a Ag film thickness
of d = 10 nm, and the intensity of the Raman characteristic peak at 610.7 cm−1 was adopted to achieve
Raman mapping. (c) Raman mapping result with a square of 20 × 20 µm using the intensity of the Raman
characteristic peak. (d) Histogram of the intensities of the 610.7 cm−1 characteristic perk obtained along the
white curve in (c).
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4. Conclusions

In summary, we present a convenient method to fabricate a Ag-film semi-coated PS nanosphere
array substrate for SERS examination. The SERS substrate was fabricated based on the modified
self-assembled method and the vacuum thermal evaporation method. Surface morphology and
distribution characteristics of the Ag film can be adjusted to obtain the optimized LSPR effect by
adjusting the thickness of the Ag film. 3D-FDTD simulation results show that the SERS substrate with
a Ag film thickness of 10 nm has tens of times the electric field intensity enhancement. The Raman
examination results show that the fabricated SERS substrate with a Ag film thickness of 10 nm has
excellent reliability and sensitivity using R6G and RB as target analytes, and the SERS sensitivity
can reach 10−10 M. Meanwhile, the SERS substrate has excellent uniformity based on the Raman
mapping result. The Raman enhancement factor was estimated to be 5.1 × 106. This kind of fabrication
method of an Ag-film semi-coated PS nanosphere array may be used in various applications of
Raman examination.
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