
sensors

Article

Real-Time Vehicle-Detection Method in Bird-View
Unmanned-Aerial-Vehicle Imagery

Seongkyun Han 1 , Jisang Yoo 1 and Soonchul Kwon 2,*
1 Department of Electrical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu,

Seoul 01897, Korea; skhan3410@naver.com (S.H.); jsyoo@kw.ac.kr (J.Y.)
2 Department of Smart Convergence, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu,

Seoul 01897, Korea
* Correspondence: ksc0226@kw.ac.kr; Tel.: +82-2-940-8637

Received: 31 July 2019; Accepted: 10 September 2019; Published: 13 September 2019
����������
�������

Abstract: Vehicle detection is an important research area that provides background information
for the diversity of unmanned-aerial-vehicle (UAV) applications. In this paper, we propose
a vehicle-detection method using a convolutional-neural-network (CNN)-based object detector.
We design our method, DRFBNet300, with a Deeper Receptive Field Block (DRFB) module that
enhances the expressiveness of feature maps to detect small objects in the UAV imagery. We also
propose the UAV-cars dataset that includes the composition and angular distortion of vehicles in
UAV imagery to train our DRFBNet300. Lastly, we propose a Split Image Processing (SIP) method to
improve the accuracy of the detection model. Our DRFBNet300 achieves 21 mAP with 45 FPS in the
MS COCO metric, which is the highest score compared to other lightweight single-stage methods
running in real time. In addition, DRFBNet300, trained on the UAV-cars dataset, obtains the highest
AP score at altitudes of 20–50 m. The gap of accuracy improvement by applying the SIP method
became larger when the altitude increases. The DRFBNet300 trained on the UAV-cars dataset with
SIP method operates at 33 FPS, enabling real-time vehicle detection.

Keywords: vehicle detection; object detection; UAV imagery; convolutional neural network

1. Introduction

In recent years, studies have been conducted to apply a large amount of information obtained
from Unmanned Aerial Vehicles (UAVs) to various systems. Representative UAV applications exist in
social-safety, surveillance, military, and traffic systems, and the field is increasingly expanding [1–7].
In this application, vehicle detection, which is detecting the position and size of vehicles in UAV
imagery, is very important as background information. Zhu et al. [5] and Ke et al. [6] proposed
a vehicle-flow- and density-calculating system in UAV imagery using the vehicle-detection model.
Yang et al. [7] proposed an Intelligent Transportation System (ITS).

Traditional methods are less accurate because of poor generalization performance, and only
vehicles on asphalt roads are detectable in top-view images, where only relatively standardized
vehicle shapes are shown [8–10]. However, AlexNet [11] won the 2012 ImageNet Large Scale
Visual Recognition Competition (ILSVRC) [12] and showed excellent generalization performance
on a Convolutional Neural Network (CNN). As a result, in 2015, a CNN was able to classify more
accurately than humans [12]. Various CNN-based object-detection models have been proposed, such as
the Single Shot MultiBox Detector (SSD) series [13–15] and Region proposals with CNNs (RCNN)
series [16–18], which utilize CNN. A diversity of vehicle-detection methods has been proposed using
various CNN-based object detectors, but these UAV imagery vehicle-detection methods fail to find
small objects and operate at low altitudes [19] using YOLOv2 [20]. There is also a real-time problem

Sensors 2019, 19, 3958; doi:10.3390/s19183958 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0971-3376
http://www.mdpi.com/1424-8220/19/18/3958?type=check_update&version=1
http://dx.doi.org/10.3390/s19183958
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 3958 2 of 17

using complex models to improve accuracy [4,5,21,22], like Faster-RCNN [18], deep and complex
SSD [13], and YOLOs [15,20].

The MS COCO [23] and PASCAL VOC [24] used in the training of a general object-detection
model consists of front-view images. In addition, each dataset has labels that are not needed for
UAV imagery vehicle detection, such as suitcase, fork, wine glass or bottle, potted plant, and sofa,
respectively. Vehicles in UAV imagery captured at a high altitude have different composition and
distortion peculiarities than general front-view images. For those reasons, vehicle detection using a
model trained with a general object detection dataset is not accurate in UAV imagery.

Therefore, in this paper, we propose a real-time vehicle-detection method in bird-view UAV
imagery using a lightweight single-stage CNN-based object detector. First, we designed a DRFB
module and DRFBNet300, which is a light and fast detection model that uses the MobileNet v1
backbone [25]. Our DRFB module has multi-Receptive Field-size branches to improve the expressive
power of feature maps, using dilated convolution [26] to minimize increments of computational
complexity. We propose the UAV-cars dataset, which includes distortion peculiarities of UAV imagery
to train object-detection models. We also propose a Split Image Processing (SIP) method to improve the
accuracy of the detection model. Our SIP method improves accuracy by using divided input frames,
different from existing CNN-based object-detection methods. Thus, using the DRFBNet300 trained on
the UAV-cars dataset and by using the SIP method, we propose a real-time bird-view UAV imagery
vehicle-detection method.

In Section 3.1, we describe DRFBNet300 using the DRFB module, which is optimized for
small-object detection. Section 3.2 outlines the SIP method, which improved the accuracy of the
object-detection model. In Section 3.3, we describe the UAV-cars dataset that contains the distortion
peculiarities of vehicles in UAV imagery. Section 3.4 describes the overall flow of our vehicle-detection
method. In Section 4, we lay out the environment of the experiments. Section 5.1 outlines a performance
comparison between each model using the MS COCO dataset. In Section 5.2, we compare the
performance of the models trained on our UAV-cars dataset with and without the SIP method.

All models used MobileNet v1 [25] with one Width Multiplier (α) and Resolution Multiplier (ρ) as
a backbone network for fast detection. In the MS COCO experiment, SSD300 [13], RFBNet300 [14],
YOLOv3 320 [27], FSSD300 [28], and our DRFBNet300, which are single-stage object detectors,
were used for the performance comparison. In the UAV-cars dataset experiment, SSD300, RFBNet300,
and our DRFBNet300, which are lightweight single-stage methods, were used for the comparison.
At each model, the number means input size.

2. Related Work

Vehicle-detection algorithms require a high-end computing model that needs high amounts of
power. It is difficult to mount these high-end computing models directly on small battery-powered
UAVs. Therefore, most of them use precaptured or transmitted images from the UAV and run detection
algorithms on the server PC [1–10,19,21,22,29–34].

Vehicle detection has been widely studied as a background research area for various applications,
like surveillance systems and traffic systems [1–7]. Various studies using traditional handcrafted
methods have been carried out. Zhao et al. [8] detected vehicles using the edge-contour information of
vehicles on the road in top-view low-resolution images. Breckon et al. [29] detected vehicles using a
cascaded Haar classifier [35] in bird-view UAV imagery. Shao et al. [31] found vehicles using various
algorithms, such as Histogram of Oriented Gradients (HOG) [36], Local Binary Pattern (LBP) [37],
and exhaustive search in top-view high-resolution images. Yang et al. [9] tracked vehicles with Scale
Invariant Feature Transform (SIFT) [38] and the Kanade–Lucas–Tomasi (KLT) feature tracker [39] after
finding a vehicle using blob information in top-view images. Xu et al. [10] improved the original
Viola–Jones object-detection method [35] to enhance the accuracy of UAV imagery vehicle-detection
models at low altitudes. However, these handcrafted methods are not robust, and are only accurate in



Sensors 2019, 19, 3958 3 of 17

certain environments, such as on roads with one direction. They are also only optimized for top-view
images, where vehicles are seen as a formulaic square shape, or for low-altitude UAV imagery.

To overcome the low generalization performance of traditional handcrafted methods, various UAV
imagery vehicle-detection methods using CNN-based object detectors have been proposed.
Yang et al. [6] proposed the Enhanced-SSD, which modified the SSD structure [13], and detect vehicles
in ultrahigh-resolution UAV imagery. Tang et al. [33] proposed a UAV imagery vehicle-detection model
using the original structure of YOLOv2 [20]. Radovic et al. [19] used the structure of YOLO [15] to detect
vehicles in UAV imagery. Xu et al. [22] proposed a deeper YOLO model, DOLO, using the structure of
YOLOv2. Xie et al. [34] proposed a UAV imagery vehicle-detection model by modifying the structure
of RefineDet [40]. Fan et al. [21] proposed a vehicle-detection model using Faster-RCNN [18], which is
a two-stage method. However, most of these methods use simple top-view images. They also designed
the models to operate at low altitudes [19] or to use ultrahigh-resolution images [6], and heavyweight
models are used to achieve high accuracy, which has high computational complexity [6,21,22,33,34].

3. Proposed Method

Figure 1 shows imagery capturing the schematic concept of the proposed vehicle-detection
method in bird-view UAV imagery. The angle of the camera was 30 degrees from the ground, and the
video was taken at various altitudes while maintaining the camera angle. The altitude of the UAV was
10–50 m above ground. The vehicle-detection model used a prerecorded bird-view UAV image to infer
the location and size of the vehicle on the server PC. Imaging was done using a built-in UAV camera;
its detailed specifications are covered in Section 4.1, and those of the server PC used in the experiment
are covered in Section 4.2.

Figure 1. Unmanned-aerial-vehicle (UAV) imagery-capturing schematic concept.

Figure 2 shows the overall flowchart of the proposed UAV imagery vehicle-detection method.
First, the input image was separated left and right through the Image Separation part of the SIP
method. The two separated images were inputted, respectively, to the DRFBNet300 trained on the
UAV-cars dataset. Next, using the coordinates indicating the position and size of objects found in the
overlapped area at each separated image, the overlapping results were combined at the Box Merging
part. Finally, result boxes were drawn on the input image using the generated coordinate values.
In Section 3.1, we explain the DRFB module and DRFBNet300, used for vehicle detection. Section 3.2
describes the SIP method that separates the input image of DRFBNet300 and combines or removes
duplicated coordinates from the inference result. Section 3.3 describes the UAV-cars dataset, which is
used to train and validate the proposed vehicle model. In Section 3.4, we discuss the overall framework.



Sensors 2019, 19, 3958 4 of 17

Figure 2. Overall flowchart of our UAV imagery vehicle-detection method.

3.1. DRFBNet300

Speed and precision, the main performance indices of the object detector are directly related to
the structure of the backbone network and the meta-architecture of the detector. Therefore, there are
performance differences according to the meta-architecture even for the same backbone network [41].
To improve the accuracy of the object-detection model, several studies use a heavyweight backbone
network such as ResNet [42] or VGGs [43], or meta-architecture like the RCNN series [16–18]. Such a
heavyweight structure is computationally complex and expensive, resulting in the real-time problem of
the object-detection model. This problem can be solved using a lightweight backbone like MobileNet
v1 [25] or single-stage meta-architecture such as SSD [13]. However, a lightweight structure results in
low accuracy because of the lack of network capacity.

In this paper, we designed a DRFB module to improve the accuracy of MobileNet v1 backbone
SSD300 [13], which is a light and fast detector. The values of Width Multiplier (α) and Resolution
Multiplier (ρ) of MobileNet v1 were 1. The proposed DRFB module was designed based on the
human population Receptive Field (pRF) [44], Inception series [45–47], and RFBNet [14]. The DRFB
module improved the quality of feature maps with weak expressive power. DRFBNet300 is an
object-detection model using our DRFB module and RFB basic module [14] on the MobileNet v1
backbone SSD300 structure.

DRFB module. Using a multisized Receptive Field (RF) branch structure rather than a fixed-sized
RF layer in CNN increases scale invariance and produces better-quality feature maps [48,49].
In addition, if the Inception family-based module [45–47] that concatenates the feature maps
generated by the multisized RF convolution is applied to the CNN, the expressiveness of the
feature maps and the accuracy of the model are improved, with faster training speed [46,47].
These Inception module-based approaches have been verified in classification, semantic-segmentation,
and object-detection tasks [14,47–49].

The proposed DRFB (Deeper Receptive Field Block) module was connected to feature maps
for detecting small objects and consists of branches with variously sized RFs. The left-hand side
of Figure 3 shows the structure of our DRFB module. Each branch uses dilated convolution [26] to
generate good-quality feature maps using large RF. The module has a shortcut branch of ResNet [42]
and Inception-ResNet V2 [46], and follows the multibranch structure of inception [45,46]. This makes
it possible to enhance the expressiveness of the feature maps and speed up model training while
minimizing parameter increase.

Our DRFB module used 1 × 1 convolution to increase nonlinearity and depth. This minimizes
the amount of computation increases and improves the capacity of the structure [50]. Instead of using
3 × 3 convolutions, 1 × 3 and 3 × 1 convolutions were used to reduce computational complexity with
nonlinearity increments. The depth of the 5 × 5-dilated convolution branch was deeper than other
branches. The SSD series object-detection model deduces the position, size, and label of multiple
objects in a single-input image at once. Therefore, we used a deeper structure to increase the capacity
of the large RF branch by adding nonlinearity in order to extract better features from objects that



Sensors 2019, 19, 3958 5 of 17

were scattered in the image. We also used a cascaded structure to enhance the expressiveness of the
feature maps. The deeper branch had a bottleneck structure based on Szegedy et al. [45,46] to increase
efficiency while minimizing the number of parameter increasing.

Figure 3. Structure of the (left) DRFB module and (right) RFB basic module.

In each structure in Figure 3, each layer in every branch includes batch normalization and ReLU
activation after the convolution layer (Conv). However, a separable convolution (Sep Conv), shortcut
and the concatenation layer did not include an activation function. Table 1 shows the number of
channels in each layer before the DRFB module was cascaded. In Table 1, the top and bottom row mean
input and output, respectively, and each number sequentially indicates the number of input/output
channels, the application of batch normalization (BN), and the ReLU activation function (ReLU).
The DRFB module was composed of the structure cascade in Table 1. The spatial size of all inputs
and outputs equaled 19 × 19. The shortcut branch, shown in Figure 3, was multiplied by a scale
factor (0.1 [14]) and added to each feature map. The structure of the RFB basic module was the same
as the one of Liu et al. [14].

Table 1. Input and output channels before the cascaded structure of the DRFB module.

Branch 0 Branch 1 Branch 2 Branch 3

Input (19 × 19 × 512)

512/128, BN, ReLU 512/128, BN, ReLU 512/128, BN, ReLU 512/64, BN, ReLU

128/128, BN, ReLU 128/128, BN, ReLU 128/128, BN, ReLU 64/64, BN, ReLU

128/128, -, ReLU 128/128, BN, ReLU 128/128, BN, ReLU 64/96, BN, ReLU

- 128/128, BN, ReLU 128/128, BN, ReLU 96/128, BN, ReLU

- 128/128, -, ReLU 128/128, -, ReLU 128/128, BN, ReLU

- - - 128/128, -, ReLU
Concatnation + Conv (BN, 19 × 19 × 512)

DRFBNet300. The SSD object-detection model has various combined backbone versions.
Among them, the MobileNet v1 backbone SSD300 uses depthwise convolution [25], which reduces
the number of parameters and computational complexity, preserving its accuracy. However, the SSD



Sensors 2019, 19, 3958 6 of 17

object detector was trained to detect small-sized objects using feature maps from the front side of
the feature extractor. Accordingly, feature maps for small-sized object detection have relatively low
expressive power. Therefore, the SSD could quickly detect objects, but overall accuracy is low.

In this paper, we propose our DRFB module-applied MobileNet v1 backbone SSD300 with RFB
basic module [14] and define it as DRFBNet300. The right-hand side of Figure 3 shows the structure of
the RFB basic module. Figure 4 shows the structure of the proposed DRFBNet300. For the backbone
network, we used ImageNet [51] pretrained MobileNet v1. All of the structures in Figure 4 were
identical to MobileNet v1 backbone SSD300 except the RFB basic and DRFB modules. The feature
extractor consisted of the MobileNet v1 backbone, DRFB module, RFB basic module, and six additional
convolution layers. The quality of the feature maps for small-object detection, 19 × 19 × 512 shapes,
was enhanced through the DRFB module. The RFB basic module was connected to the front side of
the extra layers. As a result, the expressiveness of the feature maps for large-object detection was
enhanced, improving the overall accuracy of the detection model.

Figure 4. DRFBNet300 structure.

3.2. Split Image Processing

In general object-detection methods, the input image of a single-stage detector is resized to a
specific size. An SSD is divided into SSD300 and SSD512 according to the resized input image [13].
Single-stage object-detection models deduce the position, size, and label of the object in the input
image with only one network forward pass. Therefore, the SSD512 uses high-resolution input detect
objects relatively well, but the SSD300 does not. On the other hand, the SSD300 using small-sized
inputs deduces results using only 9.7% (90,000 pixels) of the input image when the input size is 720P
(921,600 pixels). This makes SSD300 relatively fast, but low accuracy is inevitable.

Therefore, in this paper, we propose a SIP method that reduces information loss at the
input-image-resizing process of the network. The bottom side of Figure 5 shows the schematic
concept of the SIP method. Unlike the conventional method shown in the upper part of Figure 5,
the detection method with SIP inputs separated images into two segments at the Image Separation
part and outputs the final result through the Box Merging part. Overall flow is shown in Figure 2.

Image Separation. A single input image is separated into two images so that 12.5% of the original
width is overlapped at the center. If the input image is 720P (1280 × 720 pixels), then 160 × 720 pixels
are overlapped at the center. A single 720P image is separated into two 720 × 720 pixel images.
The separated images are inputted in object-detection model DRFBNet300 through normalization.
The network infers the positions of the objects in each left and right image. The Box Merging part of
the SIP method merges the coordinates of the objects in the overlapped area to generate the final result.



Sensors 2019, 19, 3958 7 of 17

Figure 5. Schematic concept of (top) existing object-detection method and (bottom) proposed Split
Image Processing (SIP) method.

Box Merging. Figure 6 shows a flowchart of the Box Merging part. All thresholds were 720P
image referenced values, and optimal values were obtained through experiments. The object-detection
model outputs a result in a coordinate format. Values used in the Box Merging part are the coordinate
values of objects in the overlapped area. If the detector locates the same object in the overlapped
area at each left and right image, the box is truncated or overlapped, as shown in the left image in
Figure 7. This happens when objects in the overlapped area are simultaneously detected in the left and
right images.

Figure 6. Box merging flowchart.

(a) (b)

Figure 7. Experiment results (a) before and (b) after applying the Box Merging part.



Sensors 2019, 19, 3958 8 of 17

In general, when the same object is detected in each of the left and right UAV imagery,
the difference of the Y coordinates is not large. Using this, considering the difference between
minimum (top) and maximum (bottom) Y values between each left and right box, if the difference is
larger than 20 pixels, it is decided as another object. In the comparison of Y coordinates, the top and
bottom values are separately compared in the overlapping boxes. The final result can be true when
both respective values satisfy the condition. When the Y coordinate-value condition is satisfied, the Box
Merging part uses the center point between the same objects of the result. To do this, the X-coordinate
center point of each box was calculated, and, if the distance between them was less than 40 pixels,
it was decided as the same object. If the size of the bounding box was smaller than 30 × 30 pixels even
if all of the previous conditions were satisfied, it was decided as another box. This is a condition that
considers when the size of the vehicles is very small at a high altitude. If the box size was larger than
160 × 160 pixels, the maximum X value of the left image box was in the range of 710–720 pixels, and if
the minimum X value of the right image box was in the range of 560–570 pixels, it was decided to
the same object. This is a condition that considers when the size of the vehicles is very large at low
altitude. Figure 7 shows the results before and after applying the Box Merging part.

3.3. UAV-Cars Dataset

To train the general object-detection model, most studies used datasets such as MS COCO [23]
or PASCAL VOC [13–18,20,24,40,50]. Each dataset has 81 and 21 labels, including backgrounds,
and labels such as frisbee, hot dog, and potted plant. These labels are very insignificant in UAV imagery
vehicle detection. Furthermore, UAV imagery is captured using a wide-angle camera, resulting in
object composition, ratio, and angle distortion. Most general object-detection datasets consist of
front-view images, and even equally labeled objects have different characteristics. Figure 8 shows
feature differences of the vehicle between MS COCO and UAV imagery. If the general object-detection
dataset is used for UAV imagery vehicle-detection model training, detection accuracy deteriorates
because it does not have the peculiarities of UAV imagery.

(a) (b)

Figure 8. Vehicle-feature difference between (a) MS COCO and (b) UAV imagery.

In this paper, we propose a dataset for vehicle detection in bird-view UAV imagery and UAV-cars.
The UAV-cars dataset includes a training and a validation set. The training set consists of 4407
images containing 18,945 objects, and the validation set consists of 628 images containing 2637 objects.
To generate the dataset, the vehicles on the road were directly captured using the built-in UAV camera,
and then the video was sampled to make images at a constant frame rate. A total of 5035 images
were used to generate ground truth (GT) using LabelImg [52]. We used LabelImg to create the GT
boxes and save coordinates in the form of XML files. In addition, 628 images that were not included
in the training set were used as the validation set. The validation set included the altitude condition,
which was 10 m intervals from 10 to 50 m.

We used a camera equipped with a wide-angle lens and UAV to capture the UAV imageries.
Detailed specifications of UAV and camera will be covered in Section 4.1. All images were taken in



Sensors 2019, 19, 3958 9 of 17

various vehicle compositions with altitude changes between 10 and 50 m. As a result, the UAV-cars
dataset contained all various distortion peculiarities of UAV imagery.

3.4. Vehicle Detection in UAV Imagery

Network Training. We used GPU-enabled Pytorch 1.0.1, which is the deep learning library, to
implement DRFBNet300. Our training strategies were similar to SSD, including data augmentation
and the aspect ratios of the default box. The size of the default box was modified to detect small
objects well. For weight-parameter initialization, the weight values of ImageNet [51]-pretrained
MobileNet v1 were used for the backbone network. All remaining layers were initialized using the
MSRA method [53]. The loss function used in the training phase was multibox loss [13]. The Stochastic
Gradient Descent (SGD) momentum optimizer was used to optimize the loss function. DRFBNet300
was trained on the UAV-cars training set for 150 epochs. Further details are covered in Section 4.3.

Vehicle detection. The proposed vehicle-detection model in bird-view UAV imagery is
implemented by applying the SIP method to DRFBNet300 trained on the UAV-cars dataset.
Figure 2 shows a flowchart of the entire vehicle-detection method. We use precaptured bird-view UAV
imagery as input. The video input to the program was divided into frames and conveyanced to our
vehicle-detection model. The input frame was separated into left and right images through the Image
Separation part. The separated images were fed to DRFBNet300 pretrained on the UAV-cars dataset to
infer the coordinates and scores. The Box Merging part used the coordinates of the bounding boxes
inferred from DRFBNet300 to merge redundant detection results when objects were in the overlapped
area. Finally, the completed coordinate values were drawn in the bounding-box shape on the input
image, and results were displayed on the screen and saved.

4. Experimental Environment

4.1. UAV Specification

The experiment used images taken with the DJI Phantom 4 Advanced model (Shenzhen, China).
The weight of the fuselage was 1368 g and the size was diagonally 350 mm except for the propellers.
The fuselage was equipped with four front- and bottom-side cameras, a GPS, and a gyroscope for the
autonomous flight system. The UAV used these sensors to fly at a vertical error of ±10 cm. The built-in
camera used a 20M pixel one-inch CMOS sensor and it was equipped with an 8.8/24 mm lens of 84
FOV. The gimbal that connects the camera to the fuselage has three axes to compensate for yaw, pitch
and roll motion. All images were shot at 720P (1280 × 720 pixels) with 30 FPS. Figure 9 shows the UAV
and its built-in camera used in the experiment.

Figure 9. DJI Phantom 4 Advanced UAV (left) and its built-in camera (right).



Sensors 2019, 19, 3958 10 of 17

4.2. Experiment Environment

During the implementation of the proposed method, we used GPU-enabled Pytorch 1.0.1. Pytorch
uses CUDA 9.0 and the cuDNN v 7.5 GPU library. Table 2 shows the specifications of the server PC
used for model training and operating our vehicle-detection model.

Table 2. Server PC specification table.

CPU Inter Core I7-7700K

RAM DDR4 16GB

GPU Nvidia GeForce GTX Titan X (Maxwell)

O/S Ubuntu 16.04 LTS

GPU Library CUDA 9.0 with cuDNN v7.5

Toolkit Pytorch-GPU 1.0.1

4.3. Training Strategies

The same training strategies were applied to training models using MS COCO [23] and
the UAV-cars dataset. Data augmentation, including distortions such as cropping, expanding,
and mirroring, was applied to the training phase. Data normalization was applied for fast training
and global-minima optimization using mean RGB values (104,117,124) of MS COCO [14]. The models
were trained with 32 batch sizes during 150 epochs. The learning rate started at 2 × 10−3 and was
reduced by 1/10 at 90, 120, and 140 epochs, respectively. We applied a warm-up epoch [54] that helped
global-minima convergence during the initial five epochs, linearly increasing the learning rate from
1 × 10−6 to 2 × 10−3 during the very first five epochs. The SGD momentum using a 0.9 momentum
coefficient and 5 × 10−4 weight decay coefficient was used as an optimizer.

Different methods were applied to the backbone and the remaining layers to initialize the weight
parameters of the network. The initial weight parameter of the backbone network used ImageNet [51]
pretrained MobileNet v1 [25], and all other layers were initialized using the MSRA method [53].

5. Experimental Results

5.1. MS COCO

In this experiment, we used the MobileNet v1 [25] backbone SSD300 [13], RFBNet300 [14],
YOLOv3 320 [27], FSSD300 [28] and our DRFBNet300, which are single-stage object-detection methods.
We trained each model using MS COCO trainval35k [23]. The training strategies in Section 4.3 were
used for each model. All models in this experiment were evaluated using MS COCO minival2014 [23].

Table 3 shows the speed and mean Average Precision (mAP) of each model trained on MS
COCO. The experiment result showed that the proposed DRFBNet300 achieves 21 mAP. This is the
highest mAP score compared to the SSD300 and RFBNet300, which are lightweight single-stage
object-detection models running in real time. The network inference of DRFBNet300 also only took
22.3 ms, meaning real-time detection is possible at about 45 FPS. The FSSD300 and YOLOv3 320 were
accurate, but the number of parameters was 19.1M and 24.4M, respectively. In addition, operation
speed was 60.9 and 40.1 ms, meaning real-time object detection is impossible. Figure 10 shows the
detection results of DRFBNet300 of MS COCO val2017 [23].

Figure 11 shows the results of person detection in bird-view UAV imagery using MS
COCO-trained SSD300, RFBNet300, and our DRFBNet300. Comparing the experiment results of
each model, the detection results of DFRBNet300 were better than the other models. This is because the
generalization performance of DRFBNet300 is the best and it was designed to detect small objects well.



Sensors 2019, 19, 3958 11 of 17

Table 3. Experiment results of the MS COCO dataset.

Method Backbone # of Params Time
(ms)

Avg. Precision, IoU Avg. Precision, Area
0.5:0.95 0.5 0.75 Small Medium Large

SSD300 7.8 M 19.8 0.181 0.318 0.181 0.014 0.173 0.369

FSSD300 19.1 M 60.9 0.229 0.402 0.236 0.055 0.258 0.386

YOLOv3 320 MobileNet v1 24.4 M 40.1 0.236 0.407 0.241 0.082 0.240 0.386

RFBNet300 6.8 M 21.3 0.206 0.358 0.209 0.018 0.210 0.381

DRFBNet300 7.6 M 22.3 0.210 0.368 0.212 0.018 0.212 0.387

Figure 10. Object-detection results of DRFBNet300 on MS COCO val2017.

(a) (b) (c)

(d) (e) (f)

Figure 11. Person detection in bird-view UAV imagery of each model trained on MS COCO.
(a,d) SSD300 results; (b,e) RFBNet300 results; and (c,f) DRFNet300 results.

Figure 12 shows the experiment results of applying the SIP method to DRFBNet300 trained on MS
COCO. The model with the SIP method slowed down because the amount of computation increased.
However, unlike undetected or misdetected objects when the SIP method is not applied, the accuracy
of the applied model was greatly improved.



Sensors 2019, 19, 3958 12 of 17

Figure 12. Experiment results of adjacent-frame object-detection (top) before and (bottom) after
applying SIP of MS COCO-trained DRFBNet300.

5.2. UAV-Cars Dataset

In this experiment, we trained SSD300, RFBNet300, and our DRFBNet300, which are lightweight
single-stage object detectors running in real time, using the training strategies described in Section 4.3.
A training set consisting of 4407 images, including 18,945 objects, in the UAV-cars dataset was used
for each model’s training. The trained models were evaluated using the UAV-cars validation set
consisting of 628 images containing 2637 objects. The validation set was divided into five cases at
altitude intervals of 10 m from 10 to 50 m. The True Positive criterion was set to a 0.5 Intersection over
Union (IoU) threshold, which was the same value of the PASCAL VOC [24].

Table 4 and Figure 13 show the AP and detection results of models trained on the UAV-cars
training set. In Table 4, we can see that DRFBNet300 achieved the highest AP score at all altitudes
except for at 10 m. In addition, since inference time was only 17.5 ms, real-time vehicle detection was
possible at 57 FPS. In Figure 13, we can see that DRFBNet300 detected small-sized vehicles better than
the other models.

In Table 4, accuracy at all altitudes except for at 10 m was greatly improved when the SIP method
was applied. Especially as altitude increased, the AP score also further increased. Even at 50 m altitude,
the AP score of DRFBNet300 with the SIP method was 57.28, which is a 30.07 AP increase at 27.21 AP
when not applied. This is more than double the AP score when it was not applied.

Figure 14 shows UAV imagery vehicle-detection results in the practical case of DRFBNet300
according to whether SIP was applied or not. Figure 14 shows DRFBNet300 with SIP detected
vehicles that cannot be detected by normal DRFBNet300 in bird-view UAV imagery at high altitudes.
In addition, it ran in real time at 33 FPS even when SIP was applied.

Table 4. Experiment results of UAV-cars dataset.

Method Meta
Architecture Backbone Time (ms) AP by Altitude (%)

10 m 20 m 30 m 40 m 50 m

W/O
SIP method

SSD300 13.3 98.59 72.19 36.07 26.73 5.01

RFBNet300 14.9 99.98 82.81 64.35 54.75 24.35

DRFBNet300 MobileNet v1 17.5 99.54 90.19 71.38 55.22 27.21

W/
SIP method

SSD300 21.6 95.58 81.99 58.65 45.54 18.23
RFBNet300 26.2 94.28 84.73 71.11 64.65 47.09

DRFBNet300 30.2 94.82 91.13 76.85 68.44 57.28



Sensors 2019, 19, 3958 13 of 17

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13. Experiment results of the UAV-cars validation set without applying SIP method. (left to right)
Altitudes of 30, 40, and 50 m. Results of (a–c) SSD300; (d–f) RFB300; and (g–i) our DRFBNet300.

Figure 14. Experiment results of DRFBNet300 trained on UAV-cars dataset (top) before and (bottom)
after applying SIP.

6. Conclusions

In this paper, we proposed the use of DRFBNet300 with a DRFB module for bird-view UAV
imagery vehicle detection, the UAV-cars dataset to train DRFBNet300, and the SIP method to
improve the accuracy of our vehicle detector. The single-stage object-detection model, SSD, has low
computational complexity and is fast, but does not detect small objects well. Accuracy is also lower
when using a lightweight backbone network for speeding up. DRFBNet300 is a DRFB and RFB
basic module attached to the MobileNet v1 backbone SSD300, which is a lightweight object-detection
model. The DRFB module was designed to have a multisized RF branch, and dilated convolution
was implemented to minimize the increase of computation amount. The multibranched and cascaded
structure of our DRFB module improved the quality of feature maps, which improved the accuracy
of the vehicle-detection model. We also proposed a UAV-cars dataset consisting of 5035 images
containing 21,582 objects, including distortion peculiarities of vehicles in bird-view UAV imagery.
Lastly, we proposed the SIP method to improve DRFBNet300 accuracy. DRFBNet300 with the DRFB



Sensors 2019, 19, 3958 14 of 17

module achieved the highest score among other lightweight single-stage methods running in real
time with 21 mAP at 45 FPS on the MS COCO metric. In the experiment on the UAV-cars dataset,
DRFBNet300 also obtained the highest AP score, regardless of whether the SIP method was applied or
not at 20–50 m altitudes. The DRFBNet300 increased the accuracy improvement by the SIP method
as the UAV altitude increased, and accuracy was improved by more than two times at an altitude of
50 m. Because of DRFBNet300 and the SIP method, the proposed method can more accurately detect
vehicles in real-time in UAV imagery at 33 FPS.

Author Contributions: Conceptualization, S.H.; methodology, S.K.; software, S.H.; investigation, S.H.;
writing—original-draft preparation, S.H.; writing—review and editing, J.Y., and S.K.; supervision, S.K.; project
administration, S.K.

Funding: This research received no external funding.

Acknowledgments: This research was supported by the Ministry of Science and ICT (MSIT), Korea, under the
Information Technology Research Center (ITRC) support program (IITP-2019-2016-0-00288), supervised by the
Institute for Information and Communications Technology Planning and Evaluation (IITP).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zacharie, M.; Fuji, S.; Minori, S. Rapid Human Body Detection in Disaster Sites Using Image Processing
from Unmanned Aerial Vehicle (UAV) Cameras. In Proceedings of the 2018 International Conference on
Intelligent Informatics and Biomedical Sciences (ICIIBMS), Bangkok, Thailand, 21–24 October 2018; Volume 3,
pp. 230–235.

2. Doherty, P.; Rudol, P. A uav search and rescue scenario with human body detection and geolocalization.
In Proceedings of the Australasian Joint Conference on Artificial Intelligence, Gold Coast, Australia,
2–6 December 2007; pp. 1–13.

3. Ma’sum, M.A.; Arrofi, M.K.; Jati, G.; Arifin, F.; Kurniawan, M.N.; Mursanto, P.; Jatmiko, W. Simulation of
intelligent Unmanned Aerial Vehicle (UAV) For military surveillance. In Proceedings of the International
Conference on Advanced Computer Science and Information Systems (ICACSIS), Bali, Indonesia,
28–29 September 2013; pp. 161–166.

4. Xiaozhu, X.; Cheng, H. Object detection of armored vehicles based on deep learning in battlefield
environment. In Proceedings of the 2017 4th International Conference on Information Science and Control
Engineering (ICISCE), Changsha, China, 21–23 July 2017; pp. 1568–1570.

5. Zhu, J.S.; Sun, K.; Jia, S.; Li, Q.Q.; Hou, X.X.; Lin, W.D.; Liu, B.Z.; Qiu, G.P. Urban Traffic Density Estimation
Based on Ultrahigh-Resolution UAV Video and Deep Neural Network. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2018, 12, 4968–4981. [CrossRef]

6. Ke, R.; Li, Z.; Tang, J.; Pan, Z.; Wang, Y. Real-time traffic flow parameter estimation from UAV video based
on ensemble classifier and optical flow. IEEE Trans. Intell. Transp. Syst. 2018, 20, 54–64. [CrossRef]

7. Yang, Z.; Pun-Cheng, L.S. Vehicle Detection in Intelligent Transportation Systems and its Applications under
Varying Environments: A Review. Image Vis. Comput. 2017, 69, 143–154. [CrossRef]

8. Zhao, T.; Nevatia, R. Car detection in low resolution aerial images. Image Vis. Comput. 2003, 21, 693–703.
[CrossRef]

9. Yang, Y.; Liu, F.; Wang, P.; Luo, P.; Liu, X. Vehicle detection methods from an unmanned aerial vehicle
platform. In Proceedings of 2012 IEEE International Conference on Vehicular Electronics and Safety
(ICVES 2012), Istanbul, Turkey, 24–27 July 2012; pp. 411–415.

10. Xu, Y.; Yu, G.; Wu, X.; Wang, Y.; Ma, Y. An enhanced Viola-Jones vehicle detection method from unmanned
aerial vehicles imagery. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1845–1856. [CrossRef]

11. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA,
3–8 December 2012; pp. 1097–1105.

http://dx.doi.org/10.1109/JSTARS.2018.2879368
http://dx.doi.org/10.1109/TITS.2018.2797697
http://dx.doi.org/10.1016/j.imavis.2017.09.008
http://dx.doi.org/10.1016/S0262-8856(03)00064-7
http://dx.doi.org/10.1109/TITS.2016.2617202


Sensors 2019, 19, 3958 15 of 17

12. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; et al. Imagenet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV)
2015, 115, 211–252. [CrossRef]

13. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox
Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 21–37.

14. Liu, S.; Huang, D. Receptive field block net for accurate and fast object detection. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 385–400.

15. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016.

16. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

17. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 1440–1448.

18. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal
networks. In Proceedings of the International Conference on Neural Information Processing Systems,
Montreal, QC, Canada, 7–12 December 2015; MIT Press: Cambridge, MA, USA, 2015; pp. 91–99.

19. Radovic, M.; Adarkwa, O.; Wang, Q. Object recognition in aerial images using convolutional neural networks.
J. Imaging 2017, 3, 21. [CrossRef]

20. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

21. Fan, Q.; Brown, L.; Smith, J. A closer look at Faster R-CNN for vehicle detection. In Proceedings of the 2016
Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016; pp. 124–129.

22. Xu, Z.; Shi, H.; Li, N.; Xiang, C.; Zhou, H. Vehicle Detection Under UAV Based on Optimal Dense YOLO
Method. In Proceedings of the 2018 5th International Conference on Systems and Informatics (ICSAI),
Nanjing, China, 10–12 November 2018; pp. 407–411.

23. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco:
Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich,
Switzerland, 6–12 September 2014; pp. 740–755.

24. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL visual object classes
(VOC) challenge. Int. J. Comput. Vis. IJCV 2010, 88, 303–338. [CrossRef]

25. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

26. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. In Proceedings of the International
Conference on Learning Representations (ICLR 2016), San Juan, PR, USA, 2–4 May 2016.

27. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
28. Li, Z.; Zhou, F. FSSD: Feature Fusion Single Shot Multibox Detector. arXiv 2017, arXiv:1712.00960.
29. Breckon, T. P.; Barnes, S. E.; Eichner, M. L.; Wahren, K. Autonomous real-time vehicle detection from a

medium-level UAV. In Proceedings of the 24th International Conference on Unmanned Air Vehicle Systems,
Bristol, UK, 30 March–1 April 2009.

30. Gaszczak, A.; Breckon, T.P.; Han, J. Real-time people and vehicle detection from UAV imagery. In Proceedings
of the Intelligent Robots and Computer Vision XXVIII: Algorithms and Techniques, San Francisco, CA, USA,
24 January 2011; pp. 536–547.

31. Shao, W.; Yang, W.; Liu, G.; Liu, J. Car detection from high-resolution aerial imagery using multiple features.
IEEE Int. Geosci. Remote Sens. Symp. 2012, 53, 4379–4382.

32. Moranduzzo, T.; Melgani, F. Detecting Cars in UAV Images With a Catalog-Based Approach. IEEE Trans.
Geosci. Remote Sens. 2014, 52, 6356–6367. [CrossRef]

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.3390/jimaging3020021
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1109/TGRS.2013.2296351


Sensors 2019, 19, 3958 16 of 17

33. Tang, T.; Deng, Z.; Zhou, S.; Lei, L.; Zou, H. Fast vehicle detection in UAV images. In Proceedings of
the 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), Shanghai, China,
18–21 May 2017; pp. 1–5.

34. Xie, X.; Yang, W.; Cao, G.; Yang, J.; Zhao, Z.; Chen, S.; Liao, Q.; Shi, G. Real-time Vehicle Detection from UAV
Imagery. In Proceedings of the Fourth IEEE International Conference on Multimedia Big Data (BigMM),
Xi’an, China, 13–16 September 2018.

35. Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the
2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA,
8–14 December 2001.

36. Dala, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA,
20–26 June 2005.

37. He, D.-C.; Wang, L. Texture Unit, Texture Spectrum, In addition, Texture Analysis. IEEE Trans. Geosci.
Remote Sens. 1990, 28, 509–512.

38. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, Kerkyra, Greek, 20–27 September 1999.

39. Suhr, J.K. Kanade-lucas-tomasi (klt) feature tracker. In Computer Vision (EEE6503); Yonsei University:
Seoul, Korea, 2009; pp. 9–18.

40. Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-Shot Refinement Neural Network for Object Detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–22 June 2018; pp. 4203–4212.

41. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.;
Murphy, K.; et al. Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. In Proceedings
of the IEEE 2017 Conference on Computer Vision and Pattern Recognition (CVPR) 2017, Honolulu, HI, USA,
21–26 July 2017; pp. 7310–7311.

42. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27–30 June 2016;
pp. 770–778.

43. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556.

44. Wandell, B. A.; Winawer, J. Computational neuroimaging and population receptive fields. Trends Cognit. Sci.
2015, 19, 349–357. [CrossRef] [PubMed]

45. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015.

46. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer
Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston,
MA, USA, 7–12 June 2015.

47. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual
connections on learning. In Proceedings of the Thirty-First, AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 4–9 February 2017; pp. 4278–4284.

48. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image
Segmentation. arXiv 2017, arXiv:1706.05587.

49. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings
of the International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773.

50. Mehta, R.; Ozturk, C. Object detection at 200 frames per second. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September.

51. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25
June 2009; pp. 248–255.

52. Tzutalin. LabelImg. Available online: https://github.com/tzutalin/labelImg (accessed on 30 July 2019)

http://dx.doi.org/10.1016/j.tics.2015.03.009
http://www.ncbi.nlm.nih.gov/pubmed/25850730
https://github.com/tzutalin/labelImg


Sensors 2019, 19, 3958 17 of 17

53. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015.

54. Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K.
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv 2017, arXiv:1706.02677.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Method
	DRFBNet300
	Split Image Processing
	UAV-Cars Dataset
	Vehicle Detection in UAV Imagery

	Experimental Environment
	UAV Specification
	Experiment Environment
	Training Strategies

	Experimental Results
	MS COCO
	UAV-Cars Dataset

	Conclusions
	References

