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Abstract: In this paper, we propose a fast and accurate deep network-based object tracking method,
which combines feature representation, template tracking and foreground detection into a single
framework for robust tracking. The proposed framework consists of a backbone network, which
feeds into two parallel networks, TmpNet for template tracking and FgNet for foreground detection.
The backbone network is a pre-trained modified VGG network, in which a few parameters need to be
fine-tuned for adapting to the tracked object. FgNet is a fully convolutional network to distinguish
the foreground from background in a pixel-to-pixel manner. The parameter in TmpNet is the
learned channel-wise target template, which initializes in the first frame and performs fast template
tracking in the test frames. To enable each component to work closely with each other, we use a
multi-task loss to end-to-end train the proposed framework. In online tracking, we combine the score
maps from TmpNet and FgNet to find the optimal tracking results. Experimental results on object
tracking benchmarks demonstrate that our approach achieves favorable tracking accuracy against
the state-of-the-art trackers while running at a real-time speed of 38 fps.

Keywords: object tracking; template matching; foreground detection; convolutional neural network

1. Introduction

Object tracking is a significant field in computer vision. Given an object in the first frame, the goal
of object tracking is to locate the object in the remaining frames. The tracked objects may undergo
several difficult challenges, such as scale changes, occlusion, appearance changes of both the object
and the scene, camera motion, fast motion, etc., which make object tracking a still challenging task,
although there has been a big improvement in recent research. In this paper, we focus on the object
representation and object localization to perform robust object tracking.

Recently, in object representation, convolutional neural networks (CNN) are very powerful in
extracting discriminative feature representations and have been successfully applied to object tracking.
Some Siamese network-based tracking methods [1-4], which train from scratch in an end-to-end
manner, have obtained excellent accuracy with high efficiency; however, unfortunately, they are
data-driven trackers and need extensive training data to offline train. In addition, they may fail to track
the object they do not see in the training sets. As we know, it is costly to construct a large training dataset
that contains all kinds of objects and scenes, which limits their applications. Some deep trackers [5-7]
use those CNN models pretrained for the classification tasks to extract deep features, because of their
powerful representation. Wang et al. [8] and Ma et al. [9] found that the output features of top layer in
the pretrained model encode the semantic information of targets, while the features of lower layer can
provide more precise localization. Besides, combined deep features from multiple layers also have
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been applied to recent trackers [10-12] and obtained a boosting performance. However, these trackers
cannot achieve competitive performance in both speed and accuracy for two reasons. First, these
CNN features pretrained for the image classification task are not well coupled to object tracking task
since the same kinds of objects can be considered as a target in a sequence and as a background in
another. Although fine-tuning pretrained network in the first frame is an optional way to make deep
features generic to the tracked objects, it is susceptible to over-fitting due to the lack of training samples.
Second, high dimensions of deep features result in heavy computing. To avoid heavy computing,
a straightforward way is to compress deep feature representation. However, the compressed features
may degrade the overall performance. In object localization, correlation filter (CF) and cross-correlation
(CC) are popular in recent works. The CF-based trackers [13-15] solve a ridge regression problem
efficiently in Fourier domain, which helps achieve high frame rates. DCFnet [16] and CFnet [17] embed
a CF layer into deep neural network to perform the correlation tracking process. Recently, more and
more Siamese network trackers [1,18,19] utilize cross-correlation to compute the similarity between
target template and the search feature maps, for its efficient implementation in convolution layer.
However, these methods are still met with high computation burden when the input features’ channels
are large.

To address the above issues, in object representation, we adopt a modified VGG model as
backbone network and fine-tune the last block parameters to extract generic and specific deep features.
Furthermore, we introduce a fast template tracking network (TmpNet) to perform template tracking,
which learns channel-wise target template online, reducing the computation burden very efficiently.
The motivation is that different feature channels encode different aspect of objects. We make full
use of all aspects of feature channels and do not introduce extra computation burden. In addition,
a foreground detection network (FgNet) is proposed to improve the tracking accuracy. To ensure
all components work closely, we use a multi-task loss to end-to-end train the overall framework,
which also helps the extracted feature representation be not only good at object-level template tracking
but also good at pixel-wise foreground detection. To improve generalization network performance,
an image augmentation method is developed to augment the training samples in the first frame of
a test sequence. Compared to our previous work [20], we propose a more discriminative feature
representation model, a fast template tracking branch, and a sample augmentation method to process
real-time accurate object tracking.

Our main contribution can be summarized as follows:

e  We combine feature representation backbone network, TmpNet and FgNet into an end-to-end
framework for real-time object tracking.

e In object representation, we adopt a modified pretrained VGG as backbone network where the
last block parameters are fine-tuned via a multi-task loss in the first frame of a test sequence,
which enhances the discrimination of feature representation.

o In object localization, TmpNet for channel-wise target template tracking and FgNet for
fast foreground detection are combined to find the optimal tracking results, boosting the
tracking performance.

e We performed comprehensive experiments on four benchmark datasets: OTB2013 [21],
OTB-2015 [22], TC128 [23], and UAV123 [24]. Our tracker achieves outstanding performance,
operating at 38 fps on a single GPU, while obtaining an AUC of 67.7% on OTB2013, 64.1% on
OTB2015, 55.4% on TC128 and 47.1% on UAV123.

2. Related Work

Our approach is related to real-time tracking, template tracking, and foreground detection; we give
a brief review on these three aspects.
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2.1. Correlation-Filter Based Real-Time Tracker

In recent years, the correlation filter (CF) based trackers are popular in real-time tracking. Since the
CSK tracker [13] introduces correlation-filter to the visual tracking field, several extensions have been
proposed to improve the tracking performance for its computational efficiency in frequency domain.
Heriques et al. [14] used correlation filters in kernel space with the CSK method, and then improved to
KCF tracking algorithm by using HOG features instead illumination intensity features, which helps
KCF achieve the state-of-the-art performance. The DSST [25] tracker extends the CF tracker to adapt
to scale changes by introducing multi-scale correlation filters. LCT [26] improves the performance of
CF tracker in long-term object tracking. BACF [15] proposes a background-aware correlation filter to
mitigate the boundary effects of CF tracker in the Fourier domain and exploits a masking matrix to
allow search samples larger than the filter, which makes it achieve better performance. STRCF [27]
introduces a spatial-temporal regularization to handle boundary effects without much loss in efficiency
and achieves superior performance. To make full use of feature channel, ACFN [28] develops an
attentional mechanism that chooses a subset of the associated correlation filters to increase robustness
and computational efficiency. SCT [29] presents a new attentional feature-based correlation filter
that focuses on distinctive attentional features. These trackers are processing in handcrafted features,
such as Hog or color, which makes it fast compute using fast Fourier transform; however, it is still costly
to calculate with deep features. Recently, some researchers have found ways to calculate CF with deep
features quickly. DCFnet [16] treats CF as a special correlation layer embedded in a Siamese network
to learn the convolutional features and perform the correlation tracking process simultaneously.
CFnet [17] introduces a correlation filter to fully-siamese network to speed up tracking. VDCFnet [30]
replaces one traditional convolutional filter with two novel vector convolutional filters. Due to the
boundary effect, those trackers cannot obtain accurate results. The Staple [31] tracker, which combines
template response and foreground response to improve the tracking performance, is the closest
antecedent of our work. However, this approach uses traditional method to obtain template response
and foreground mask, especially applied color histogram to predict object pixels, which makes them
less robust in handling illumination changes. In this paper, we train a fully convolution network to
obtain foreground mask. In addition, a fast template tracking network, which learns channel-wise
target template online, is proposed to obtain accurate template response.

2.2. Real-Time Template Tracking Methods

In recent years, deep convolutional neural networks (DCNN) demonstrate their superior
capabilities in various vision tasks. Some of researchers introduce DCNN to object tracking field
with a Siamese network way; they model object tracking task as a similarity learning problem so that
they can apply Siamese network architecture to compute the similarity between the target template and
the search image in the remaining frames. The Siamese network consists of two branches: one branch
encodes the object information, the other encodes the search image information, and then computes
their similarity to get the target’s location in the remaining frames. GOTURN [32] adopts a Siamese
network as feature extractor and trains a conv-net to directly regress the object in the remaining
frames from the object information in the first frame. SiamFC [1] introduces a cross-correlation layer to
compute the similarity of the target and the search image, which achieves robust and fast calculations
of the similarity of each sub-windows in the search image densely. These trackers achieve real-time
tracking, but do not obtain satisfactory performance due to no model update. Thus, Dsiam [3] tracker
presents a running average template method to update the tracking model. Memtrack [2] introduces
an LSTM as a memory controller to online update template for adapting to the appearance changes.
Structsiam [19] proposes a robust structure-based Siamese network to learn local patterns of the object
and structure relationships for more accurate object tracking. EAST [33] attempts to speed up the
tracker by early stopping the feature extractor if the low-level features are sufficient to track the target.
SA-siam [18] proposes a twofold Siamese network, which composes of a semantic branch and an
appearance branch and combines their results for robust visual tracking. OSNV [34] proposes an
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online Siamese network to adapt to target appearance changes. Kalman-Siam [35] combines Kalman
filter and multifeature fusion Siamese network for real-time visual tracking. SiamRPN [4] introduces
a RPN branch to the Siamese network to obtain accurate bounding box regression. RASNet [36]
presents a residual attention and channel attention to Siamese network for adapting the model without
updating the model online. DaSiamRPN [37] introduces a novel distractor-aware module to SiamRPN
network to perform incremental learning for accurate and long-term tracking. However, these kinds
of trackers need extensive training sets to train the network offline. In addition, the learned models
are not necessarily reliable for the objects that are not seen in the training sets, which may limits their
applied ranges. The UCT [38] and CREST [5] trackers, although they declare they reformulate CF
operation as a one-convolution layer, are still template tracking methods in essence. The difference
from traditional template tracking methods is they learn the target template in a convolution layer
instead of directly cropping it in the first frame. However, CREST cannot achieve real-time tracking
duo to heavy computing in residual learning, and UCT cannot obtain better performance because of
compressing deep features.

In this paper, although our tracker learns the target template in a convolution layer, our solution
is to learn the channel-wise target template using depth-wise convolution, which helps reduce the
computational burden. In addition, we try to make full use of deep features by transferring learning
the pretrained feature representation with a multi-tasks loss, and the augmented samples are used to
learn more discriminative features and enhance the representation of the target.

2.3. Foreground Detection Methods

Since fully convolutional networks (FCNs) [39] were introduced to semantic segmentation and
showed significant improvement over conventional approaches by a large margin, many extending
works have been developed to solve segmentation related problems, including foreground detection
problem. Cascade CNN [40] proposes a multi-resolution convolutional neural network with a cascade
architecture to detect foreground in moving object videos. FgSegNet [41] uses a triple convolutional
neural network for multi-scale feature encoding the foreground segmentation. Although these methods
obtain considerable performance in the surveillance videos, there are some problems in introducing
them to the object tracking task. First, these approaches are applied in the static camera videos.
Second, they need multi-frames to train the network. Third, they take too much time to process
detection task. In addition, in object tracking task, we do not pursue pixel-to-pixel precise segmentation,
and coarse foreground detection can satisfy our needs to improve the tracking performance. With these
considerations in mind, we propose a small FCN network to fast obtain coarse foreground mask.
The tracking results demonstrate that it is indeed effective to boost tracking performance without
adding too much computation burden.

3. Our Method

In this section, we clarify the details of our approach in four separate subsections considering:
(1) formulation and motivation; (2) the details of the architecture; (3) the training details; and (4) online
tracking processing.

3.1. Formulation and Motivation

In the online learning object template method, in the first frame, the extracted backbone network
feature of training sample s and its corresponding label /i that is generated in frame 1 are selected to
learn the object template f by minimizing the following objective [5]:

K
mtin 2 L(Sk*t—lk) —f—/\R(t) (1)
k=1



Sensors 2019, 19, 3945 50f17

where s; € R%*s and t € RY* refer to the feature (the output of backbone network) of kth
training sample and target template, respectively, and K is the sum of training samples. I € R®*
is the desired corresponding correlation response and w; = ws —w¢ + 1,1 = hs —hy +1. Ais a
regularization and « is the spatial convolution operator. L is a loss function and L2 loss is adopted as
usual. A regularization term R(t) is used to limit template complexity and prevent over-fitting. The
drawback of Equation (1) is that it only learns the target template. Its feature extractor is a pretrained
convolution network and not fine-tuned in the first frame, which make the extracted features not
coupled to the tracked object.

Thus, we propose to learn the feature representation si. In addition, a new task, i.e., foreground
detection, is proposed to take sy as a variable too, which helps the feature representation be good at
not only object-level template tracking but also pixel-wise distinguishing the target from background.
All parameters are trained in the first frame of a test sequence. Moreover, to improve the ability of
template differentiated from the background and to make full use of each feature channel’s semantic
information, we propose to learn channel-wise object template. In general, our new goal is to minimize
the following objective:

K C K
min Y Limp( Y st 1) + Y Ly (T(sg, @), v)
k=1

Skb@ = =1

2)
C
+ Atempt Y, R(£) + AggR(@)

c=1

where s and t¢ are the cth channel of the kth training image’s backbone network feature and cth
channel of object template, respectively; y, € R¥*”s is the foreground mask; and the function 7 is
a feature decode transformation such that 7(sx) can generate a foreground mask according to the
model parameters @. A regularity is added to foreground model R(@) to limit the complexity and
avoid over-fitting.

3.2. Details of the Overall Architecture

We now detail our network architecture to implement Equation (2). It can be divided into three
parts: backbone network, template tracking network, and foreground detection network. The overall
architecture is shown in Figure 1.

Backbone network . We start from a pretrained modified VGG-16 network for feature extraction.
In the deep network, the stride affects the degree of tracking precision. A big stride results in big jumps
in the moving object’s location, while small stride makes the feature representation lack semantic
information. Thus, to extract discriminative and semantic feature representation without loss tracking
precision, we utilize the first four blocks of VGG-16 by removing the third and fourth max-pooling
layers, as illustrated in Figure 1. However, there are still too many parameters in this modified
pretrained network. If we train it in the first frame, it will result in over-fitting due to lack of training
samples. We observe that there is no need to transfer learning of all the parameters in the pretrained
network. Thus, we suggest freezing the pretrained parameters of the first three block; only the
fourth block is used for fine-tuning. In this setting, our backbone network can not only inherit the
discriminative representation of VGG network but also generate the deep features coupled to the
tracked object without over-fitting.

Template tracking network. We adopt a depthwise separable convolution to perform template
tracking. The channel-wise object template, which is the parameter in depthwise separable convolution,
is initialized in the first frame and performs template tracking in test frames. The depthwise
separable convolution decomposes a standard convolution into depthwise convolution and pointwise
convolution. Depthwise convolution applies one filter on each channel followed by a 1 x 1 Pointswise
convolution. We leverage this idea, and apply the depthwise convolution to perform fast template
tracking. The parameter of depthwise convolution is the learned target template. Its size should cover
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the object size, and its channel is equal to the input features. With depthwise separable convolution,
we can learn object template on each channel independently. More importantly, it helps to reduce the
computational cost according to the recent work by et al. [42]. In the proposed framework, the use of
depthwise separable convolution immediately reduces the required computation by 20 times compared
to the standard convolution.

max pooling
N

Augmented training

fine-tuning layers
samples I

/ N

\

/

/

- - /

/
TmpNet » Tracking responses  Training
Loss

W/4XH/4X 512
W/4XH/4X 256
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== Block 3
WXHX 64 Block 2

Block 1

|

|

|

|

|

|

| Backbone network
|

| ) )

| Online tracking stage
|

|

|

Test frame

Figure 1. Overall architecture of our TFnet. In the proposed framework, the last block parameters of
backbone network, channel-wise target template in the TmpNet and all the parameters in the FgNet are
jointly trained with the augmented training samples. The black arrows indicate the training processes,
while blue arrows are online tracking stage.

Foreground detection network. We adopt a simple but effective small FCN network to implement
the foreground decode function 7, which consists of three layers: a convolution layer, a deconvolution
convolution layer, and a softmax layer. The input features have a large dimension, i.e., 512, which result
in large computation to directly compute the foreground mask. To improve computational efficiency
and to increase nonlinearity of decision function in our network, we apply a 1 x 1 convolutional layer
to project high channels feature map into a lower dimension. Then, the projected features are operated
with a 3 x 3 deconvolution layer, with a stride of 1 to promise same size output, to decode to 1 feature
map. Finally, a softmax function is applied to the last layer to generate a probability mask for each
pixel to encode the probability of being a foreground or background pixel by a value that is between 1
and 2.

3.3. Training Details

Samples and labels are important in training object tracking network. How to generate and label
the samples bothers many researchers. The common method is to label a sample positive/negative
based on its distance from the true object location or their intersection-over-union criterion (overlap
ratios of a sample position and estimated object region). In this paper, we crop the search images from
the center target position, and the template tracking label is generated with a 2D Gaussian function
centred around the object. As for the foreground label, it is hard to obtain its precise foreground
mask with segmentation methods because the tracked objects in most of tracking sequences may not
be a natural object. Thus, we directly apply the given bounding box to generate coarse foreground
label; positions inside the bounding box are considered as foreground, while others are regarded
as background.
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The loss function Ltmp is the L2 loss while a cross-entropy loss function is chosen to L fq tO learn
foreground mask accurately.

Lig =~ ) logP(yx = 1|si;@) — ) logP(yx = 0lsy; @) ®)
kEYf keYy

where yx € 0,1,k = 1,.., and Yy and Y} are the positive and negative labeled pixels. P(-) is obtained by
applying a softmax function to the activation of the final layer.

Due to the lack of training samples, the tracking model will be over-fitted or prone to the
background patterns when it needs hundreds of iterations to train. We augment the training samples
to alleviate this problem by simulating appearance changes of the tracked object.

Augmentation samples generation strategy. Since the tracked objects may undergo scale
changes, illumination changes, moving, rotation, and occlusion, our image augmentation method
should capture all of these aspects, except for the occlusion. This is because the goal of our TmpNet
is to learn the object template and occlusion may introduce more background information to the
template. We first extract foreground object according to the ground truth bounding box, then remove
the foreground object and finally generate its background image via in-painting the cut-out area.
Then, we randomly obtain the illumination change factor for background, scale and rotation factor
for object, and location factor to generate synthetic data. Here are more details and the examples of
augmented images are shown in Figure 2:

(1)  Scale changes: We randomly choose a scale factor & € [0.7,1.5] to change object scale via (w, h) =
o x (o, ho ).

(2) Object rotation: We change object rotation by choosing a rotation angle factor 6, where 6 €
[—30°,30°].

(3)  Object flip: Since some objects may go through object flip, we simulate them via flipping an object
up and down or left and right.

(4) IHlumination change: We change the illumination of image by random to choose saturation S and
value V in HSV space, X = ax? + ¢, where a € [0.95,1.05], b € [0.7,1.3], and ¢ € [—0.07,0.07].

Figure 2. Examples of the augmented images. The first row images are the first frame of a test sequence,
while the second and third row are the examples of the augmented images. The tracked objects are
marked in a red rectangle.

3.4. Online Tracking Processing

We combine the scores of template tracking and foreground detection to locate the object accurately.
In a new frame, we extract the search images from the center target position predicted in the last frame
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and feed it into the proposed framework. The object location p; that locates in frame x; is chosen from
a combined score map to maximize the score:

pe = argmax(vimp fimp (x) + vy frg ()] )

where vty and Vg are the cost factors to balance those two models.

The template tracking score is the output of TmpNet, which is computed by a channel-wise object
template (depthwise separable convolution) with the input of a C-channel feature image sx. To perform
robust tracking, we adopt two templates to calculate tracking scores: static template t; and adaptive
template #,. They are both initialized in the first frame. The static template is not updated, while the
adaptive template is updated in each frame.

C
ftemp (x} ts, ta) = Z{ts LCJ * Sy LCJ + ta LCJ * Sy LCJ } ®)
c=1

The foreground scores are generated with the output masks of FgNet. Different from TmpNet,
the output of FgNet has the same size as the input features. However, for effective linear combination,
foreground scores and template tracking score maps should have the same size and the magnitudes
should be compatible. For those considerations, an all-ones convolution filter that has the same size
with the object template is adopted to densely slide the search foreground mask and obtain the integral
image; besides, we add a spatial penalty to the foreground scores to constrain its spatial distribution:

Freh) = 9(0) © (3 (1 x@(x))) ©

where @(x) is the foreground mask. #; is an all-ones convolution filter, which has the same size as
the object template. R is the sum of template size in feature map, which is used to normalize the
score map. (x) is the spatial penalty for giving more weight to the object last appearing and © is
element-wise multiply.

Algorithm 1: Tracking with TFnet.

1: Input: Frames{[i}fifl, initial target bounding box by
2: Augment the training samples according to the augmentation generation strategy.
3: Learn the variables in Equation (2) with the augmented training samples, where
sx corresponding to the backbone network; ¢, the target template; @, the foreground network
: Copy the target template ¢ to an adaptive template ¢, and static template t,
: For frame i = 2:Ny
Extract the search images according to the result in last frame b;_;
Forward propagate the search images and predict the object location with Equation (4)

SN AN

Generate a new training sample and its corresponding label based on the predicted
results

9: Update the adaptive target template ¢, with Equation (7)

10: End

11: Output: Tracking results {bi}fifz

Scale estimation. We locate the target and estimate its scale simultaneously using a scale pyramid
input. When a new frame comes, we extract three scale searching images and feed it into the framework
to compute response maps of scale pyramid searching images. The position of the maximum response
value is the location of the object, and its corresponding scale is used to estimate a new scale via a
linear fusion function.
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Model update. Updating the overall framework directly results in heavy computing; thus,
we present a simple but fast update scheme, in which only the adaptive template is updated.
According to the predicted location in the last frame, we generate a new training sample and its
corresponding label response map. To avoid double computing, we collect the sample’s feature
representation in tracking process stage directly. After that, we feed them into a new learning task to
update the adaptive template with the following objective:

C
argmin || Y s  # — Kll + 7lfa? @
a c=1

4. Experiment

In this section, we first explain the implementation details of our tracker. Then, we present
ablation studies of the tracker to evaluate the effectiveness of each component and compare our tracker
with the state-of-the-art trackers.

4.1. Experiment Setting

In the training stage, we generated the augmented training samples first, and then applied Adam
with a learning rate of 5 x 10710 to end-to-end train the overall framework. During tracking, we
adopted Adam optimizer to update the adaptive template in (7), with a learning rate of 1 x 1012 for
one iteration in each frame. The pseudo-code for tracking with TFnet can be found in Algorithm 1.
We implemented the proposed tracker in Python with the Tensorflow toolbox. All experiments
were conducted on a single NVIDIA GeForce GTX Titan X and an Intel(R) Xeon(R)CPU E5-2637 v3
at 3.5 GHz.

4.2. Evaluation Benchmarks

OTB2013 [21] and OTB2015 [22]: OTB2013 is the first large datasets to evaluate tracker on both
accuracy and robustness, consisting of 50 videos. The images are annotated with ground truth
bounding boxes. Besides, each video has different visual attributes, such as illumination variation,
scale variation, occlusion, deformation, motion blur, fast motion, in-plane and out-of-plane rotation,
out-of-view, background clutter, and low resolution. OTB2015 extends OTB2013 to 100 videos.
More videos make it more effective to evaluate trackers.

TC128 [23]: This benchmark consists of 128 color videos to study the role of color information in
tracking. Since our tracker needs an RGB-image input, we adopted it to evaluate our tracker. Similar to
OTB benchmark, TC128 provides per frame annotated bounding box and 11 videos attributes.

UAV123 [24]: This benchmark is created from an aerial viewpoint. There are 123 sequences
captured by unmanned aerial vehicle (UAV) cameras in this dataset. UAV123 has a higher degree of
freedom than that of conventional tracking benchmarks, which make it a perfect complement.

4.3. Evaluation Methodology

We used the success plot and precision plot to evaluate all trackers. Success metric computes the
intersection over union (IOU) of predicted and ground truth bounding box and counts the number
of successful frames whose IOU is larger than a given threshold. The success plot shows the ratio of
successful frames as IOU threshold is varied from 0 to 1. The precision plot is the percentage of frames
in the sequence where the centre location error between predicted and ground truth is smaller than a
certain threshold. We present the distance precision values at a threshold of 20 pixels.
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4.4. Comparisons to State-of-the-Art Trackers

4.4.1. Results on OTB2013

We evaluated our tracker with state-of-the-art trackers: ECO [11], MDNet [7] , C-COT [10],
SANet [43], VITAL [44], LSART [45], DSiamM [3], PTAV [46], CREST [5] and SiamFC [1]. We report
their overlap success rates and speed performance in Figure 3. Although some of trackers achieved
better performance than our approach, they are not suitable for real-time applications as the tracking
speed qA rather slow, only achieving 1-6 frames per second (fps). Our tracker achieved competitive
performance and real-time tracking, with 91.3% distance precision rates, 67.7% overlap success rates,
and over 38 fps.

075 Speed-success rate for each tracker on OTB-2013

TFnet
ECO
MDNet
LSART
DSiamM
SANet
CREST
C-COoT
VATIL
PTAV
SiamFC

%0 +

* (o)

©
~
1

Success rate (AUC)

(m
*+O0¥onOx%+0

0.6 t . t : : . . *

2 4 6 8 25 35 45
Tracking Speed (FPS)

Figure 3. Speed-accuracy plot of state-of-the-art trackers on the OTB2013 dataset.

We also evaluated the proposed TFnet with comparisons to 13 state-of-the-art real-time trackers:
DaSiamRPN [37], SiamRPN [4], Memtrack [2], DCFnet [16], TRACA [6], ECO-HC [11], CFnet [17],
SiamFC [1], KCF [14], DSST [25], Struck [47], and TLD [48]. We report the results of success and
precision plots using one-pass evaluation. As shown in Figure 4, our tracker achieved state-of-the-art
performance among those real-time trackers, with an overlap success score of 67.7% and a distance
precision score of 91.0%.
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Figure 4. Distance precision plot and overlap success rates plot using one-pass evaluation on the
OTB2013 dataset.
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For more details, we show comparisons for five trackers on different attributes in Table 1.
Our approach achieved the best results for 7 out of 11 attributes: illumination variation, out-of-plane
rotation, scale variation, motion blur, fast motion, in-plane rotation, and background clutters. Moreover,
our tracker achieved the best overall performance, 65.9% and 89.9% in success and precision rates,
respectively. It demonstrates that our tracker is robust to all kinds of scenes and can adapt to different
kinds of challenges in object tracking.

Table 1. Individual attributes comparisons of the proposed method with five state-of-the-art real-time

trackers on the OTB2013.
Attributes Overlap Success Rates on Each Attribute Distance Precision on Each Attribute
TFnet TRACA Memtrack ECO-HC SiamRPN DCFnet TFnet TRACA Memtrack ECO-HC SiamRPN DCFnet

v 0.659 0.623 0.588 0.612 0.631 0.596 0.881 0.863 0.789 0.793 0.848 0.751
OPR 0.668 0.640 0.629 0.632 0.662 0.612 0.909 0.897 0.848 0.862 0.890 0.785
SV 0.672 0.613 0.654 0.627 0.653 0.619 0.911 0.865 0.882 0.838 0.878 0.777
ocC 0.670 0.644 0.612 0.670 0.623 0.645 0.905 0.884 0.810 0.913 0.838 0.833
DF 0.675 0.688 0.594 0.645 0.677 0.606 0.914 0.941 0.797 0.863 0.900 0.787
MB 0.674 0.575 0.548 0.610 0.583 0.515 0.895 0.771 0.725 0.777 0.786 0.615
FM 0.671 0.578 0.585 0.607 0.601 0.534 0.890 0.782 0.773 0.797 0.791 0.646
IPR 0.648 0.610 0.603 0.589 0.646 0.572 0.887 0.859 0.803 0.801 0.867 0.723
(e/e)% 0.686 0.630 0.560 0.694 0.615 0.690 0.842 0.743 0.676 0.883 0.757 0.820
BC 0.662 0.618 0.591 0.606 0.647 0.579 0.874 0.844 0.800 0.816 0.868 0.760
LR 0.566 0.470 0.671 0.403 0.665 0.429 0.983 0.903 0.996 0.750 0.976 0.590
Overall 0.659 0.608 0.603 0.609 0.636 0.581 0.899 0.850 0.809 0.826 0.854 0.735

The bold fonts indicate the best performance.

4.4.2. Results on OTB2015

Figure 5 illustrates the comparisons of our algorithm with other trackers in both success and
precision plots. We can see that our approach still outperformed the other real-time trackers, with 64.3%
and 87.5% on overlap success rates and distance precision, respectively.

Precision plots of OPE

T 1
- J 0.9

Success plots of OPE

1 T

09 1
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—
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- DaSiamRPN [0.873] = ECO-HC [0.643]
o 06 m— ECO-HC [0.856] 1o 0.6 |memmTFnet [0.641]
‘D s SiamRPN [0.851] » — SiamRPN [0.637]
© 05 s \lem Track [0.820] | 7 & 0.5 | e MemTrack [0.626]
o TRACA [0.814] 8 TRACA [0.602]
o o4 s CFNet [0.777] S 04 | CENet [0.586]
m— SiamFC [0.771] w

— SiamFC [0.582]
DCFNet [0.751] : DCFNet [0.580]
s DSST [0.695] | 02| |==DSST [0475]
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s Sty ck [0.638] i 04 L |== struck[0.461]
TLD [0.595] TLD [0.426]
0 : : : : 0 : : : -
0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1

Location error threshold Overlap threshold

03

0.2

0.1

Figure 5. Distance precision plot and overlap success rates plot using one-pass evaluation on the
OTB2015 dataset.

We also illustrate qualitative comparisons of our tracker with five state-of-the-art trackers on a
subset of videos in Figure 6. The proposed tracker performed as well as Memtrack in fast motion
(Dragonbaby) and similar objects (Football, Human3), which demonstrates that our CNN feature
representation has outstanding discriminative power compared to the recent Siamese network trackers.
The DCFnet and TRACA trackers did not perform well in these two kinds of sequences. This is because
the search images of these correlation-based trackers are always multiplied by a hann window to focus
on the previous position. Memtrack drifts in Human3 sequence, as Siamese-based trackers always need
a template with a large context background to locate the object, which introduces more background
information to the tracking template. Besides, most state-of-the-art trackers did not perform well in
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background clutter and fast motion blurring (Motorrolling), while our tracker could correctly track the
targets because we use the augmented training samples to train the framework, which enhances the
discrimination of the tracking template; in addition, foreground detection can work well even though
objects undergo such difficult challenges. ECO-HC failed to track the object in (Sking), because it uses
the conventional feature extraction method, hog, and color. Our tracker performed well in illumination
and scale changes (Human8, Sking), which indicates that our model update scheme and scale variation
scheme can learn the appearance changes of the object.

e QUrs === TRACA o= ECO-HC === \emtrack === DCFnet

Figure 6. Qualitative tracking results of our tracker, TRACA, ECO-HC, Memtrack, and DCFnet on
six challenging sequences. From left to right and top to bottom are Dragonbaby, Football, Human3,
Human8, Motorrolling, and Sking, respectively.

4.4.3. Results on TC128

Temple color benchmark contains 128 color image videos. We adopted the same metrics success
plot and precision plot to study comparisons of our tracker and six real-time state-of-the-art trackers:
ECO-HC [11], STRCF [27], DeepSRDCF [49], SRDCF [50], Struck [47], and KCF [14]. ECO-HC is
a real-time variant of ECO based on handcrafted features, Hog and color, while STRCF is a recent
state-of-the-art real-time tracker. Figure 7 illustrates the success plot and precision plot of compared
trackers. Specifically, our tracker achieved a success score of 55.4% and a precision score of 76.1%,
which again surpassed all the compared trackers.

Precision plots of OPE Success plots of OPE

0.9

0.9

0.8 0.8

0.7 0.7 %

-y
061 © 06F
. = e,
c © Ya,
Qost @ 05F e,
B 0 ? 0 0,
3] s TFit [0.761] ® s TF et [0.554]
O o04r . = ECO-HC [0.753] & 04 |== ECO-HC [0.551] .
o = & 11STRCF [0.744] =] = nn STRCF [0.548]
03[ m— DeepSRDCF [0.740]| ) 0.3 |mmmmDeepSRDCF [0.536]
s SRDCF [0.663] === SRDCF [0.485]
02F KCF [0.558] g 02F Struck [0.393]
s DSST [0.542) s KCF [0.387]
01k = Struck [0.530] J 0.1 | |== DSST[0.380]
= = 1 TLD [0.451] === TLD [0.326]
0 : : . : 0 : : : :
0 10 20 30 40 50 0 0.2 04 0.6 08 1
Location error threshold Overlap threshold

Figure 7. Distance precision plot and overlap success rates plot using one-pass evaluation on the
TC128 dataset.
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4.4.4. Results on UAV123

To further validate the proposed TFnet, we conducted experiments on UAV123. Compared with
other tracking benchmarks, UAV123 is from an aerial viewpoint, for which object motion typically has
a higher degree of freedom. Figure 8 reports the overall performance of compared trackers. In this
figure, we can see that our tracker achieved competitive performance, with a success score of 47.1%
and precision score of 69.3%, which is similar to ECO-HC. Possible reasons are that our template
tracking is processed with the 1/4 downscale CNN feature maps. Since there are more small size
objects in this dataset, our tracker is less effective in handling these kinds of sequences than ECO-HC.
As for the attribute of fast motion, our tracker performed better than ECO-HC.

Precision plots of OPE Success plots of OPE

0.8 0.8
0.7 0.7 b
0.6 0.6 b
Q
0.5 0.5 b
5 o
2 @
S 04r g 0.4 B
(0]
= 8
Qo3 s ECO-HC [0.725] S 03| [==ECO-HC [0.506]
TFnet [0.693] n TFnet [0.471]
02 === SRDCF [0.676] | | ozl """ SRDCF [0.464]
: m— DSST [0.586] : m— Struck [0.381]
we= Struck [0.578] m== DSST [0.356]
0.1 KCF [0.523] b 0.1 KCF [0.331]
e TLD [0.439] e TLD [0.283]
0 ‘ ‘ ‘ 0 ‘ ‘
0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1
Location error threshold Overlap threshold

Figure 8. Distance precision plot and overlap success rates plot using one-pass evaluation on the
UAV123 dataset.

4.5. Ablation Study

To verify the contribution of each component, we conducted ablation analysis to compare the
performance of single template tracking branch (TFnet-no-FB), without augmented training samples
with the proposed tracker (TFnet-no-AU), and (TFnet-with-SC) that uses a standard convolution (SC)
to process template tracking. Figure 9 shows the quantitative evaluation under overlap success (OS)
and distance precision (DP). Our tracker could obtain obvious improvement through the integration
of foreground detection, which improved OS from 66.5% to 67.7% and DP from 89.5% to 91.0%
while only reducing speed from 40 fps to 38 fps. This indicates that, despite exploiting a coarse
foreground label to train the foreground detection, our tracker still obtained a boosting tracking
performance with low loss in processing time. Besides, using augmented training samples to train
the proposed framework obtained a boosted performance on OS (by 1.9%) and DP (by 2.1%). We owe
this significant improvement to our data augmentation strategy, which introduces more background
information and target appearance changes to learn a more discriminative model. Compared with
the baseline TFnet-with-SC, our approach also improved the performances with an OS gain of 2.2%
and a DP gain of 2.6% while improving speeds from 1 fps to 38 fps, which demonstrates our TFnet
using depthwise separable convolution can not only can speed up tracking processing time but also
learn more discriminative object template to improve the tracking performances. In other words,
each component in the proposed tracking framework is helpful to improve the performance.
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Figure 9. Results of ablation study on the OTB2013 dataset.
5. Conclusions

In this paper, we propose a TFnet for real-time object tracking, which combines feature
representation backbone network, channel-wise target template tracking, and foreground detection into
a single framework. Template tracking and foreground detection are parallel fully convolution neural
networks but share the backbone network. The augmented training samples are used to end-to-end
train the overall framework via a multi-task loss to enhance the discriminative of deep features and
improve the representation quality of object template. Ablation study experiments showed that each
component of our approach is effective to improve the tracking performances. Extensive experiments
on OTB2013, OTB2015, TC128, and UAV123 demonstrated that our approach achieves outstanding
performance in both accuracy and speed.
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