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Abstract: This paper presents a data-driven approach that leverages reinforcement learning to
manage the optimal energy consumption of a smart home with a rooftop solar photovoltaic system,
energy storage system, and smart home appliances. Compared to existing model-based optimization
methods for home energy management systems, the novelty of the proposed approach is as follows:
(1) a model-free Q-learning method is applied to energy consumption scheduling for an individual
controllable home appliance (air conditioner or washing machine), as well as the energy storage
system charging and discharging, and (2) the prediction of the indoor temperature using an artificial
neural network assists the proposed Q-learning algorithm in learning the relationship between
the indoor temperature and energy consumption of the air conditioner accurately. The proposed
Q-learning home energy management algorithm, integrated with the artificial neural network
model, reduces the consumer electricity bill within the preferred comfort level (such as the indoor
temperature) and the appliance operation characteristics. The simulations illustrate a single home
with a solar photovoltaic system, an air conditioner, a washing machine, and an energy storage
system with the time-of-use pricing. The results show that the relative electricity bill reduction of the
proposed algorithm over the existing optimization approach is 14%.

Keywords: home energy management system; reinforcement learning; artificial neural network;
smart home; consumer comfort; smart grid

1. Introduction

With the advent of the Internet of Things (IoT) technology, smart sensors, and advanced
communication and control methods in electric energy systems, increasing amounts of electric
energy-related data are being produced and utilized for the reliable and efficient operation of electric
energy system. Machine learning (ML) is a core technology for handling such big data effectively, and
various ML-based applications are currently under development for the prediction of solar photovoltaic
(PV) generation, load forecasting, energy control and cost optimization, peak load management, and
the design of dynamic energy pricing using various ML models, such as the artificial neural network
(ANN), support vector machine, and deep learning [1]. This study attempts to provide a novel
ML-based framework with which to conduct optimal energy management of residential homes.

Owing to the increasing home energy consumption [2] along with emerging smart grid
technologies in the residential sector, such as distributed energy resources (DERs) (for example, rooftop
PV systems and residential energy storage systems (ESSs)), advanced metering infrastructure with
smart meters, and demand response programs, home energy management is becoming increasingly
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crucial for residential consumers to reduce their electricity bills and maintain the efficiency of their
home appliances. Furthermore, as additional smart home appliances using the IoT technology,
including air conditioners, washers, and refrigerators, are being deployed to offer more advanced
services to consumers, the development of more intelligent systems, namely home energy management
systems (HEMSs), is becoming necessary for consumers to control their home appliances efficiently
and economically [3].

The HEMS is a key solution for residential energy management in future smart grids. The HEMS
has two major functions: (1) monitoring the real-time energy use of consumers using smart meters and
smart plugs, and (2) scheduling the optimal energy consumption of home appliances to reduce
consumer electricity bills in their comfortable and preferred environments. A traditional core
technology in HEMSs is the optimization method for economic load reduction and load shifting.
In general, the HEMS algorithm is formulated as an optimization problem, in which the objective
functions (consumer electricity bill and discomfort cost) are minimized while satisfying the equality
and inequality constraints (such as the operations of appliances and DERs, and the consumer
comfort settings).

Compared to the existing model-based HEMS optimization approaches, we propose a HEMS
algorithm using a model-free reinforcement learning (RL). Figure 1 presents the conceptual system
model for the proposed RL-based HEMS, along with the classification of data associated with the
utility company, weather station, and consumer. The main contributions of this paper are summarized
as follows:

• We present an RL-based HEMS model that manages the optimal energy consumption of a
smart home with a rooftop PV system, ESS, and smart home appliances. In the HEMS model,
the Q-learning method is applied to the energy consumption scheduling of different home
appliances (air conditioner, washing machine, and ESS), whereby the agent of each appliance
determines the optimal policy independently to reduce its own electric cost within the consumer
comfort level and the appliance operation characteristics. Furthermore, we propose an ANN
model to learn the relationship between the indoor temperature and energy consumption of
the air conditioner more accurately, which is integrated into the Q-learning module to achieve
improved performance of the air conditioner agent.

• The simulation results confirm that the proposed RL method with the ANN can successfully
reduce both the consumer electricity bill and dissatisfaction cost (for example, the indoor
temperature and operating time interval of the washing machine within the consumer comfort
settings). Moreover, we compare the performance of the proposed RL-based HEMS algorithm
to that of the conventional mixed-integer linear programming (MILP)-based HEMS algorithm,
and verify that the proposed approach can achieve greater energy savings than the conventional
approach under various penalty parameter settings in the reward function of the appliance agent.

The remainder of this paper is organized as follows. Section 2 provides a literature review for
our proposed method. Section 3 defines the various types of smart home appliances and introduces
the conventional optimization formulation for home energy management. Section 4 presents the
formulation of the proposed RL-based HEMS algorithm using the Q-learning and ANN methods.
The simulation results for the proposed HEMS algorithm are provided in Section 5 along with
discussion for the future applicability of the proposed algorithm in Section 6, and conclusions are
provided in Section 7.
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Figure 1. Illustration of the proposed home energy management system (HEMS) framework.

2. Related Research

Over the past decade, various studies have been conducted on the HEMS optimization
formulation in different types of optimization models and performance assessment [4–16]. These
approaches include the scheduling of different types of home appliances along with electric vehicles
using linear programming (LP) [4,5], load scheduling considering the consumer comfort level
using mixed integer nonlinear programming (MINLP) [6], convex programming based on relaxed
MINLP using an L1 regularization technique [7], load scheduling for a single consumer or multiple
consumers using MILP [8–10], LP-based joint optimization of energy supplies and electric loads
through three-stage scheduling (prediction, supply control, and demand control) [11], the natural
aggregation algorithm (NAA)-based HEMS method consisting of forecasting, day-ahead scheduling,
and actual operation [12], robust optimization for the scheduling of home appliances to resolve the
uncertainty of consumer behavior [13] and the outdoor temperature and consumer comfort levels [14],
and distributed HEMS architectures consisting of a local and global HEMS [15,16]. More recently, using
real-time pricing, a HEMS optimization method that considers the operational dependency of various
types of home appliances and consumer lifestyle requirements was proposed in [17]. Previous work on
HEMS algorithms, including different types of optimization models, is summarized effectively in [18].
In addition, a broader literature review on the energy and comfort management of the residential,
commercial and industrial buildings was conducted in [19].

In recent years, compared to the aforementioned model-based HEMS optimization approaches,
data-driven approaches using ML methods have gained popularity owing to their more efficient
residential energy management because the existing model-based approach is limited to deterministic
decision-making under an uncertain environment and approximated energy system models, thereby
leading to undesired energy consumption scheduling. In [20], an operation method for smart
thermostats was presented, in which the consumer preference could be learned using a Bayesian
inference method. Moreover, based on the learned consumer preference, the optimal temperature
setting schedule for smart thermostats could be determined in a stochastic expected value model.
A novel pooling-based deep recurrent neural network (RNN) method for household load forecasting
was proposed to improve the accuracy significantly in [21]. Compared to the traditional deep RNN
technique, a key method in [21] was learning spatial information among consumers and allowing for
additional learning layers prior to the occurrence of overfitting. The numerical examples demonstrated
that the proposed approach outperformed existing ML methods, such as the auto-regressive integrated
moving average, support vector regression, and traditional deep RNN. In [22], a hybrid HEMS
algorithm that integrated the ML methods into a traditional HEMS optimization problem was
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developed, in which the energy consumption of the heating, ventilation, and air conditioning (HVAC)
was scheduled based on neural network-and regression-based learning methods. Furthermore,
for a reliable wind energy management, a hybrid wind speed multi-step forecasting model was
developed using an ANN method combined with the wavelet packet and complete ensemble empirical
mode decomposition techniques in [23]. In [24], the Elman neural network that is optimized by
the multi-objective salp swarm algorithm was used to enhance both the forecasting accuracy and
stability of air quality early-warning system that improves air quality and human health. A hybrid
electricity price forecasting method was presented in multi-step ahead framework, which consists of
fast ensemble empirical mode decomposition, variational mode decomposition, and back propagation
neural network in [25]. In [26], the ANN model was used to develop a tool that investigates the
relationship among heating energy use, indoor temperatures, and the heating energy demand in the
residential buildings with different occupant behaviors.

More recently, reinforcement learning (RL), also known as the model-free control approach, has
received attention as a promising ML method for electric energy management. A pioneering work
in RL-based energy management is Google DeepMind, which was developed using the RL method
and has been proved to decrease the electricity bill by cooling the data center by approximately 40%.
Deep RL (DRL) (that is, the combination of RL and ANN) was applied to the control of HVAC in
a building to reduce the energy cost while maintaining a comfortable consumer level in terms of
the indoor temperature [27], as well as both the indoor temperature and air quality [28]. Several
papers have reported on building energy management with DERs using Q-learning, in which the ESS
was controlled to achieve energy savings in a single [29] building and a community with multiple
buildings [30]. In [31], multi-agent RL was presented to manage the home energy consumption. Each
agent corresponded to various home appliances types with non-shiftable, shiftable, and controllable
loads, and the energy consumption of each appliance was optimized through the Q-learning process,
along with the real-time price prediction using the ANN. Recently, a novel Q-learning method
using action dependent dual heuristic programming was proposed to solve the infinite-time domain
linear quadratic tracker without requiring the information of the system matrices in [32]. In [33],
Q-learning-based multi-agent framework was developed where all agents communicate with each
other and synchronize with the leader agent, consequently achieving the optimal consensus solution
for all agents in real time.

Although extensive research has been conducted on residential energy management using the
RL method, to the best of the authors’ knowledge, no study has proposed an energy consumption
scheduling algorithm yet considering the operation of various home appliances, including the ESS,
and the consumer comfort level simultaneously. Previous studies have been limited to the energy
consumption scheduling problem for controlling only the HVAC [27,28] or only the ESS [29,30].
Similarly to our work, the study of [31] developed a Q-learning-based HEMS algorithm that scheduled
the energy consumption of different home appliances with shiftable and controllable loads. However,
no control for the ESS charging and discharging was considered.

3. System Model for HEMS

3.1. Preliminary

In this study, we consider the situation in which automatic energy management for a single
household is carried out by the HEMS, which schedules and controls the following types of household
appliances under the time-of-use (TOU) tariff:

• Controllable appliance (Ac): A controllable appliance is an appliance of which the operation is
scheduled and controlled by the HEMS. The operation characteristics categorize controllable
appliances into reducible appliances (Ac

r) and shiftable appliances (Ac
s). An example of a reducible

appliance is an air conditioner, known as a thermostatically controllable load, in which the energy
consumption can be curtailed to reduce the electricity bill. However, under the TOU pricing
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scheme, the energy consumption of a shiftable appliance can be shifted from one time slot to
another to minimize the total electricity cost. A shiftable appliance has two load types: (1) a
non-interruptible load (Ac,NI

s ), and (2) an interruptible load (Ac,I
s ). The operation of shiftable

appliances with non-interruptible loads must not be stopped by the HEMS control during the
appliance task period. For example, a washing machine must perform a washing cycle prior
to drying. A shiftable appliance with an interruptible load may be interrupted at any time.
For example, the HEMS must terminate the discharging process and initiate the charging process
of the ESS instantly when the PV power generation is greater than the load demand.

• Uncontrollable appliance (Auc): An uncontrollable appliance, such as a TV, PC, or lighting,
cannot be scheduled and operated by the HEMS. Therefore, Auc maintains the fixed energy
consumption scheduling.

3.2. Conventional HEMS Optimization Formulation

A general HEMS algorithm that determines the optimal operating schedule of household
appliances and DERs is formulated as an MILP optimization problem, consisting of the objective
function and constraints as follows:

3.2.1. Objective Function

The objective function (1) for the HEMS optimization problem consists of two parts, each of which
includes different decision variables (Enet

t , Tin
t ):

min
Enet

t ,Tin
t

∑
t∈T

πtEnet
t︸ ︷︷ ︸

J1(Enet
t )

+ ε ∑
t∈T

∣∣∣Tin
t − Tset

∣∣∣︸ ︷︷ ︸
J2(Tin

t )

. (1)

In Equation (1), J1 (Enet
t ) is the total electricity cost, calculated under the TOU price πt and the net

energy consumption Enet
t at time t. Furthermore, Enet

t is written in terms of the energy consumption
for the controllable/uncontrollable appliances and the predicted PV generation output. J2

(
Tin

t
)

is
the total penalty amount involving the consumer discomfort cost. Discomfort implies a deviation of
the preferred consumer temperature Tset from the indoor temperature Tin

t . ε is a penalty term for the
consumer discomfort cost. A larger ε leads to a smaller J2

(
Tin

t
)
, thereby providing the consumer with

decreasing discomfort, while resulting in less energy savings. The value of ε can be determined by
the HEMS operator to satisfy the consumer preferred comfort level at the expense of the consumer
electricity bill. The following subsections demonstrate the equality and inequality constraints for the
HEMS optimization problem.

3.2.2. Net Power Consumption

Equation (2) is the constraint on the net energy consumption; that is, the difference between
the total consumption of all appliances ∑a∈A Ea,t and the predicted PV generation output ÊPV

t .
In Equation (3), the total consumption of all appliances in Equation (2) is decomposed into four different
types of reducible appliances (a ∈ Ac

r), shiftable appliances with a non-interruptible load (a ∈ Ac,NI
s ),

shiftable appliances with an interruptible load (a ∈ Ac,I
s ), and uncontrollable appliances (a ∈ Auc):

Enet
t = ∑

a∈A
Ea,t − ÊPV

t , (2)

∑
a∈A

Ea,t = ∑
a∈Ac

r

Ea,t + ∑
a∈Ac,NI

s

Ea,t + ∑
a∈Ac,I

s

(
Ech

a,t − Edch
a,t

)
+ ∑

a∈Auc
Ea,t. (3)
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3.2.3. Operating Characteristics for Controllable Appliances

For a reducible appliance a ∈ Ac
r , Equation (4) is the constraint for the temperature dynamics of

the reducible appliance (for example, air conditioner) at time t (Tin
t ), which is expressed in terms of

Tin
t−1 at time t− 1, the predicted outdoor temperature at time t− 1 (T̂out

t−1), the energy consumption of
the reducible appliances (Ea,t), and the environmental parameters (α, β) specifying the indoor thermal
condition. Equation (5) presents the range of consumer preferred indoor temperatures with Tmin and
Tmax. The energy consumption capacity for the reducible appliance is limited with Emin

a and Emax
a

in (6):

Tin
t = Tin

t−1 + α(T̂out
t−1 − Tin

t−1) + βEa,t, (4)

Tmin ≤ Tin
t ≤ Tmax, (5)

Emin
a ≤ Ea,t ≤ Emax

a . (6)

Equations (7)–(9) ensure the desired operation of shiftable appliances with a non-interruptible
load a ∈ Ac,NI

s (for example, a washing machine) with the binary decision variable bc,NI
a,t : (i) for the

stopping period where ω
pref
s and ω

pref
f are the consumer preferred starting and finishing time in

Equation (7), (ii) for the operation period of La hours during a day in Equation (8), and (iii) for a
consecutive operation period of La hours in Equation (9). The energy consumption capacity for the
shiftable appliances with a non-interruptible load is described with Emax

a in Equation (10):

bc,NI
a,t = 0, t ∈ [1, ω

pref
s ) ∪ (ω

pref
f , T], (7)

ω
pref
f

∑
t=ω

pref
s

bc,NI
a,t = La, (8)

p+La−1

∑
t=p

bc,NI
a,t ≥ (bc,NI

p − bc,NI
p−1 )La, ∀p ∈ (ω

pref
s , ω

pref
f − La + 1) (9)

Ea,t = bc,NI
a,t Emax

a . (10)

Equation (11) illustrates the operational dynamics of the state of energy (SOE) for the ESS
(a ∈ Ac,I

s ) at the current time t in terms of the SOE at the previous time t − 1, the charging
and discharging efficiency, ηch

a and ηdch
a , and the charging and discharging energy, Ech

a,t and Edch
a,t ,

respectively. Equation (12) provides the SOE capacity constraint with SOEmin
a and SOEmax

a for the ESS.
Equations (13) and (14) present the constraints on the charging (Ech

a,t) and discharging (Edch
a,t ) energies

of the ESS, respectively, where bc,I
a,t represents the binary decision variable that determines the ESS

on/off status:

SOEa,t = SOEa,t−1 + ηch
a Ech

a,t −
Edch

a,t

ηdch
a

, (11)

SOEmin
a ≤SOEa,t ≤ SOEmax

a , (12)

Ech,min
a bc,I

a,t ≤Ech
a,t ≤ Ech,max

a bc,I
a,t , (13)

Edch,min
a (1− bc,I

a,t) ≤Edch
a,t ≤ Edch,max

a (1− bc,I
a,t). (14)
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Finally, the MINLP-based HEMS optimization problem above can be converted into an MILP
optimization problem by means of the linearization of the nonlinear objective function J2

(
Tin

t
)

as follows:

∆Tt = |Tin
t − Tset|, (15)

∆Tt ≥ Tin
t − Tset, (16)

∆Tt ≥ Tset − Tin
t . (17)

4. Formulation of RL- and ANN-Based Home Energy Management

4.1. Home Energy Management via Q-Learning

RL is one of the main ML techniques for optimal decision-making in a non-deterministic
environment. As illustrated in Figure 2, while an agent interacts with an environment, the agent learns
the type of action depending on the state of the environment, and sends the learned action to the
environment. The environment then returns a reward along with the new state of the environment
to the agent. This learning process continues until the agent maximizes the total cumulative rewards
received from the environment. A policy is defined as the manner in which the agent acts from a
specific state, and the primary goal of the agent is to determine the optimal policy that maximizes the
reward. In this study, we assume that the environment is described by a Markov decision process,
in which the agent state transition relies only on the present state, along with the action selected in the
present state, without considering all past states and actions.

Action State

Agent

Environment

Reward

Figure 2. Conceptual architecture of reinforcement learning (RL).

Q-learning is one of the representative RL techniques for determining the optimal policy ν∗ of a
decision-making problem. The general process of Q-learning calculates a Q-value Q(st, at) of a pair of
state st and action at at a discrete time t and updates the Q-value towards the maximum total rewards
using the following Bellman equation:

Q∗ν∗(st, at) = r(st, at) + γ max Q(st+1, at+1). (18)

In Equation (18), based on the optimal policy ν∗, the optimal Q-value Q∗ν∗(st, at) is obtained by the
summation of the present reward r(st, at) and maximum discounted future reward γ max Q(st+1, at+1)

where γ ∈ [0, 1] represents a discounting factor that explains the relative importance of the present
and future rewards. As the discounting factor γ decreases, the agent becomes short-sighted because it
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focuses increasingly on the present reward. However, a larger γ enables the agent to focus increasingly
on the future reward and thus become far-sighted. The value of γ can be tuned by the system operator
using Q-learning to balance the present and future rewards.

Whenever the Q-value Q(st, at) is updated with a specific pair of state and action at time t,
Q(st, at) is saved in the state-action table, namely the Q-value table. The agent selects its action using
the Q-value table at every time t, and the element (Q-value) in the Q-value table associated with the
selected pair of state and action is updated using the following Bellman equation:

Q(st, at)← (1− θ)Q(st, at) + θ [r(st, at) + γ max Q(st+1, at+1)] . (19)

In Equation (19), θ ∈ [0, 1] represents the learning rate that determines the extent to which the new
Q-value overrides the old one. With θ = 0, the agent learns nothing and uses only the past Q-value
without exploration in the Q-learning process. However, with θ = 1, the agent updates its Q-value
using only the present reward and maximum discounted future reward without exploitation. Similar
to the selection of γ, a trade-off between exploration and exploitation can be determined by the system
operator through setting the value of θ in [0, 1]. Finally, by updating Q(st, at) in an iterative manner
using Equation (19), the Q-value will become increasingly larger, and the agent will obtain the optimal
policy ν∗ with the largest Q-value, as follows:

ν∗ = arg max Q(st, at). (20)

In this study, the aforementioned Q-learning method is applied to an individual appliance (for
example, air conditioner, washing machine, or ESS) to calculate the optimal operation schedule of
appliances in a smart home with a PV system and an ESS, which consequently results in the reduction
of the consumer electricity bill within the consumer preferred appliance scheduling and comfort
level. A detailed illustration of the state, action, and reward for the proposed Q-learning approach is
provided in the following three subsections.

4.1.1. State Space

We consider the situation in which the proposed Q-learning algorithm is executed for 24 h with
a 1 h scheduling resolution. For ∀t = 1, . . . , 24, the state spaces of the washing machine (WM), air
conditioner (AC), and ESS are expressed as follows, respectively:

SWM = {EWM
t }, SAC = {EAC

t }, SESS = {SOEESS
t }, (21)

where the states EWM
t , EAC

t , and SOEESS
t are the energy consumption of the WM and AC, and SOE of

the ESS, respectively, at time t.

4.1.2. Action Space

The optimal action for each appliance depends on the environment of the agent, including the
present state, as defined in Section 4.1.1. The action spaces of the WM, AC, and ESS are illustrated
as follows:

AWM = {On, Off}, (22)

AAC = {0, ∆EAC, 2∆EAC, . . . , 8∆EAC, 9∆EAC}, (23)

AESS = {−4∆EESS,−3∆EESS,−2∆EESS,−1∆EESS, 0, 1∆EESS, 2∆EESS, 3∆EESS, 4∆EESS}. (24)

In Equation (22), the WM agent performs the binary action {On, Off}. With the ‘On’ action, the
WM agent turns on the WM, which consumes a constant energy (EWM,max), whereas the WM agent
turns off the WM with the ‘Off’ action. The action for the AC agent is discretized into 10 levels of
AC energy consumption in Equation (23) where ∆EAC represents an energy consumption unit of the
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AC. Similar to the action for the AC agent, the discrete set of actions for the ESS agent is defined
with an energy unit of ESS ∆EESS in Equation (24). These discretized actions are categorized into
discharging and charging actions, corresponding to {−4∆EESS,−3∆EESS,−2∆EESS,−1∆EESS} and
{1∆EESS, 2∆EESS, 3∆EESS, 4∆EESS}, respectively. The proposed algorithm calculates an hourly energy
consumption schedule for the appliances for the next 24 h. Given the state and action sets above, the
Q-value tables for the WM, AC, and ESS agents are illustrated using the |T | × |AWM|, |T | × |AAC|,
and |T | × |AESS| matrices, with |T | = 24, |AWM| = 2, |AAC| = 10, and |AESS| = 9, respectively.
In this case, |A| is the cardinality of the set A (that is, the number of elements in A).

4.1.3. Reward

The reward function for each appliance agent is formulated as the sum of the negative electric
cost and negative dissatisfaction cost associated with the consumer preferred comfort and appliance
operation characteristics. The comprehensive reward rTotal for the HEMS is defined as

rTotal = rWM
t + rAC

t + rESS
t . (25)

In Equation (25), the three reward functions rWM
t , rAC

t , and rESS
t aim to evaluate the HEMS

performance in terms of: (i) the electric cost and consumer undesired operation of the WM, (ii)
the electric cost and consumer thermal discomfort of the AC, and (iii) the electric cost and energy
underutilization owing to overcharging and undercharging of the ESS.

Firstly, the reward function for the WM agent is expressed as

rWM
t =


−[πtEWM

t + δ(ω
pref
s − t)], if t < ω

pref
s ,

−[πtEWM
t + δ(t−ω

pref
f )], if t > ω

pref
f ,

−πtEWM
t , otherwise,

(26)

where ω
pref
s and ω

pref
f are the consumer preferred starting and finishing times of the WM, respectively,

while δ and δ are the penalties for early and late operation, respectively, compared to the consumer
preferred operation interval. A dissatisfaction cost is added to the reward function with a negative
value if the WM agent schedules the WM energy consumption before ω

pref
s or after ω

pref
f ; otherwise,

the reward function includes only a negative electric cost.
The reward function for the AC agent is defined as

rAC
t =


−
[
πtEAC

t + κ(Tmin − Tin
t )
]

, if Tin
t < Tmin,

−
[
πtEAC

t + κ(Tin
t − Tmax)

]
, if Tin

t > Tmax,

−πtEAC
t , otherwise,

(27)

where κ is the penalty for the consumer thermal discomfort. The dissatisfaction cost is defined as the
deviation of the consumer preferred temperature Tin

t from Tmin and Tmax, and it is considered as the
reward with a negative sign only if Tin

t deviates from the range of [Tmin, Tmax].
Finally, the reward function for the ESS agent consists of a negative electric cost and negative

energy underutilization cost, as follows:

rESS
t =


−[πtEESS

t + τ(SOEt − SOEmax)], if SOEt > SOEmax,

−[πtEESS
t + τ(SOEmin − SOEt)], if SOEt < SOEmin,

−πtEESS
t , otherwise,

(28)

where τ and τ are the penalties for the ESS overcharging and undercharging, respectively. In this case,
energy underutilization of the ESS occurs if the SOE becomes lower than SOEmin (undercharging) or
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greater than SOEmax (overcharging), and it is considered as a reward term, along with the electric cost
during the ESS underutilization stage.

4.2. Prediction of Indoor Temperature via ANN

In this study, we consider the situation in which the HEMS schedules the AC energy consumption
based on the indoor and outdoor temperature with the consumer preferred thermal conditions.
Traditionally, the HEMS calculates the current indoor temperature using an approximated equation
(that is, the equivalent thermal parameters (ETP) model Equation (4) in Section 3.2.3 in terms of the
previous indoor and current outdoor temperature, AC energy consumption, and indoor thermal
characteristics). In this subsection, in contrast to the aforementioned model-based approach for
the indoor temperature prediction, we propose an ANN-based method for predicting the indoor
temperature associated with the AC energy consumption.

In the proposed ANN model, the AC agent learns the extent to which the AC energy consumption
affects the current indoor temperature, which implies the estimation of the function f that illustrates
the relationship between the indoor temperature and AC energy consumption, as follows:

f̂ (Tin
t−1, Tmin, Tmax, T̂out

t , EAC
t ) = Tin

t , (29)

where f̂ is the approximated function that explains the relationship between the input data from the
ETP model in Section 3.2.3), such as the previous indoor temperature (Tin

t−1), consumer’s preferred
indoor thermal conditions (Tmin, Tmax), weather forecasting (T̂out

t ), and AC energy consumption (EAC
t )

and the output for the predicted current indoor temperature.
As illustrated in Figure 3, the proposed ANN model consists of one input data layer with five

neurons, three hidden layers with seventeen neurons, and one output layer with one neuron. Each
layer calculates the weighted sum of the input vector and a constant bias bi with a weight Wi, and
the weighted sum is transferred to the following layer by means of the transfer function. In this
study, Rectified Linear Unit (ReLu) function is used as a transfer function [34]. Moreover, the Adam
optimization algorithm [35] is employed to train the proposed ANN model, and the learning rate of
the optimization algorithm is set to 0.005.

Input layer Hidden layer Output layer

Indoor Temperature

in 1 Time Period

Minimum Value of 

Consumer’s Comfort Temperature 

Range

Maximum Value of 

Consumer’s Comfort Temperature 

Range

Outdoor Temperature in Time 

Period

Energy Consumption of AC 

Agent in Time Period

Predicted Indoor Temperature

in Time Period

Figure 3. Architecture of the proposed artificial neural network (ANN) model.

The temperature prediction function approximated by the proposed ANN is fed into the
Q-learning module for the AC agent, as illustrated in Section 4.1. This approximated model enables
the AC agent to calculate the dissatisfaction cost more precisely and determine the optimal energy
consumption schedule more efficiently during the Q-learning process.
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Finally, the HEMS with the PV system, ESS, and home appliances learn the energy management
policies that optimize the electricity bill and consumer comfort level using Algorithm 1. The HEMS
receives the hour-ahead indoor temperature, consumer preferred indoor temperature range, predicted
outdoor temperature, and AC energy consumption (EAC

t ), and uses the ANN to predict the current
indoor temperature. Afterwards, the proposed Q-learning is initiated to schedule the optimal energy
consumption of the appliances and ESS charging/discharging. Figure 4 illustrates the proposed
Q-learning- and ANN-based framework for optimal control of the home appliances and ESS.

Algorithm 1: Q-learning-based energy management of smart home with PV system, ESS, and
home appliances.

1 Initialize each appliance’s energy demand, dissatisfaction parameters, and Q-learning parameters
2 %%Learning with ANN for temperature prediction of AC agent
3 Indoor temperature at time period t− 1→ Tin

t−1
4 Minimum and maximum value of consumer’s comfort temperature range→ Tmin, Tmax

5 Predicted outdoor temperature at time t→ T̂out
t

6 Energy consumption of AC agent at time t→ EAC
t

7 Predicted indoor temperature at time t→ Tin
t

8 Learning process with ANN and approximate the temperature prediction model f̂
9 Tin

t = f̂ (Tin
t−1, Tmax, Tmin, T̂out

t , EAC
t )

10 Initialize Q-value of each agent
11 for episode = 1, MaxEpisode do
12 . Initialize state, action and time period
13 for time step = 1, 24 do
14 . Select at from present st using ε-greedy policy
15 . Take action at; observe r(st, at) and st+1

16 Q(st, at)← (1− θ)Q(st, at) + θ [r(st, at) + γ max Q(st+1, at+1)]

17 end
18 end
19 Find optimal policy with largest Q-value

Shiftable Appliance with

Non-interruptible Load

Shiftable Appliance with 

Interruptible Load

Reducible Appliance

Washing Machine (WM)

ESS

Air Conditioner (AC)

Learning the Relationship

between Indoor Temperature and Energy Consumption of AC

ANN for the AC agent

• Update Q-value

• Find the Optimal Policy

= = + 1

. . .

= 24

,

: state of appliance at time 

: action of appliance at time 

( , ( , )

( , ) = (1 ) ( , , ) + ( ( , ) + ( , )

= argmax
,

( , )

Hidden 

Layers of 

Neural 

Network

Q-learning for the WM, AC, ESS agents

[Section 3.2]

[Section 3.1]

Figure 4. Overall architecture of the proposed HEMS algorithm using Q-learning and ANN.

5. Numerical Examples

5.1. Simulation Setup

We considered the situation of a household with two major home appliances (AC and WM),
and an ESS that can be controlled by the HEMS under the TOU tariff, as illustrated in Figure 5a.
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The simulations were carried out for 24 h with a 1 h scheduling resolution. It was assumed that
the predicted PV generation energy ÊPV

t in Figure 5b and outdoor temperature T̂out
t−1 in Figure 5c

could be obtained accurately. The maximum energy consumptions of the AC, WM, and aggregated
uncontrollable appliances were 3000, 500, and 1700 Wh, respectively. The consumer comfortable
temperature range was assumed to be (23 ◦C, 25 ◦C). The consumer preferred temperature Tset is 24 ◦C,
and the penalties ε (MILP-based HEMS) and κ (RL-based HEMS) for the consumer thermal discomfort
were both 100. The parameters α and β, which represent the AC thermal characteristics, were set to
0.8 and −0.02, respectively. The allowable operating period for the WM was (6:00 a.m., 10:00 p.m.),
and the consecutive operation time was 2 h. The maximum charging and discharging capacities,
Ech,max and Edch,max, for the ESS were both 4000 Wh, while the initial, minimum, and maximum SOE
values were 2400, 800, and 4000 Wh, respectively. In the action space, the energy consumption units,
∆EAC and ∆EESS, for the air conditioner and ESS are 40 Wh and 150 Wh, respectively. For the reward
function, the penalties for the dissatisfaction cost of the WM and ESS were δ = 50, δ = 50, τ = 50, and
τ = 50, respectively. The parameter ε of the ε-greedy policy for exploration and exploitation was set
to 0.1. The learning rate θ and discounting factor γ in the Bellman equation were set to 0.1 and 0.9,
respectively. The proposed algorithm was implemented on a computer (AMD Ryzen 7 2700X 8-core
CPU (China) clocking at 3.70 Hz and 32 GB of RAM), using the optimization toolbox in MATLAB
R2018a (MILP optimization) (MathWorks, Natick, MA, USA) and Python (Q-learning and ANN).
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Figure 5. Profiles of electricity price and weather. (a) time-of-use (TOU) price; (b) solar photovoltaic (PV)
generation; (c) outdoor temperature.

5.2. Performance of the Proposed RL-Based HEMS Algorithm

In this subsection, we present the simulation of the algorithm for the proposed RL-based
HEMS, and verify the energy consumption schedule of the controllable appliances and ESS
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charging/discharging schedule. Figure 6a illustrates the energy consumption schedule calculated
by the WM agent. It can be observed from Figure 6a that, given the consumer preferred operation
period (6:00 a.m., 10:00 p.m.) with two consecutive operation hours (L = 2), the optimal operation
schedule for the washing machine was selected as (7:00 a.m., 8:00 a.m.). This scheduling policy
is considered as optimal because a washing machine operates at the lowest TOU price, which in
turn reduces the electricity bill, while satisfying the consumer preference. Figure 6c,d illustrate the
charging/discharging and SOE schedules for the ESS, respectively. Similarly to the result in Figure 6a,
it can be observed from Figure 6c that, in general, the charging (positive energy consumption) of
the ESS occurred at low TOU prices, whereas the discharging (negative energy consumption) of the
ESS occurred at high TOU prices, thereby leading to consumer energy savings. Furthermore, it can
be observed from Figure 6d that, as the price increased, the SOE decreased, and vice versa. This is
because a higher price results in the ESS discharging and hence the SOE decreases. For example, the
ESS discharged at 4:00 p.m. with the highest price in Figure 6c, which led to a decreasing SOE from 4
to 5:00 p.m. in Figure 6d. However, the ESS charged at 5:00 p.m. owing to the decreasing price, and,
consequently, the SOE increased from 5 to 6:00 p.m. Figure 6b illustrates the AC energy consumption
schedule. Compared to the results of the WM and ESS agents, we observe from this figure that a high
(or low) price did not always enable the AC agent to decrease (or increase) the AC energy consumption.
This is owing to the fact that the AC agent considers the consumer thermal comfort as well as the
electricity bill saving in the reward function.
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Figure 6. RL-based day-ahead operating schedule of appliance under TOU pricing tariff. (a) energy
consumption of washing machine (WM); (b) energy consumption of air conditioner (AC); (c) charging
and discharging of energy storage system (ESS); (d) state of energy (SOE) of ESS.
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In the Q-learning process for the AC agent, a higher penalty κ for the consumer thermal discomfort
led to a lower energy saving and vice versa. Regarding the trade-off between the energy saving and
consumer comfort in terms of κ, HEMS operators may adaptively adjust the penalty κ to situations
in which the consumer aims to save more on the electricity costs or maintain a more comfortable
environment. A detailed assessment of the impact of the penalty for the AC agent on the proposed
algorithm is presented in the following subsection.

5.3. Impact of Different Parameters in Reward Function on the Proposed Algorithm

In this subsection, we investigate the effects of the different penalties κ and preferred operating
time intervals [ω

pref
s , ω

pref
f ] in the reward function for the AC and WM on the performance of the

AC and WM agents. Figure 7a–c illustrate the impact of varying κ values (κ = 10, 50, 100) on the
indoor temperature Tin

t at any time period t given an outdoor temperature Tout
t . As indicated in

Figure 7a, when κ was set to 10, the indoor temperature exhibited a significant deviation from the
consumer preferred temperature range (23 ◦C, 25 ◦C) in most time periods. It can be observed from
Figure 7b,c that an increasing κ caused the indoor temperature to deviate less from the consumer
preferred temperature range. This observation derives from the fact that the AC agent with an
increasing κ aims to update the Q-value toward maximizing the satisfaction cost of the consumer
indoor thermal condition at the expense of the consumer electricity bill. The trade-off between the
energy saving and consumer comfort in terms of κ is verified by the comparison of Figure 7a–c and
Figure 7d–f. As expected, it is observed from Figure 7d–f that, as the value of κ increased, the AC
energy consumption also increased to maintain the consumer comfort.
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Figure 7. Cont.
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Figure 7. Impact of different penalties (κ) for AC scheduling on indoor temperature (Tin
t ) and energy

consumption (Ea,t). (a) Tin
t with κ = 10; (b) Tin

t with κ = 50; (c) Tin
t with κ = 100; (d) Ea,t with κ = 10;

(e) Ea,t with κ = 50; (f) Ea,t with κ = 100.

Figure 8a–c illustrate the effects of varying preferred operating time intervals of the WM on the
WM energy consumption. The results from these figures correspond to three different operating time
intervals, namely (6:00 a.m., 10:00 p.m.) (Figure 8a), (12:00 p.m., 10:00 p.m.) (Figure 8b), and (5:00 p.m.,
10:00 p.m.) (Figure 8c), where the finishing time ω

pref
f in each time interval was identically set to 10 p.m.

with varying starting time ω
pref
s (ωpref

s = 6:00 a.m., 12:00 p.m., and 5:00 p.m.). It can be observed from
Figure 8a–c that the optimal operating schedule of the WM was selected at the time periods with the
lowest TOU price within the preferred operating time interval. This observation confirms that the WM
agent could always determine the optimal policy to minimize the electricity bill successfully, provided
that the consumer preferred operating time interval changed.
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Figure 8. Impact of different preferred operating time interval [ωpref
s , ω

pref
f ] for WM scheduling on

energy consumption (Ea,t). (a) (6:00 a.m., 10:00 p.m.); (b) (12:00 p.m., 10:00 p.m.); (c) (5:00 p.m.,
10:00 p.m.).
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5.4. Impact of ANN on AC Agent Performance

In this subsection, we study the effect of the indoor temperature prediction using the ANN model
proposed in Section 4.2 on the performance of the proposed RL-based algorithm. Figure 9a,b compare
the AC energy consumption and indoor temperature obtained by the Q-learning process between the
ETP model and ANN models. This comparison verifies that the ANN model (Figure 9b) required
less energy consumption than the ETP model (Figure 9a). This is because the ANN assisted the AC
agent in learning the relationship between the indoor temperature and AC energy consumption more
accurately, and, consequently, the AC agent determined the optimal policy to achieve greater energy
savings. Furthermore, the proposed ANN approach is beneficial for HEMS operators in the following
manner. During the RL-based HEMS execution, the HEMS operators use only various data types for
the AC energy consumption, consumer preference, and weather forecasting without explicitly relying
on the model-based ETP equation with fixed environmental parameters (α and β in Equation (4)) for
the indoor thermal conditions. Therefore, the HEMS operators do not need to tune these parameters,
even though the household environment varies.
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Figure 9. RL-based day-ahead energy consumption schedule of air conditioner through indoor
temperature prediction using: (a) equivalent thermal parameters (ETP) model; (b) ANN model.

5.5. Performance Comparison between MILP- and RL-Based HEMS

In this subsection, we compare the performance of the proposed RL-based HEMS algorithm with
that of the MILP-based HEMS algorithm. Figure 10a,b illustrate the AC energy consumption using
the MILP model and RL model, respectively. It can be observed from these figures that the operation
periods for the WM were scheduled for (10 A.M., 11 A.M.) in the MILP model and (7 A.M., 8 A.M.) in
the RL model. Considering the TOU price, this shift in the WM operation periods provide the consumer
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with an energy saving of $80 with the RL approach, where the electric costs for the MILP and RL
models were $140 and $60, respectively. The comparison results of the ESS charging and discharging
schedule between between the MILP and RL models are presented in Figure 10c,d. Compared to the
charing and discharging schedule for the MILP model illustrated in Figure 10c, it is observed from
Figure 10d that the ESS charged and discharged a significant amount of energy, consequently achieving
an energy saving of $94.09 where the electric costs for the MILP model and RL models were −$193.91
and −$288, respectively. Moreover, it can be observed from Figure 10e,f that the RL approach reduced
the AC energy consumption more than the MILP approach, consequently leading to a reduction in
the electric cost of $228.28, where the electric costs for the MILP and RL models were $462.62 and
$234.34, respectively.
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Figure 10. Comparison of energy consumption and charing/discharging energy between mixed-integer
linear programming (MILP) and RL methods. (a) WM with MILP; (b) WM with RL; (c) ESS with MILP;
(d) ESS with RL; (e) air conditioner (AC) with MILP; (f) AC with RL.
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Figure 11a–c indicate a relative reduction in the total electricity bill in the RL model with varying
parameters according to the following index:

Xbill,MILP − Xbill,RL
p

Xbill,MILP × 100(%), (30)

where Xbill,MILP is the total electricity bill in the RL model using the MILP and Xbill,RL
p is the total

electricity bill using the RL where p represents a parameter including the preferred operating time
interval of the WM, ESS capacity, and penalty for the consumers preferred indoor thermal conditions
associated with the AC operation. It can be observed from these figures that the RL method could
achieve greater energy savings than the MILP model under the situation with varying parameters.
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Figure 11. Reduction in electricity bill with different operating conditions of appliances. (a) WM under
varying preferred operating time intervals; (b) ESS under varying capacity; (c) AC under varying
penalty parameters.

The results from Figure 11a indicate that the longer preferred operating time interval of the WM
enabled the WM agent to select the operating intervals efficiently, and the consumer to obtain greater
energy savings. As expected, as the ESS capacity increased, the ESS agent conducted additional energy
charging and discharging to reduce the electricity bill, which is verified by Figure 11b. It is also
observed from Figure 11c that the smaller penalty for the consumer preferred indoor thermal condition
led to a greater energy savings, where the AC agent minimized the WM electricity cost at the expense
of the consumer indoor thermal comfort.

Finally, Figure 12 compares the total energy consumption every hour between the MILP method
and the proposed RL method integrated with the ANN. It can be verified from this figure that the
energy consumption using the proposed approach was significantly reduced in the following three
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time periods: (3:00 a.m., 5:00 a.m.), (10:00 a.m., 12:00 p.m.), and (10:00 p.m., 12:00 a.m.). In this
simulation study, the relative electricity bill reduction of the proposed RL method compared to the
MILP method using Equation (30) was calculated as 14%.
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Figure 12. Comparison of hourly energy consumption schedule between MILP method and
RL methods.

6. Discussion

6.1. Wholesale and Retail Electricity Markets under Real-Time Pricing (RTP)

In this study, the proposed HEMS algorithm is executed under the TOU pricing tariff. However,
in electric power system operations, there is another pricing tariff such as real-time pricing (RTP). RTP,
namely locational marginal pricing, is the core variable to conduct the congestion management in the
wholesale and retail electricity markets [36,37]. Recently, a two-stage home energy management
algorithm has been developed under distribution locational marginal pricing [38]. In real-time
electricity markets, the results in [31] show that the value of RTP can be accurately forecasted by
ANN with various types of input data. Therefore, the ANN-based RTP forecasting module can be
integrated into the proposed Q-learning framework illustrated in Section 4 to manage the optimal
energy consumption of a smart home under the real-time electricity market environment.

6.2. Electric Vehicle (EV) Integration

Recent studies have investigated the joint optimization of electric vehicle (EV) and home energy
consumption scheduling [4]. However, these studies are limited to model-based SOE constraints
without conducting the travel pattern analysis of EV. To resolve this limitation, a key part in our
proposed approach would be to analyze the travel pattern of EV using ANN with historical travel
data such as arrival and departure times, the number of travels per day, and the travel distance. Then,
the modeling of the SOE dynamics of EV could be performed by the EV agent, which learns the
charging or discharging action depending on the SOE state of EV similar to the ESS agent process
illustrated in Section 4.

6.3. Constraint of the Lifetime for ESS

A lifetime of the residential ESS is an important constraint for the HEMS problem, and it is
expressed as the SOE range in terms of the number of the limited charging and discharging cycles of
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ESS [39]. A key part of this task would be to identify the proper limit of charging and discharging
cycles of ESS. To this end, one possible direction in the proposed framework is to add the limit of
charging and discharging cycles to dissatisfaction cost for the ESS agent. This enables the ESS agent
to determine the policy that maintains the number of charging and discharging cycles within its
acceptable range.

7. Conclusions

We have proposed a machine learning-based smart home energy management algorithm using
reinforcement learning and an artificial neural network. The proposed algorithm can minimize the
electricity bill through the energy consumption scheduling of two controllable home appliances (an air
conditioner and a washing machine) and the charging and discharging of the energy storage system,
while maintaining the consumer comfort level and appliance operation characteristics. In the proposed
Q-learning framework, the agents for a washing machine, an air conditioner, and an energy storage
system independently learn their actions through the interaction of an environment until they maximize
the total cumulative rewards received from the environment. The washing machine agent schedules
the energy consumption of the washing machine within the consumer preferred operation period.
The energy storage system agent calculates the charging and discharging energy while preventing the
overcharging and undercharging of the energy storage system. In the indoor temperature prediction
model constructed by an artificial neural network, the air conditioner agent performs the scheduling
for the energy consumption of the air conditioner while satisfying the consumer preferred indoor
temperature. The performance of the proposed algorithm was validated in the simulation study, and
the results confirm the economical advantages of the proposed approach compared to the existing
optimization approach using mixed-integer linear programming.

In future work, we plan to develop a multi-agent reinforcement learning algorithm that schedules
the energy consumption of multiple smart homes with distributed energy resources and smart home
appliances. A key challenge lies in how to design the efficient communication scheme between
multiple smart homes for achieving the energy savings and maintaining the consumer comfort level.
In addition, the practical implementation of the developed algorithm should be tested in large-scale
realistic electric power networks. Last but not least, we plan to integrate advanced neural network
models such as recurrent neural networks and long short-term memory in the proposed framework to
improve the prediction accuracy of the indoor temperature.
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Nomenclature

The main notations are summarized below. Other undefined symbols are explained in the text:

πt TOU price at time slot t
ε Penalty for consumer thermal discomfort cost
Ea,t Energy consumption of appliance a at time slot t
Enet

t Net energy consumption at time slot t
Emax(min)

a Maximum (Minimum) energy consumption of appliance a
Ech

a,t Charging energy of ESS a at time slot t
Edch

a,t Discharging energy of ESS a at time slot t
Ech,max(min)

a Maximum (Minimum) charging energy of ESS a
Edch,max(min)

a Maximum (Minimum) discharging energy of ESS a
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SOEa,t State of energy of ESS a at time slot t
SOEmax(min)

a Maximum (Minimum) state of energy of ESS a
ηch

a Charging efficiency of ESS a
ηdch

a Discharging efficiency of ESS a
ÊPV

t Predicted PV generation energy at time slot t
Tin

t Indoor temperature at time slot t
T̂out

t Predicted outdoor temperature at time slot t
Tmax(min) Maximum (Minimum) preferred indoor temperature
α, β Thermal characteristic for AC
Tset Consumer preferred indoor temperature

ω
pref
s Consumer preferred starting time for WM

ω
pref
f Consumer preferred finishing time for WM

bc,I
a,t Binary charging and discharging state of ESS a at time slot t: “1” for charging, “0” for discharging

bc,NI
a,t Binary consumption state of non-interruptible shiftable appliance a at time slot t:

“1” for consumption, “0” otherwise
st State at time slot t
at Action at time slot t
rWM

t Reward of WM agent at time slot t
rAC

t Reward of AC agent at time slot t
rESS

t Reward of ESS agent at time slot t
θ Learning rate in RL
γ Discount factor in RL
∆EAC Energy unit in discrete set of actions for AC agent
∆EESS Energy unit in discrete set of actions for ESS
δ(δ) Penalty for early (late) operation of WM in reward function
τ(τ) Penalty for overcharging (undercharging) of ESS in reward function
κ Penalty for consumer thermal discomfort cost in reward function
T Set of time slots
A Set of appliances
Ac

r Set of reducible appliances
Ac,NI

s Set of shiftable appliances with non-interruptible loads
Ac,I

s Set of shiftable appliances with interruptible loads
Auc Set of uncontrollable appliances
SWM Set of states for WM
SAC Set of states for AC
SESS Set of states for ESS
AWM Set of actions for WM
AAC Set of actions for AC
AESS Set of actions for ESS
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