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Abstract: In spatial data with complexity, different clusters can be very contiguous, and the density
of each cluster can be arbitrary and uneven. In addition, background noise that does not belong to
any clusters in the data, or chain noise that connects multiple clusters may be included. This makes it
difficult to separate clusters in contact with adjacent clusters, so a new approach is required to solve
the nonlinear shape, irregular density, and touching problems of adjacent clusters that are common in
complex spatial data clustering, as well as to improve robustness against various types of noise in
spatial clusters. Accordingly, we proposed an efficient graph-based spatial clustering technique that
employs Delaunay triangulation and the mechanism of DBSCAN (density-based spatial clustering of
applications with noise). In the performance evaluation using simulated synthetic data as well as real
3D point clouds, the proposed method maintained better clustering and separability of neighboring
clusters compared to other clustering techniques, and is expected to be of practical use in the field of
spatial data mining.
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1. Introduction

Spatial data mining, which not only intelligently extracts implicit and useful information from
a large amount of spatial data, but also considers spatial autocorrelation and heterogeneity, has
become increasingly necessary as the size of such data and the associated complexity increases [1].
After analyzing data without prior knowledge, such as the probability distribution or the number
of clusters, classification into similar groups is a key aspect of spatial data mining. For this, spatial
clustering must be initially performed. Spatial clustering considering geometric coordinate information
representing spatial properties is an analytical method that divides the whole dataset into groups using
the distance or similarity between the data. Spatial clustering analyzes geospatial data with different
characteristics and finds meaningful patterns or regularities in spatial data [2].

Since k-means [3] was proposed in 1967, numerous studies have been carried out regarding
spatial data analysis. In particular, as computer hardware has developed rapidly since the 1990s
and machine learning/pattern recognition has grown steeply, spatial clustering techniques with
excellent performance have begun to emerge. Among them are density-based clustering [4–7], which
calculates density according to neighboring data, and graph-based clustering [8–10], which extracts
corresponding points using a mathematical model through an affinity matrix. These techniques
show excellent performance in detecting not only clusters with uniform data distribution and ideal
shapes, but also clusters with some nonlinearity, and have been applied to various fields such as traffic
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accident analysis [11], seismic analysis [12,13], image segmentation [14], and three-dimensional object
modeling [15] based on sensor information.

However, clustering methods still have limitations when faced with datasets that differ in size,
shape, density, noise, and outliers [16]. Most of the spatial clustering methods proposed in previous
studies are based on geometric attribute such as distance, shape, and density, which is later compared
with the threshold value to determine whether it is included in the cluster. These methods are not
easily applied to complex spatial data, although the results are relatively easy to interpret and the
computation process is simple [17]. Within spatial data with complexity, different clusters can be very
contiguous, and the density of the data forming the cluster can be anomalous and arbitrary. In addition,
background noise that does not belong to any clusters in the data, or a touching issue, e.g., multiple
bridges, neck problem, and adjacent problem (see Figure 2), that connects multiple clusters may be
included [18]. This makes it difficult to separate adjacent clusters as one cluster can be divided into
several small clusters, or all of the spatial data can be recognized as one cluster [19]. As a result,
meaningful data are judged as noise or outliers, which can have a serious effect on the performance of
clustering. There is now a need for a solution to the various problems arising from the complexity of
spatial data.

K-means, PAM (Partitioning around medoids) [20], and CLARANS [21] when applied as
a partitioning clustering method perform clustering in the direction of minimizing the distance
between the spatial data and the centroid of the clusters based on the number of pre-assigned clusters.
Although these methods are relatively simple and highly efficient, they are applicable only when
the clusters are spherical or similar in size, which limits the spatial data clustering. BIRCH [22], as
a hierarchical clustering scheme, groups individual entities sequentially or hierarchically and performs
clustering based on the distance and similarity of the data—clusters with relatively different shapes and
sizes can be handled by separating them according to the layers, but this approach is also vulnerable to
nonlinear spatial data clustering.

To overcome such limitations of nonlinear clustering through these existing methods, DBSCAN [23]
was proposed to cluster based on the density of neighbors, and various density-based clustering
techniques such as OPTICS [24] and DENCLUE [25] were derived. They can cluster any geometric
clusters with nonlinearity to a good level and are very robust to background noise and anomalies.
However, for example, if spatial data consisting of the clusters that are too close to each other or
composed of irregular densities, as shown in Figure 1, this negatively impacts clustering performance.
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Figure 1. Examples of clusters with uneven densities. (a) represents a database with clusters of various 
densities; (b) shows clusters with uneven densities. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Examples of the touching problem. (a) the neck problem; (b) the chaining problem; (c) the 
adjacent problem. 

  

Figure 1. Examples of clusters with uneven densities. (a) represents a database with clusters of various
densities; (b) shows clusters with uneven densities.

In a relatively recent study, graph-based clustering techniques such as spectral clustering (SC) [26],
AUTOCLUST [27], and AMOEBA [28] have been proposed to show that clusters with uneven densities
can be successfully separated in spatial data, ensuring robustness against background noise. However,
there are still limits due to the touching problem and chain noise, as shown in Figure 2. Although
many studies have been conducted, they have had a negative impact on clustering performance due to
their inherent limitations when applied to complex spatial data. In particular, density and graph-based
clustering techniques are excellent for nonlinear clustering, i.e., irregular densities and noise problems
that exist throughout the data. However, they are not only susceptible to noise such as with the
chaining problem, but also have difficulty separating clusters when in contact with adjacent clusters.
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Figure 2. Examples of the touching problem. (a) the neck problem; (b) the chaining problem; (c) the
adjacent problem.

Thus, we propose Delaunay triangulation-based spatial clustering of application with noise
(DTSCAN), which can overcome low-level robustness against noise, mitigate the difficulties of
separating adjacent clusters, and smoothly detect clusters of various density characteristics and
geometric shapes. DTSCAN is a graph-based spatial clustering technique that employs Delaunay
triangulation, which is a common tool in geometric spatial analysis, and the concept of neighboring
objects is used in DBSCAN’s clustering mechanism. Although clustering techniques using triangulation
have already been implemented in some studies, DTSCAN differs somewhat compared to existing
techniques. The proposed strategy assumes an undirected graph consisting of vertices and edges
of triangles generated by triangulation. The length of the edge and the area of a triangle are then
normalized using the z-score to suppress the nodes connected to adjacent clusters and noise existing
in the generated graph, and the unnecessary components are sequentially removed by selecting
an appropriate threshold value. In the clustering phase, a new approach to clustering based on the
density of neighbors in the graph is attempted using DBSCAN’s clustering mechanism to ensure
robustness against the chaining problems and the adjacency problems of clusters.

To verify the performance of the proposed DTSCAN, virtual two-dimensional spatial data and
three-dimensional point clouds from LiDAR collected by an actual driving ground vehicle were utilized.
Experimental results showed that it can achieve superior clustering and separability of neighboring
clusters in complex spatial data compared to existing techniques, and is expected to be of practical use
in the field of spatial data mining.

2. Delaunay Triangulation

Triangulation applied to computational geometry divides multidimensional data consisting of
polygons and polyhedral into triangles or tetrahedrons that share only the vertices of the adjacent
region or only the low dimensional plane. Triangulation is treated as part of a proximity search or entity
partitioning depending on the nature of the object that needs to be partitioned. Although the triangles
have the same number of components, they have different properties depending on the partitioning
technique such as satisfying certain properties and optimizing the objective function.

Delaunay triangulation splits the space by connecting the points on the plane with triangles
so that the minimum value of the internal angles of these triangles is maximized, and each of the
divided triangles is nearly an equilateral triangle [29]. The divided triangles exhibit similarity with
adjacent objects, which determine the data distribution characteristics. Because of these characteristics,
Delaunay triangulation is widely used not only in computer geometry, but also in computer vision,
pattern recognition, and data mining.

Given a finite N point set Q =
{
p1, · · · , pN

}
⊆ R2, consisting of spatial data points of pi =

{
xi, yi

}
∈ Q,

its Delaunay triangulation is DT(Q) = {T1, · · · , TH}. Here, T is a set of vertices of a triangle corresponding
to the elements of the spatial point set, Q, and the number of triangles, H, is at most 2N − 2 according
to the point data distribution. Note that any point of Q should not be included in the circumscribed
circles surrounding any triangle belonging to DT(Q). This verification process is at the core of the
Delaunay triangulation, and various segmentation techniques are derived, depending on the data
structure, dimensions, and computation speed. Let a set of arbitrary points be Q = {Pa, Pb, Pc, Pd} on
a two-dimensional plane as shown in Figure 3. The existence of Pd within the circumcircle of a triangle,
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Pa−c, can be generally detected by evaluating the determinant of Eq. (1); when the triangle is aligned in
a counterclockwise order, point Pd lies inside the triangle’s circumcircle if and only if the determinant
of Equation (1) becomes positive. 

xa ya x2
a + y2

a 1
xb yb x2

b + y2
b 1

xc

xd

yc

yd

x2
c + y2

c 1
x2

d + y2
d 1
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3. Density-Based Spatial Clustering using Delaunay Triangulation

DTSCAN extends all of the edges Edges(DT(Q)) = {E1, · · · , EK} and vertices Vertices(DT(Q)) =

{V1, · · · , VK} based on the triangulation to a graph-based clustering technique as an undirected network.
Here, K is 6N − 6 at maximum. Applying Delaunay triangulation to simulated spatial data with seven
clusters, as shown in Figure 4a, a graph is obtained, as seen in Figure 4b. As a result of segmentation,
the triangles located at the outer periphery of the cluster or located between different clusters are
formed as triangles with relatively wide or long nodes. The triangles inside the clusters, on the other
hand, vary depending on the cluster density, but are generally dense so that the area is small or the
edges are short. In this case, triangulation further removes the unnecessary components constituting
the graph after taking the standard score of the area and the length of edges of the divided triangle as
parameters [30]. To do this, the mean and variance of not only the areas, Area(DT(Q)) = {A1, · · · , AH},
but also the edge lengths, Length(DT(Q)) = {L1, · · · , LK}, of all of the triangles are computed and
applied to Equations (2)–(3).Sensors 2019, 19, x FOR PEER REVIEW 5 of 13 
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This section may be divided by subheadings. It should provide a concise and precise description of
the experimental results, their interpretation as well as the experimental conclusions that can be drawn.

AreaZ =
Areamean(DT(Q)) −Area(DT(Q))

(Areavar(DT(Q)))
(2)

LengthZ =
Lengthmean(DT(Q)) − Length(DT(Q))

Lengthvar(DT(Q))
(3)
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Finally, after eliminating unnecessary node components from the optimal value for the data
distribution characteristic, we have the graph shown in Figure 4c. It can be seen that some noise
components existing in the data have been removed by a threshold based on a standard score calculated
from Equations (2) and (3), however, the touching problem and chain noise still remain to some degree.
These points are locally formed with a wide triangle or a long side, and have a low density with a small
number of connected nodes compared to other points.

The proposed DTSCAN utilizes the existing DBSCAN clustering mechanism to form clusters by
calculating the density with neighbor nodes based on the spatial density to remove these connection
components and detect clusters without loss of data. DBSCAN is a clustering method based on
the density of neighboring data, unlike clustering based on the data distribution. It is suitable for
processing spatial data, including noise, and can distinguish clusters of various shapes and sizes.
The graph-based DTSCAN does not take into account the minimum adjacent radius of the DBSCAN
parameters. However, only a minimum number of neighboring nodes, MinPts, is defined to search
neighboring nodes connected to themselves around an arbitrary node inside the graph, which is
regarded as a cluster. DTSCAN is designed to form a cluster if the number of neighboring nodes is more
than MinPts and to perform the same tests around adjacent nodes to extend the cluster. The clustering
process of DTSCAN is summarized as follows:

1. A neighboring node of point pi in a triangle is a set of edge graphs directly connected to pi.
2. If the number of elements in the set of connected neighboring nodes is greater than or equal to

MinPts, it is included as one cluster, Cq.
3. (1)–(2) is repeated for neighboring nodes of point pi and the cluster is expanded by searching for

neighboring nodes.
4. Points without connection nodes are classified as noise or anomalous points.

The aim of this study is to overcome the limitations of existing clustering techniques in a complex
spatial data space and to devise a more advanced spatial clustering technique, especially considering
touching problems. Assuming that MinPts is 6 in the illustrated example of Figure 4, C1 is included
in a certain cluster, but C2 and C3 do not satisfy the MinPts condition and are moved away from the
cluster, as shown in Figure 5a,b, such that we can obtain improved clustering implementation results
through the proposed DTSCAN, as shown in Figure 5c.
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4. Experimental Results

To evaluate the performance of the proposed DTSCAN method, three sets of virtual
two-dimensional spatial data and three-dimensional point clouds collected from a LiDAR mounted
on an actual terrestrial vehicle were utilized [31–33]. Two-dimensional spatial data were selected as
a data set including uneven density characteristics, various cluster shapes, and noise, and the images
included in the KITTI benchmark-object detection were used as point clouds, where the pedestrians
assigned to the class were selected on an object-by-object basis [34].

The purpose of spatial data clustering is to divide the whole into a meaningful group using
distance or another similarity metric. To evaluate the performance of the proposed clustering technique,
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we employed the concept of the point score range (PSR), used as an index of 3D spatial data clustering
performance in [35]—this value represents the degree of similarity between clusters with an intersection
ratio, and the similarity for the jth cluster is expressed by Equation (4).

PSR( j) = max
i∈1,...,M

O j ∩Ci(
O j ∪Ci −

(
O j ∩Ci

)) (4)

where O j is an index of a pre-assigned jth data set, and Ci is an index value of data belonging to an ith
cluster derived through DTSCAN. When all clusters are compared in a one-to-one correspondence,
the set with the highest PSR is defined as the jth cluster. In addition, we used the variation score
range (VSR) defined by Equation (5) with the variance of clusters derived from the PSR for cluster
similarity analysis.

PSR( j) = max
i∈1,...,M

O j ∩Ci(
O j ∪Ci −

(
O j ∩Ci

)) (5)

To compare the performance of DTSCAN, five clustering techniques actively used in spatial data
mining were adopted. They are k-means based on Euclidean distance, CURE, which is a hierarchical
clustering scheme, EM [36] using the Gaussian probability distribution model, DBSCAN on the basis
of the analysis of the data density between neighbors, and SC, which is a graph-based technique.
K-means, CURE, and EM, which require a pre-cluster number, were actively searched by applying the
Elbow [37] method used for cluster verification and analysis, and the internal parameters of CURE,
DBSCAN, and SC were selected and optimized for the evaluation data.

4.1. Performance Evaluation with 2D Synthetic Data

The performance of the proposed spatial clustering methodology was first evaluated based
on a dataset with three types of 2D simulation, S = {S1, S2, S3}. Figure 6a shows synthetic data
set S1 according to the pre-assigned cluster information, and can confirm complicated spatial data,
including data sets experiencing the contact problem and nonlinearity. The performance comparison
results between the proposed DTSCAN and other clustering schemes are summarized in Table 1
and demonstrated in Figure 6b–f. The proposed DTSCAN showed superior clustering performance
compared to other clustering schemes, and successfully classifies all seven clusters in S1 data. Since
only one data point was not included in any cluster, the average of the total PSR and VSR was as
high as 0.999. In the case of k-means and EM, clusters close to a circle shape were classified relatively
successfully, but clusters with a nonlinear shape, or in which contact problems exist, were not classified,
so that one cluster divided into several or adjacent clusters was considered as one single cluster.

As a result, the PSR was a low value and the VSR was a value somewhat far from 1. On the
other hand, DBSCAN, CURE and SC succeeded in categorizing all clusters at almost the same level
as DTSCAN. However, very few data located outside the clusters were considered as noise and
slight performance degradation occurred. Figure 7a shows data set S2 used for another performance
evaluation according to the previously given cluster information. As shown, other clusters are included
in one circular cluster; each cluster has different densities and can be defined as complex spatial data
similar to S1. The test results comparing the proposed DTSCAN and other clustering schemes are
summarized in Table 2 and are shown in Figure 7b–f. The results shown in the test evaluation based
on the S2 data set were very remarkable. DTSCAN was the only one that successfully classified all
three clusters that other techniques could not classify. Some of the data with contact problems were
regarded as noise and adversely affected clustering performance, but the PRS of DTSCAN was the
highest and the VSR was very close to 1. For k-means, CURE, and EM, the PSR is less than 0.7 and the
VSR is farther from 1 due to the limitations of a distance-based clustering architecture. In the case of
DBSCAN, the shape of the cluster was implemented similar to DTSCAN so that the VSR was formed
to be relatively close to 1, but the contact problem and the failure of the outermost section of the data
cluster caused the PSR to be as low as 0.7.
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Table 1. Comparison of clustering performance using a data set, S1, in terms of PSR and VSR.

Clustering Scheme K-Means EM DBSCAN CURE SC DTSCAN
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Table 2. Comparison of clustering performance using a data set, S2, in terms of PSR and VSR.

Clustering Scheme K-Means EM DBSCAN CURE SC DTSCAN

Avg. PSR 0.635 0.552 0.739 0.624 0.651 0.934
Avg. VSR 0.581 1.603 0.938 1.482 1.446 0.959
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Figure 8a shows the evaluation data, S3, in accordance with pre-assigned cluster information,
which seems rather simple, but the two clusters are adjacent to each other and have a nonlinear
shape. In addition, the density of data constituting each cluster is different from each other, and in
particular, the density at the top of the cluster is very uneven. The performance evaluation results of
the proposed DTSCAN and other clustering schemes are listed in Table 3 and illustrated in Figure 8b–f.
As with the clustering results of S2 data, all other clustering techniques except DTSCAN and SC did
not successfully find two clusters in the data. In the case of DBSCAN, the clusters at the bottom were
successfully separated, but the upper clusters failed to cluster because of the uneven density inside.
As a result of the performance evaluation using all these two-dimensional synthetic data, the superior
performance of the proposed DTSCAN was demonstrated.Sensors 2019, 19, x FOR PEER REVIEW 9 of 13 
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Table 3. Comparison of clustering performance using a data set, S3, in terms of PSR and VSR.

Clustering Scheme K-Means EM DBSCAN CURE SC DTSCAN

Avg. PSR 0.428 0.752 0.864 0.734 1.000 1.000
Avg. VSR 0.274 1.245 0.849 1.022 1.000 1.000

All experiments were performed based on Matlab 2019a / CPU: i7-7700, and the average operation
speed of DBSCAN, SC, and DTSCAN was at 5ms, 70ms, and 700ms, respectively, in the tests using 2D
synthetic data (S1, S2, S3). Preprocessing such as triangulation and global/local effect elimination need
to be preceded, which requires a relatively high computational amount. Nevertheless, it would be
very useful in clustering applications that require high noise robustness.

4.2. Performance Evaluation using 3D Point Clouds

To verify the applicability of the proposed DTSCAN in a real environment, we performed
an additional performance evaluation of the object separation problem of 3D point clouds collected
from LiDAR. Importantly, 3D point cloud data can be considered sparse data in Euclidean space and
contain information about various terrains as well as objects. However, clusters representing the shape
of objects are irregular and have arbitrary pattern features, which is an inherent limitation of LiDAR,
making it more difficult to detect and isolate the boundaries of neighboring objects in the presence of
various internal/external environmental factors [38].
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The KITTI vision benchmark suite used for performance verification is a set of data for computer
vision research on autonomous driving, including pedestrians utilized in this study as well as various
objects such as cars and trains. However, due to the limitations of the driving distance and parking
safety distance, the distance between vehicles should be maintained at a minimum of 0.8–1 m. Because
of this, it is observed with a specific pattern of ‘L’ or ‘I’ shape [39], so separation and adjacent boundary
detection is relatively easy and has not been utilized in performance tests. For evaluation, 10 single
objects within a detection distance of 15 m were randomly extracted from the data set. Then, two objects
were arbitrarily selected and preprocessed in the form of zero mean and unit variance, and then divided
into three levels so as to be placed close to each other. Figure 9 shows the 20 evaluation data created.
The three proximity levels of the two objects were defined by shifting the mean value by a factor of λ,
giving the change of the coordinate value with respect to the center point of the x-y plane of the object.
The case where the distance between objects is the farthest is level 1 (λ = 4), and the closest case is level
3 (λ = 1).Sensors 2019, 19, x FOR PEER REVIEW 10 of 13 
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Figure 9. Pedestrian 3D point clouds extracted from KITTI dataset.

Table 4 compares the performance evaluation results of the proposed DTSCAN and DBSCAN
according to the three proximity levels of two persons, and Figure 10 shows some data used in
the evaluation alongside their object separation results. Compared with DBSCAN, the proposed
DTSCAN showed excellent performance irrespective of object distance according to the evaluation
level. In particular, the higher the level, the lower the PSR due to contact problems, but the VSR
representing the data distribution maintained close to 1. On the other hand, DBSCAN showed similar
performance to DTSCAN when the evaluation level was low, but all indices were lowered as the
distance between objects became lower, especially VSR, which was significantly lowered.

Table 4. Comparison of clustering performance using 3D point clouds in terms of PSR and VSR.

SC DBSCAN DTSCAN

Level 1
Avg. PSR 0.97 0.96 0.98
Avg. VSR 1.14 0.91 0.96

Level 2
Avg. PSR 0.86 0.87 0.89
Avg. VSR 0.89 0.81 0.93

Level 3
Avg. PSR 0.69 0.68 0.77
Avg. VSR 1.29 0.59 0.89
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5. Conclusions

As the fields of machine learning and pattern recognition have grown steadily, space clustering
techniques with superior performance have begun to emerge. These techniques have shown that
not only clusters with uniform data distribution and an ideal shape, but also clusters with nonlinear
appearance have excellent separation performance, and can be applied in various fields. However,
some issues still need to be addressed for efficient spatial data clustering. In spatial data with complexity,
different clusters can be very contiguous, and the density of each cluster can be arbitrary and uneven.
In addition, background noise that does not belong to any cluster in the data or chain noise that
connects multiple clusters may be included. These features make it more difficult to isolate adjacent
clusters, so a new approach is required to solve the nonlinear shape, irregular density, and touching
problems of adjacent clusters that are common in complex spatial data clustering, as well as to improve
robustness against various types of noise in spatial clusters. We thus proposed an efficient way to
cluster spatial data based on Delaunay triangulation and the mechanism of the existing DBSCAN. In the
performance evaluation using simulated synthetic data as well as real 3D point clouds, the proposed
technique maintained better clustering performance compared to other clustering techniques and
detected all clusters in the data without loss. In particular, the experimental result using point clouds
demonstrated that the proposed architecture is superior to DBSCAN in terms of the contact problem
with adjacent clusters and the chain noise. In the near future, we plan to extend this technique to
include non-spatial properties that can lead to in-depth analysis, and apply it to large-scale spatial data
such as GPS or earthquakes, and to confirm the applicability of the proposed technique and develop it
as a generalized clustering model.
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