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Abstract: Portable box volume measurement has always been a popular issue in the intelligent
logistic industry. This work presents a portable system for box volume measurement that is based
on line-structured light vision and deep learning. This system consists of a novel 2 × 2 laser line
grid projector, a sensor, and software modules, with which only two laser-modulated images of
boxes are required for volume measurement. For laser-modulated images, a novel end-to-end deep
learning model is proposed by using an improved holistically nested edge detection network to
extract edges. Furthermore, an automatic one-step calibration method for the line-structured light
projector is designed for fast calibration. The experimental results show that the measuring range of
our proposed system is 100–1800 mm, with errors less than ±5.0 mm. Theoretical analysis indicates
that within the measuring range of the system, the measurement uncertainty of the measuring
device is ±0.52 mm to ±4.0 mm, which is consistent with the experimental results. The device size is
140 mm × 35 mm × 35 mm and the weight is 110 g, thus the system is suitable for portable automatic
box volume measurement.
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1. Introduction

Box volume measurement is important for many sectors, including logistics, transportation,
and production, and it can assist in designing, packaging, and allocating strategies. Fast, intelligent,
accurate, and automatic volume measurement can improve efficiency and reduce labor intensity.
User-friendly and cost-effective systems are also vital for box volume measurement.

As previously mentioned, a practical measurement system for box volume should have the
following characteristics: (1) relatively small to be handled gracefully, (2) wide measuring range,
(3) high measurement accuracy, (4) stable and robust, and (5) easy to use and flexible.

At present, the research hotspots of large-scale measurement methods with three-dimensional
(3D) geometric dimension focus on non-contact 3D measurement methods based on computer vision
technology. This method has a rigorous theoretical basis, a large range of elasticity, high measurement
accuracy and efficiency, no rigid requirement for the spatial relationship between the measuring device
and measured object, good robustness, and non-contact measurement. Thus, this method is a feasible
solution for solving large-scale 3D geometric measurement.

With the development of computer vision technology, object volume can be calculated while using
new technology and sensors [1–3]. Many advanced sensors, such as stereovision, time-of-flight (ToF)
camera, and structured-light vision sensor, can represent spatial and color information from natural
objects, thereby playing a crucial role in the development of industrial automation measurement.
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A method for the dimension measurement and inspection of cuboidal objects (boxes) with a ToF
camera was described in [4], with an average error of 5 mm. The same ToF camera was used in [5]
to build a system for computing the volume of cuboidal objects with an accuracy of 8 mm. The ToF
technology can obtain depth information in real time by calculating the time that it takes for a pulse of
energy to travel from its transmitter to the object surface and then back to the receiver. The ToF camera
technique, due to its robustness and popularity, has been widely studied and applied in industries [6,7].
The dimensional measurement methods for objects that are based on stereovision have also been
widely used. A stereovision technique for accurately measuring the distance and size (height and
width) of an object in view was introduced in [8]. Ge et al. [9] proposed a method of broccoli seedling
recognition in natural environments based on binocular stereovision. As binocular cameras heavily
rely on image feature matching, the effect is poor under dark or overexposed lighting. In addition, if
the measured scene lacks texture, then extracting and matching the features are difficult. In addition,
a binocular stereocamera uses complex correlation algorithm, which is time consuming. The depth
calculation of ToF is unaffected by the grayscale and features of the object surface, and the ToF can
accurately perform 3D detection. The depth calculation accuracy of ToF does not change with the
change in distance. The measurement accuracy can reach the mm level by using an advanced ToF
camera and algorithm, as previously mentioned [4,5].

Recently, the technique of computer vision and structured light (SL) measurement has been widely
applied in many fields of high-precision measurement, due to its simple structure. Triangulation-based
visual sensors are popular for measurement in various industries. They have many advantages, such
as non-contact, high-precision, rapid, and automated measurements [10–13]. Fernandes et al. [14]
presented an approach that is based on projective geometry; they computed the box dimensions by
using data that were extracted from the box silhouette and the projection of two parallel laser beams on
one of the imaged faces of the box. Wang et al. [15] proposed a handheld 3D laser scanning system that
consists of a binocular stereovision and line laser projector for measuring large-sized objects on site.
Pan et al. [16] proposed a wheel size measurement framework that is based on a structured-light vision
sensor, which has high precision and reliability and is suitable for highly reflective conditions. In the
present study, we develop a novel volume measurement system for a box that contains high-resolution
color digital cameras and line-structured lights and that works indoors and outdoors. Figure 1c shows
the designed device for box volume measurement. The device size is 140 mm × 35 mm × 35 mm and the
weight is 110 g, thereby easily meeting the requirements of stability and portability. The line-structured
light projectors emit laser planes onto the box face, and the laser planes intersect with the face of the
measured box and form laser stripes in the laser-modulated image. As the face of the measured box
modulates the laser stripes, the image processing algorithm can calculate the dimension information
of the box on the basis of the laser triangulation principle and some key points. Thus, our method
calculates the volume of boxes from two laser-modulated images (two adjacent faces of the box), and
the technique mainly includes two aspects: (1) calibration technology of the vision sensor and (2) the
extraction of the box silhouette to obtain the key points from the laser-modulated images.
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The measuring range and precision can be settled by studying the calibration algorithms [17–25].
Silhouette extraction is another key issue for laser-modulated image processing. Figure 1a,b show the
differences in the appearances of boxes and backgrounds. Therefore, we need a robust algorithm to
extract edges for laser-modulated images. The vigorous development of deep learning provides us
with possible solutions. The deep fully convolutional neural network (FCNN) [26] has been proposed
as a solution to similar problems. FCNN has reached the level of human beings in multi-level edge
and target boundary detections in natural images [27,28], which leads to a breakthrough in semantic
segmentation [29]. Song et al. [30] proposed an algorithm for detecting building corners in aerial
images by training a DeepLab network; they achieved excellent results. Xie et al. [31] developed an
efficient and accurate edge detector, namely, holistically nested edge detection (HED), which performs
well in edge detection tasks. Inspired by HED, the present study trains an end-to-end deep learning
model for the laser-modulated image by adopting an improved holistically nested edge detection
(IHED) network.

This work presents an approach for computing the box volume from only two laser-modulated
images in a completely automatic manner. The method uses information that was extracted from the
structure edges of the measured boxes, which can be computed when at least two of their faces are
projected by the laser projector. We demonstrate this approach by developing a prototype visual sensor
for calculating the box volume online (Figure 1c).

The main contributions of this study are as follows:

1. Visual sensor. A portable mechanical structure for box volume measurement is proposed with an
accuracy of ±5.0 mm and measuring range of 10–1800 mm (Sections 2 and 3.1).

2. Box volume measurement algorithm. A novel algorithm for calculating the box volume in a
completely automatic manner online is presented (Section 3.2).

3. Calibration. A novel calibration method for the automatic calibration of our system is proposed.
This method performs camera and laser projector calibrations in a single step, thus avoiding the
digitalization of a reference sphere to obtain extrinsic parameters (Section 3.3).

4. Edge detection. A total of 40,000 labeled laser-modulated images are collected. With this box
edge detection database, a novel end-to-end deep learning architecture that is based on IHED is
proposed and it has achieved excellent performance (Section 3.4).

The paper is organized, as follows. Section 2 presents a brief overview and operating instructions
of the visual sensor of the system. Our new approach for measuring the box volume is investigated
in detail in Section 3. The experimental results and discussions are presented in Section 4. Finally,
conclusions are drawn in Section 5.

2. Overview

Figure 1c displays the proposed system. High-precision sensors and strict measurement rules
achieve high-accuracy measurement. Figure 2b shows the measurement method of the visual sensor
and measured box. The detailed workflow is listed, as follows:

1. Solving parameters: Before using the system, we obtain the parameters by using our calibration
method (Section 3.3).

2. Data collection: The visual sensor connected to a portable mobile device is used. Two images of
any two adjacent faces of the box are obtained. The four modulated laser stripes should intersect
the four edges of the box face, as shown in Figure 2c,d.

3. Volume measurement: The system will automatically process the collected images and then
obtain the box length, width, and height. Finally, the system automatically obtains the volume of
the measured box.
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Figure 2. Schematic of the measurement system and two images captured by the system; (a) the box
model; (b) the measurement method of the visual sensor and measured box; (c,d) the captured images
for the measured box.

The regular logistics box volume is an important indicator of the freight that was collected in the
logistics industry. The box length, width, and height should be measured to determine the box volume.
Certain difficulties exist in volume measurement system, which are reflected in the following four
aspects: (1) The environment inside the distribution center is complex and it suffers from different
illumination information (Figure 3a,c,g,h). (2) Logistics boxes have varied sizes, and the box length
ranges from 10 mm to 1800 mm (Figure 3a,b,e,f,j). (3) Laser-modulated images are influenced by
variations in box materials, color, and appendages (Figure 3b,d,f,h,i). (4) Non-contact and portable
measurements are required.
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Figure 3. Images that are captured by our device in the distribution center; (a–j) show the different
images captured by our system.

To solve the abovementioned problems, we model the boxes as parallelepipeds, as shown in
Figure 2a. The volume of a parallelepiped can be calculated while using the 3D coordinates of the
vertices with two arbitrary adjacent faces of the box. The 3D coordinates of a box’s face can be obtained
on the basis of the intersection of the laser lines and the edges of the box’s face. Thus, the edge of the
laser line and box edges on the laser-modulated images must be extracted before we can calculate
the volume of the measured box (Section 3.4), and then the equations of the laser planes of the laser
projector and the camera parameters must be obtained (Section 3.3).

Our portable system for box volume measurement that is based on line-structured light vision and
deep learning only requires two laser-modulated box images for the measurement. Figure 4 depicts
the scheme behind the proposed solution. Before the measurement, we obtain the parameters by using
our calibration method and write the parameters to the device. We input the two laser-modulated
images into the designed network to generate the edge probability map. Subsequently, we obtain the
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coordinates of key points of the box face through a simple image processing of the edge probability
map. We can obtain the box volume combined with the calibration parameters and key points.Sensors 2019, 19, 3921 5 of 24 
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3. Mathematical Modeling

3.1. Design of the Visual Sensor Measurement System

The portable volume measurement system that was proposed in this work consists of a 2 × 2
laser line grid projector and high-resolution camera, as shown in Figure 5b; it has a low computational
cost. Table 1 lists the detailed parameters of the visual sensor. The size of the designed device is
140 mm × 35 mm × 35 mm, and the weight is 110 g. The baseline length of the device is 120 mm,
thereby easily meeting the requirements of stability and portability. Furthermore, connection to other
mobile devices, such as a mobile phone or pad, is convenient.
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Figure 5. (a) Measurement schematics of the proposed volume measurement system; and, (b) volume
measurement device that we designed.

Figure 5a presents the measurement schematics of the proposed volume measurement system.
Ow −XwYwZw is the world coordinate system (WCS), and Oc −XcYcZc is the camera coordinate system
(CCS). The laser stripes are projected onto the box face through a laser projector. The camera captures
the laser stripes that are modulated by the box faces. Afterwards, the laser-modulated images are
captured. However, the four modulated laser stripes must intersect the four edges of the box faces.
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Table 1. Detailed parameters of the experimental equipment.

Device Picture of Real Products Parameters Number

Digital color camera
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CCD: S-YUE, 1/1.8”
Resolution: 2592 (H) × 1944 (V)
Pixel size: 4.4 µm × 4.4 µm
Frame rate: 15 fps
Focal length: 3.6 mm
Signal-to-noise ratio: 50 db
Field of view: 71.9◦ × 60.4◦

Size: 32 × 32 × 22 mm
Operation temperature: −20 ◦C–60 ◦C
Shooting distance: 50 mm~inf.

1 pcs

Laser line projector
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Power: 10 mW (adjustable)
Focal length: adjustable
Wavelength: 635 nm
Size: φ5 × 20 mm
Fan angle: 60◦

temperature: −20 ◦C–60 ◦C

4 pcs

3.2. Geometric Model

Camera mapping coordinate points in a 3D world to a two-dimensional (2D) image plane can be
described while using a pinhole model [32]. Figure 6 shows the perspective projection relationship
between 3D space point and 2D image point in the pinhole camera model.
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temperature: −20 °C–60 °C 
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3.2. Geometric Model 

Camera mapping coordinate points in a 3D world to a two-dimensional (2D) image plane can 
be described while using a pinhole model [32]. Figure 6 shows the perspective projection relationship 
between 3D space point and 2D image point in the pinhole camera model. 
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Figure 6. Perspective projection model of the visual sensor.

The projection from a 3D point P(xw, yw, zw) in the WCS to a 2D image point p(u, v) in the image
plane is expressed by the following equation:

ρ


u
ν
1

 =

α δ u0 0
0 β ν0 0
0 0 1 0


[

R T
OT 1

]
Xw

Yw

Zw

1


R =


r1 r2 r3

r4 r5 r6

r7 r8 r9

, T =


Tx

Ty

Tz

, A =


α δ u0

0 β v0

0 0 1


, (1)

where T and R represent the translation vector and rotation matrix from the coordinate system to the
CCS, respectively. α an β are the scale factors in u and v axes of the camera, respectively, and δ is the
skew of the two image axes. ρ is a nonzero factor, and (u0, v0) is the principal point.
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The rotation matrix R and translation vector T, which translate to a 3D point Pc(xc, yc, zc) in the
CCS, encapsulate the camera orientation and position. The transformation relation of the CCS to the
image coordinate system can be shown as

ρ


u
ν
1

 =

α δ u0

0 β ν0

0 0 1




Xc

Yc

Zc

, (2)

Equation (2) shows the expression of a straight line in space, which connects the point in CCS
with the point in the image plane. Practically, radial and tangential distortions of the lens are inevitable.
In our practical engineering application, the tangential distortion of the lens has a minimal effect on
the result. In this study, we only consider the radial distortion and we have the following equations:{

x = x(1 + k1r2 + k2r4)

y = y(1 + k1r2 + k2r4)
, (3)

where r2 = x2 + y2, (x, y)T is the distorted image coordinate and (x, y)T is the idealized one. k1 and k2

are the radial distortion coefficients of the lens.
The laser light plane that is emitted from the visual sensor intersects with the box face and forms

laser stripes in the image plane captured by the camera, as shown in Figure 7a. Assume that we have
obtained (u, v) of the eight key points (D1–D8) on the laser line, as shown in Figure 7a. Section 3.4
presents the method of obtaining the eight key points in detail. Subsequently, we can obtain the spatial
coordinates of key points (D1–D8) in the CCS, as shown in Figure 7b. Points A, B, C, and D are the four
vertices of the measured box face.
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and (b) CCS.

Point D1 in the image not only belongs to the intersection line with the surface to be digitized, but
also to the laser light plane must fulfil the camera model equations. Once the perspective projection
matrix of the camera and the equations of the planes containing the sheets of light relative to a global
coordinate frame are obtained from the calibration, the triangulation for computing the 3D coordinates
of object points simply involves finding the intersection of a ray from the camera and a plane from the
projector. Thus, the equation of the laser plane in the CCS is as follows:

aixc + biyc + cizc + di = 0, (4)
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where i is the laser stripe number and ai, bi, ci, and di are the coefficients. The number of equations of
the planes and light stripes is equal. The laser plane contributes with the additional information that
is necessary for completing the equation of the straight line of the camera model, such that their 3D
coordinates can be extracted from their 2D image coordinates u, v.

A 3D point P(xc, yc, zc) at the intersection of the viewpoint from the camera and the laser stripe
from the projector is triangulated while using the camera and projector parameters. On the basis of
Equations (2) and (4), we derive the set of linear equations [Xc/Yc, Yc/Zc, 1/Zc], as follows:

α δ 0
0 β 0
ai bi di




Xc/Zc

Yc/Zc

1/Zc

 =


u− u0

v− v0

−ci

, (5)

Therefore, P(xc, yc, zc) in the CCS can be expressed as

Xc = Zc

(u− u0) −
δ
β (v− v0)

α
, (6)

Yc = Zc
(v− v0)

β
, (7)

Zc =
di
ai
(−

ci
ai
−

(u− u0) −
δ
β (v− v0)

α
−

bi
ai

(v− v0)

β
)

−1

, (8)

On the basis of the intersection of lines D1D3 and D5D7 in the CCS, the coordinate of intersection
point A could be obtained as A(Xca, Yca, Zca). Similarly, we can generate the 3D coordinates of B, C, D
in the CCS: B(Xcb, Ycb, Zcb), C(Xcc, Ycc, Zcc), and D(Xcd, Ycd, Zcd). Thus, we derive the length and width
of this box side.

width = 1/2(
√
(Xca −Xcb)

2 + (Yca −Ycb)
2 + (Zca −Zcb)

2+√
(Xcd −Xcc)

2 + (Ycd −Ycc)
2 + (Zcd −Zcc)

2)

length = 1/2(
√
(Xca −Xcd)

2 + (Yca −Ycd)
2 + (Zca −Zcd)

2+√
(Xcb −Xcc)

2 + (Ycb −Ycc)
2 + (Zcb −Zcc)

2)

, (9)

Similarly, we capture the box’s image of the adjacent face to the first image. On the basis of
Equation (9), we can measure the length and width of the second image: width′ and length′. Hence, the
box height can be calculated.

height =


width′(min[(width′ −width), (width′ − length)]

< min[(length′ −width), (length′ − length)])
height′(min[(width′ −width), (width′ − length)]

> min[(length′ −width), (length′ − length)])

, (10)

Therefore, we can obtain the box volume.

V = width ∗ length ∗ height. (11)

However, a dimension of A ∗A ∗ B of the measured box is a problem. At this time, if the two
captured images that were calculated with the length of the box’s faces are A ∗ B, then our algorithm
will not work properly. At this point, we obtain the box length and width through the first image, but
we cannot calculate the box height from the second image through Equation (10). As the values of A
and B calculated by the second image satisfy Equation (10), we must manually select a suitable A or B
as the box height in our system.
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To date, a box volume measurement approach, which only requires two laser-modulated images
of boxes, has been introduced. Section 3.3 designs a one-step calibration method for camera and
laser projector. The coordinates of key points, which are automatically obtained by deep learning for
laser-modulated image, are presented in Section 3.4.

3.3. Calibration Method for the Camera and 2 × 2 Laser Line Grid Projector

In this work, we present a one-step intrinsic and extrinsic calibration method for line-structured
light projector that is based on circle calibration target. The coordinates of the key points are solved by
increasing the equation of the laser plane.

Zhang et al. [17] provided an excellent method for camera calibration. Line-structured light
projector calibration involves determining the camera’s intrinsic and extrinsic parameters. Equation (1)
represents a camera perspective projection model. The 3× 3 rotation matrix R and 3× 1 translation
vector T are the external parameters of the camera. The laser plane (Equation (4)) in this coordinate
system is obtained during line-structured light projector calibration. Here, we simultaneously generate
the system parameters of the camera and the laser projector.

Figure 8a shows the circle target that is used in this paper. The visual sensor is placed at a distance
from the target board similar to the nominal working distance. N images with different positions,
which contain the laser line corresponding to the intersection of the laser plane with the calibration
board, are captured (Figure 8b). We select the first local WCS as the absolute WCS from the N local
WCSs previously established. The X and Y axes of each moving target are used as the local WCS to
calculate the relative position between the CCS and local WCS Ri and Ti. The laser plane (Equation (4))
is fitted in the absolute CCS (Figure 8c).

Sensors 2019, 19, 3921 9 of 24 

 






















)])()[(

)]()[((

)])()[(

)]()[((

lengthlength',widthlength'min

lengthwidth',widthwidth'minheight'

lengthlength',widthlength'min

lengthwidth',widthwidth'minwidth'

height , (10) 

Therefore, we can obtain the box volume. 

heightlengthwidthV ** . (11) 

However, a dimension of BAA **  of the measured box is a problem. At this time, if the two 

captured images that were calculated with the length of the box’s faces are BA* , then our algorithm 

will not work properly. At this point, we obtain the box length and width through the first image, 

but we cannot calculate the box height from the second image through Equation (10). As the values 

of A and B calculated by the second image satisfy Equation (10), we must manually select a suitable 

A or B as the box height in our system. 

To date, a box volume measurement approach, which only requires two laser-modulated images 

of boxes, has been introduced. Section 3.3 designs a one-step calibration method for camera and laser 

projector. The coordinates of key points, which are automatically obtained by deep learning for laser-

modulated image, are presented in Section 3.4. 

3.3. Calibration Method for the Camera and 2 × 2 Laser Line Grid Projector 

In this work, we present a one-step intrinsic and extrinsic calibration method for line-structured 

light projector that is based on circle calibration target. The coordinates of the key points are solved 

by increasing the equation of the laser plane.  

Zhang et al. [17] provided an excellent method for camera calibration. Line-structured light 

projector calibration involves determining the camera’s intrinsic and extrinsic parameters. Equation 

(1) represents a camera perspective projection model. The 33  rotation matrix R  and 13  

translation vector T  are the external parameters of the camera. The laser plane (Equation (4)) in this 

coordinate system is obtained during line-structured light projector calibration. Here, we 

simultaneously generate the system parameters of the camera and the laser projector. 

Figure 8a shows the circle target that is used in this paper. The visual sensor is placed at a 

distance from the target board similar to the nominal working distance. N  images with different 

positions, which contain the laser line corresponding to the intersection of the laser plane with the 

calibration board, are captured (Figure 8b). We select the first local WCS as the absolute WCS from 

the N  local WCSs previously established. The X  and Y  axes of each moving target are used as 

the local WCS to calculate the relative position between the CCS and local WCS iR  and iT . The laser 

plane (Equation (4)) is fitted in the absolute CCS (Figure 8c). 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Calibration of the visual sensor: (a) circle calibration target; (b) calibration image; and, (c) 

laser plan fitting. 

Figure 8. Calibration of the visual sensor: (a) circle calibration target; (b) calibration image; and,
(c) laser plan fitting.

Therefore, the equation coefficients of the ith plane (ai, bi, ci, and di) can be computed while using
the least squares method. We obtain the line-structured light projector parameters on the basis of the
circle calibration target by one step. Moreover, the proposed approach does not need to extract the
standard points, but the inputs all coordinates of the laser stripes converted into the CCS. Therefore,
the number of calibrated points is sufficient for the calibration of the laser plane. Subsequently, the
equation of the laser plane is fitted to reduce the error.

The calibration board is 1300 × 1200 × 5.0 mm, and N(N = 28) images with different poses
calibrate the system. The circle calibration target is printed with a high-quality printer and then placed
on glass. Table 1 lists the detailed parameters of the camera and laser projector. Table 2 presents the
calibration parameters.
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Table 2. Calibration parameters of the structured optical system.

Title Value

Camera intrinsic
A =

 2458.9172 0 1239.5188
0 2453.8100 1032.5590
0 0 1


Distortion coefficients k1 = −0.03415937, k2 = 0.321070446
Pixel error [0.0654, 0.0845]

Laser projector parameters

0.00792910x + (−0.00817394)y + 0.00018065z = 1
0.01078476x + (−0.01121147)y + 0.00223845z = 1
0.01037354x + 0.00959161y + 0.00170705z = 1
0.00799885x + 0.00730513y + (−0.00038506)z = 1

3.4. Laser-Modulated Image Processing

3.4.1. IHED Network for Extracting the Edge of the Laser-Modulated Image

Variation in box materials, color, and appendages and the box texture influence laser-modulated
images. The actual box edges and laser center lines are difficult to distinguish from lines in the
laser-modulated images in complex scenarios. Although edge detection technology [33,34] can be
used to find the box contour, these algorithms often perform particularly poorly in image processing in
practical applications. Recently, FCNN has advanced in addressing the problem of detecting edge
and object boundaries in natural images. Inspired by HED, we adopt a similar structure to the HED
network and continuously inherit and learn the precise edge in the generated output process through
the side output layer. We also design our network by modifying the VGG16 [35] network. Figure 9
displays the developed IHED network for edge detection. In comparison with HED, our modifications
can be described, as follows:

1. To achieve the best edge detection effect, we build our own laser-modulated image dataset.
2. We cut the first two side output layers. Such an operation can remove considerable low-level

edge information.
3. A cross-entropy loss/sigmoid layer is connected to the up-sampling layer in each stage without

deep supervision.
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Figure 9. Architecture of the proposed improved holistically nested edge detection (IHED) network.
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In total, 40,000 training images are obtained to determine the IHED network parameters and
1500 images are provided for testing. We manually mark the coordinate of the eight key points of the
laser-modulated images and then draw straight lines to obtain the ground truth. Figure 10 shows two
example images and the ground-truth edge results of the developed dataset.
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(b,d) ground-truth edges by human annotation of (a,c), respectively.

In our IHED network, we consider the following objective function:

Lside(W, w) =
M∑

m=1

αml(m)

side (W, w(m)), (12)

where lside denotes the image-level loss function for side outputs. W is the set representation of all
standard network layer parameters. The parameters of side output are denoted as w = (w(1), . . . , wM),
and the network has M side output layers.

In our network architecture, the loss function is computed over all the pixels in a training image
X = (x j, j = 1, . . . , |X|) and edge map Y = (y j, j = 1, . . . , |Y|), y j ∈ {0, 1}. In the training process, this
cost function traverses every pixel of the input image and of the output probability graph. For each
image, this function is defined as

l(m)

side (W, w(m)) = −β
∑
j∈Y+

log Pr(y j = 1
∣∣∣X; W, w(m) ) − (1− β)

∑
j∈Y_

log Pr(y j = 0
∣∣∣X; W, w(m) ), (13)

where β =
∣∣∣Y_

∣∣∣/|Y| and 1−β = |Y+|/|Y|. Y+ and Y_ denote the edge and non-edge ground-truth
label sets, respectively. At each side output layer, we obtain the edge probability map prediction
Ŷ(m)

side = σ(Â(m)

side ), where Â(m)

side ≡ {α
(m), j = 1, . . . , |Y|} are the activations of the side output of layer m.

Thus, the loss function for “weighted-fusion” layer is as follows:

L f use(W, w) = Dis(Y, σ(
M∑

m=1

Âm
side)), (14)

where σ(.) is the sigmoid function. Dis(.) is the distance between the fused predictions and ground-truth
label map.

For all of these parameters, W, w is simultaneously optimized through standard backpropagation:

(W, w)∗ = argmin(L f use(W, w)), (15)

Hence, in the testing stage, given an image X, the final edge probability map can be defined as

Ŷedge = Average(Ŷ f use, Ŷ(3)
side, Ŷ(4)

side, Ŷ(5)
side), (16)

The network parameter settings are as follows: input image size (512 × 512), mini-batch size (9),
learning rate (1 × 10−3), loss weight for each side output layer (1), weight decay (2 × 10−4), and number
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of training iterations (1 × 105, learning rate is divided by 10 after 1000). This network design can not
only realize high-precision and high-sensitivity edge detection, but also suppress internal texture edge.

A total of 1500 testing images are used to verify the effectiveness of our algorithm. This study uses
the precision, recall, and F-measure to evaluate the edge detection performance of the laser-modulated
image. The precision recall curve includes the recall rate and precision of the detection result.
The precision reflects the pixel ratio of the used approach to extract the true structure edges (TP)
and the total number of all detected edges. The recall rate reflects the TP and ground-truth edge.
The F-measure is a comprehensive evaluation indicator with a fixed conversion relationship between
recall and precision. The recall, precision, and F-measure are calculated, as follows:

Precision =
TP

TP + FP
, (17)

Recall =
TP

TP + FN
, (18)

F−measure =
2 ∗ Precision ∗Recall
Precision + Recall

, (19)

where FP is the wrong edge pixels that have been extracted and FN is the number of mis-extracted pixels.
The proposed IHED network without deep-supervision extraction of structure edges is compared

with the HED algorithm to show its effectiveness. Figure 11 shows a performance comparison of these
detection algorithms on our dataset with respect to the precision, recall, and F-measure of the extracted
edges. The IHED without deep supervision has a better edge extraction performance than the other
three network models.Sensors 2019, 19, 3921 13 of 24 
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Figure 11. Performance comparison of the IHED and holistically nested edge detection (HED) networks
with/without deep-supervision with respect to edge extraction.

Figure 12 shows several examples of edge detection on the dataset for the HED and IHED networks
(network parameters are consistent). Rows 1, 2, 3, and 4 in Figure 12 display that IHED is more
advantageous than HED in detecting the structural edge of the box. The HED network detects other
non-box structure edges, which are avoided by the improved network (IHED). This result is consistent
with the original intention of the edge detection of the design structure.
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3.4.2. Method for Extracting the 2D Coordinates of the Key Points of the Laser-Modulated Image

We must obtain the supporting lines for the edge probability maps to obtain the 2D coordinates of
the box vertices. The edge probability map of the laser-modulated image has been obtained by our
network (Section 3.4.1). By using the center coordinate of the image as the origin coordinate, we use
the Hough line transform [36] to detect all the straight lines on the edge probability map. Equation (20)
is used to represent them.

ρ = x cos(θ) + y sin(θ), (20)

Subsequently, we cluster the nearly collinear line segments by setting the suitable segmentation
thresholds for ρ and θ (ρ ∈ [0pixel, 15pixel] and θ ∈ [−1.8◦, 1.8◦] in this study).

We separately obtain the fitting line equation of the laser line and the edge of the measured box.
Figure 13 shows the operation process. By finding the intersection points of these lines, the coordinates
of eight key points on the 2D image can be deduced. Finally, we can easily locate the relationship of
the eight key points (D1–D8) on the laser line through the geometric relationships between the box
face’s edge and the laser line in the 2D image, as shown in Figure 14.
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Figure 14. Verification of the accuracy of extracting pixel coordinates of eight key points; (a) original
image (2592 × 1944); (b) edge probability map (512 × 512); and, (c) eight key points obtained by
our approach.

The original image resolution is 2592 × 1944 pixels and the size of the edge probability map output
by the network is 512 × 512 pixels. Automatically extracting the eight key points in the collected
box image with laser line has an important influence on the accuracy and automatic operation of the
proposed system. We conduct pixel level coordinate error analysis between the raw image and edge
probability image that were obtained through the IHED network. We convert the coordinates of the
eight key points obtained to a camera resolution of 2592 × 1944. Here, we consider the maximum
measuring range of the system to be 1800 mm. Thus, we can roughly estimate the actual physical
distance of each pixel as 1800

1944 mm. Assume that the maximum error allowed by the system is 5.0 mm. We
can obtain the maximum pixel error that is allowed by the system as 5 ∗ 1944

1800 = 5.40 pixels. We analyze
the pixel values of 1500 images in the test dataset.

pixel_error =
M∑

j=1

N∑
i=1

1
N
[(ui − ui

′) + (vi − vi
′)], (21)

where M is the number of test datasets. N is the number of key points on the image. In the experiment,
M is 1500 and N is 8. (u, v) is the label pixel coordinate and (u′, v′) is the pixel coordinate that was
obtained by our approach. The pixel coordinate error of key points is 1.96 < 5.40 pixels, which can
meet our requirements.

4. Experiments

Figure 1c illustrates the system, wherein the device is connected with an android phone
(HUAWEI honor Play) through a USB cable. The measurement environment parameters are as
follows: temperature (−15 ∼ 60 ◦C), measured distance from the visual sensor to the measured box
(0.1–2.5 m), and measuring range of the box length, width, and height (10–1800 mm). The initial
status calibration is performed before the experiment. Table 2 lists the calibration parameters of the
visual sensor.

Various experimental tests are conducted under varying operating conditions to test the robustness
of the proposed system. Four experimental phases are performed to evaluate the system performances:
(1) In Section 4.1, the measurement statistical analysis of boxes in complex scene is conducted. (2) In
Section 4.2, the stability of the proposed system is verified. (3) In Section 4.3, the statistical analysis
on real boxes is performed and the measurement uncertainty is evaluated by using the expression
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of uncertainty in measurement [37]. (4) In Section 4.4, the measurement error analysis of the optical
quality of the boxes surface and the surface variation is performed. (5) In Section 4.5, the practical
performance of the proposed system is evaluated in real-world tests.

4.1. Measurement Statistical Analysis of Boxes in Complex Scenarios

The experiment tests the accuracy of the system’s measurements in complex and outdoor
environments. Figure 15a shows a single box captured indoors, with a dimension of 490.7 mm ×
560.5 mm × 651.0 mm. Figure 15b presents the box measurement in a complex indoor environment,
with multiple interfering boxes that are near the measured box. Figure 15c exhibits the image captured
outdoors, in which the laser line is dim in the image due to the influence of strong illumination.
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Figure 16 shows the measurement results of the box that was acquired in Figure 15. The edge 
probability map is obtained after processing the IHED network, and coordinates of the eight key 
points are determined. Even if the box images (Figure 16c) are collected outdoors, the edge 
probability map can be efficiently processed by our system. 

Figure 15. Measured box in different scenarios; (a–c) are three boxes in different scenarios.

Figure 16 shows the measurement results of the box that was acquired in Figure 15. The edge
probability map is obtained after processing the IHED network, and coordinates of the eight key points
are determined. Even if the box images (Figure 16c) are collected outdoors, the edge probability map
can be efficiently processed by our system.Sensors 2019, 19, 3921 16 of 24 
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difference in actual measurement. In this experiment, the volume measurement system is used to 
obtain the box length and width under different poses. Only one face of the standard box (800 mm × 
600 mm) is measured in this experiment to facilitate measurement and comparison. Estimated values 
are reported as the average of 30 experimental sessions on the same surface (800 mm × 600 mm) in 
Table 3. The relative errors are generally relatively small. The deviation between the estimated and 
actual values is within ±5.0 mm at each pose. The pose of the visual device appears to have minimal 
effect on the measurement accuracy of the proposed system on the basis of the mean error analysis 
in Table 3. The proposed system can effectively handle the measured certainty, regardless of which 

Figure 16. Image processing and key point extraction by our algorithm; (a–c) are the measured images
captured by our device.

The final estimated values are recorded as the average of three experimental sessions on the box.
Figure 17 shows the measurement results and actual dimensions of the measured box under different
scenarios. The maximum average absolute error is 1.3 mm. Hence, our volume measurement system
can accurately measure the length of each side of the box in a complex environment, which can meet
the actual measurement requirements.
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4.2. Pose Stability Testing

This experiment aims to verify the stability of the measured box from different viewpoints.
As shown in Figure 18, the box is measured from different angles with nine poses to simulate the pose
difference in actual measurement. In this experiment, the volume measurement system is used to obtain
the box length and width under different poses. Only one face of the standard box (800 mm × 600 mm)
is measured in this experiment to facilitate measurement and comparison. Estimated values are
reported as the average of 30 experimental sessions on the same surface (800 mm × 600 mm) in Table 3.
The relative errors are generally relatively small. The deviation between the estimated and actual
values is within ±5.0 mm at each pose. The pose of the visual device appears to have minimal effect on
the measurement accuracy of the proposed system on the basis of the mean error analysis in Table 3.
The proposed system can effectively handle the measured certainty, regardless of which view the
images are captured with strict measurement rules. The values of standard deviations are 1.7521
and 1.7175 mm respectively, which indicates that the box measurement system has reliable repeated
measurement accuracy. Figure 19 shows that the length errors of the box dimensions are within 5.0 mm.
The results show that the system stability is remarkable.

Table 3. Error analysis of the measurement results of nine different poses for 30 times.

Pose Actual
Length/mm

Average
Estimated
Length/mm

Error
(Length)/mm

Actual
Width/mm

Average
Estimated
Width/mm

Error
(Width)/mm

(a)

800

800.6 +0.6

600

598.6 −1.4
(b) 802.9 +2.9 599.7 −0.3
(c) 800.2 +0.2 600.5 +0.5
(d) 799.6 −0.4 600.8 +0.8
(e) 803.4 +3.4 600.0 +0.0
(f) 796.2 −3.8 604.8 +4.8
(g) 803.3 +3.3 602.9 +2.9
(h) 798.5 +1.5 598.3 −1.7
(i) 799.7 +0.3 597.2 −2.8
standard deviations 1.7521 1.7175



Sensors 2019, 19, 3921 17 of 23

Sensors 2019, 19, 3921 17 of 24 

 

view the images are captured with strict measurement rules. The values of standard deviations are 
1.7521 and 1.7175 mm respectively, which indicates that the box measurement system has reliable 
repeated measurement accuracy. Figure 19 shows that the length errors of the box dimensions are 
within 5.0 mm. The results show that the system stability is remarkable. 

      
(a) (b) (c) (d) (e) (f) (g) (h) (i) 

Figure 18. Images of nine different poses; (a) vertical shooting; (b) tilt 30° to the left; (c) tilt 60° to the 
left; (d) tilt 30° to the right; (e) tilt 60° to the right; (f) tilt 30° upward; (g) tilt 60° upward; (h) tilt 30° 
downward; and, (i) tilt 60° downward. 

Table 3. Error analysis of the measurement results of nine different poses for 30 times. 

Pose Actual 
Length/mm 

Average 
Estimated 
Length/mm 

Error 
(Length)/mm 

Actual 
Width/mm 

Average 
Estimated 
Width/mm 

Error 
(Width)/mm 

(a) 

800 

800.6 +0.6 

600 

598.6 −1.4 
(b) 802.9 +2.9 599.7 −0.3 
(c) 800.2 +0.2 600.5 +0.5 
(d) 799.6 −0.4 600.8 +0.8 
(e) 803.4 +3.4 600.0 +0.0 
(f) 796.2 −3.8 604.8 +4.8 
(g) 803.3 +3.3 602.9 +2.9 
(h) 798.5 +1.5 598.3 −1.7 
(i) 799.7 +0.3 597.2 −2.8 
standard 
deviations 

 1.7521   1.7175  

 
Figure 19. Errors between the standard box and the measured result. 
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laser triangulation and deep learning technology; thus, the entire system maintains the advantages 
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4.3. Error Analysis on Real Box and the Evaluation of Uncertainty in the Measurement Result of Box Volume

This volume measurement system can calculate the dimension parameters of the box simply via
laser triangulation and deep learning technology; thus, the entire system maintains the advantages of
simple configuration and low cost. However, this method includes three main factors that affect the
measurement accuracy of the box length: the measurement error of the visual sensor and the position
error of the box (the distance and pose between the measured box and visual sensor). We conduct
statistical experiments to evaluate the effectiveness of the method.

As shown in Figure 20, the three standard boxes (#1, #2, and #3) are selected in the experiment. Their
length, width, and height are 330.4 × 110.3 × 440.6, 690.7 × 570.5 × 1500.0, and 900.0 × 400.0 × 1800.0,
respectively. We use our system to collect 15 measurements for each of the three standard boxes
(Table 4). We utilize these data to calculate the mean and standard deviation of each box’s side length.
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with the length. The measurement uncertainty is in accordance with the experiment that is described 
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Table 4. Measurement results of the system of three standard boxes (mm).

No. Length
(#1)

Width
(#1)

Height
(#1)

Length
(#2)

Width
(#2)

Height
(#2)

Length
(#3)

Width
(#3)

Height
(#3)

1 330.1 110.6 441.6 691.2 571.3 1503.2 902.5 400.3 1804.6
2 330.5 110.1 440.1 690.5 571.6 1503.3 898.3 399.8 1802.5
3 330.2 110.6 441.4 691.2 571.8 1497.7 900.5 401.2 1804.4
4 331.4 111.2 439.7 690.5 568.9 1498.4 902.1 402.1 1796.7
5 329.2 110.3 438.8 689.2 570.6 1497.6 898.2 398.9 1796.9
6 330.4 110.8 440.7 688.4 569.7 1502.2 899.4 399.5 1803.7
7 329.2 110.6 437.4 691.7 572.5 1501.1 901.7 400.8 1795.1
8 331.8 110.9 441.2 692.5 570.2 1499.6 901.9 400.6 1803.2
9 330.9 110.6 440.6 690.6 569.4 1500.4 903.6 399.8 1798.3
10 331.5 110.8 440.5 691.5 571.7 1498.9 901.3 398.7 1795.4
11 332.6 110.4 440.8 688.7 569.8 1496.9 899.5 401.2 1796.7
12 330.5 110.2 441.7 689.5 571.5 1495.7 898.4 398.6 1795.5
13 330.7 109.3 442.3 691 571.4 1502.1 901.6 399.9 1804.6
14 330.6 109.4 439.5 691.4 570.1 1497.7 902.7 400.6 1796.4
15 329.8 110.2 438.3 692.6 571.0 1504.5 902.9 400.1 1804.7
Mean 330.6 110.4 440.3 690.7 570.7 1500.0 901.0 400.1 1799.9
Standard deviation 0.8952 0.5007 0.9630 1.2285 1.0066 2.5868 1.7401 0.9550 3.8859
Uncertainty 0.9266 0.5182 0.9968 1.2717 1.042 2.6776 1.8012 0.9885 4.0223

The data of the measurement results in Table 4 are statistically analyzed to evaluate the
measurement accuracy scientifically, and the uncertainty of class A (µA) is calculated as

µA =

√√√√ n∑
i=1

(xi − x)2

n− 1
, (22)

where xi is the estimated length and x is the mean value of the measured data. n is the number of
measurements, which is 15 in this study.

Table 4 shows the measurements result, with a minimum uncertainty of ±0.52 mm and maximum
uncertainty of ±4.0 mm. The measurement uncertainty in the estimated length increases with the
length. The measurement uncertainty is in accordance with the experiment that is described in Table 4.
Figure 21 shows that the length errors of the box dimensions are within ±5.0 mm. The results show
that the system has good accuracy. Figure 22 shows the measurement uncertainty of the measuring
device, which is consistent with the experimental results.
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4.4. Measurement Error Analysis of the Optical Quality of the Boxes Surface and the Surface Variation

The experiment tests the effect of the system’s measurements on the optical quality of the boxes
surface and the surface variation. Figure 23 shows the boxes, and only one face of the box is measured
in this experiment: (a) 350.2 mm × 260.5 mm, (b) 376.5mm × 276.4 mm, (c) 340.4 mm × 420.6 mm,
(d) 560.0 mm × 380.0 mm, (e) 480.6 mm × 365.7 mm, and (f) 300.6 mm × 250.0 mm. Figure 23a–c
exhibit the images captured at different optical quality. Figure 23d–f test boxes with surface variation.
The second row in Figure 23 shows the image processing results of the boxes faces.
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and av  is the value of actual volume. The results in Table 5 indicate that the error of the 
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Figure 25. Six standard boxes with different dimension parameters: (a) 143.4 × 120.5 × 100; (b) 550.6 × 
350.5 × 300.0; (c) 800.0 × 600.0 × 500.0; (d) 1200.0 × 900.0 × 700.0; (e) 1500.0 × 690.7 × 570.5; and, (f) 1800.0 
× 900.0 × 400.0. 

Table 5. Volume measurement results in real applications. 

Figure 23. Image processing by our algorithm; (a–c) exhibit the images captured at different optical
quality; (d–f) exhibit the images captured the boxes with surface variation.

Figure 24a shows the measurement results of the optical quality of the boxes surface, with a
minimum measurement error of 0.2 mm and maximum error of 1.3 mm. Figure 24b shows the
measurements result of the surface variation, with a minimum measurement error of 2.0 mm and
maximum error of 7.6 mm. The results show that the system suffered little from the optical quality of
the surface, but it has big uncertainty when measuring the surface variation of the box.
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Figure 25. Six standard boxes with different dimension parameters: (a) 143.4 × 120.5 × 100; (b) 550.6 × 
350.5 × 300.0; (c) 800.0 × 600.0 × 500.0; (d) 1200.0 × 900.0 × 700.0; (e) 1500.0 × 690.7 × 570.5; and, (f) 1800.0 
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Table 5. Volume measurement results in real applications. 

Figure 24. Measurement results; (a) Errors between the actual length and the measured result affected
by optical quality of the box surface; and, (b) Errors between the actual length and the measured result
tested on boxes with surface variation.

4.5. Online Measurement Testing

Six standard boxes with different sizes and volumes are selected for measurement to evaluate
the measurement accuracy scientifically, as shown in Figure 25. Table 5 displays the corresponding
experimental results. The final measurement of the box length is highlighted in bold. We estimate
of the relative measurement error of the volume ε = |ve − va|/va, where ve is the estimated volume
and va is the value of actual volume. The results in Table 5 indicate that the error of the measurement
system increases with the side length of the measured box, but the error range of the measured and
actual values of the single side length of each standard box is within ±5.0 mm. The maximum relative
measurement error of the volume (ε) of the measured box is 2.27% and the mean relative error is 0.83%,
which indicates good precision.
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Figure 25. Six standard boxes with different dimension parameters: (a) 143.4 × 120.5 × 100;
(b) 550.6 × 350.5 × 300.0; (c) 800.0 × 600.0 × 500.0; (d) 1200.0 × 900.0 × 700.0; (e) 1500.0 × 690.7 ×
570.5; and, (f) 1800.0 × 900.0 × 400.0.

Table 5. Volume measurement results in real applications.
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Probability
Map

Actual
Length/mm

Estimated
Length/mm

Error
Length/mm

Actual
Volume/m3

Estimated
Volume/m3

Relative
Error/%
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0.0017 0.00169 2.27 

120.5 119.6 −0.9 

  

120.5 119.2 −1.3 

100.0 99.3 −0.7 

(b) 
  

550.6 552.3 1.7 

0.0579 0.05779 0.18 

300.0 299.3 −0.7 

  

300.0 301.2 1.2 

350.5 349.6 −0.9 

(c) 
  

800.0 801.6 1.6 

0.2400 0.24171 0.72 

500.0 503.5 3.5 

  

500.0 504.6 4.6 

600.0 598.9 −1.1 

(d) 
  

1200.0 1204.6 4.6 

0.7560 0.76096 0.66 

900.0 898.6 −1.4 

  

900.0 903.4 3.4 

700.0 703.0 3.0 

(e) 
  

570.5 569.0 −1.5 

0.5911 0.59221 0.19 

1500.0 1502.3 2.3 

  

1500.0 1497.6 −2.4 

690.7 692.8 2.1 

(f) 

  

400.0 397.6 −2.4 

0.6480 0.64179 0.96 1800.0 1805.0 5.0 

1800.0 1795.5 −4.5 
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Table 5. Cont.

Box
Edge
Probability
Map

Actual
Length/mm

Estimated
Length/mm

Error
Length/mm

Actual
Volume/m3

Estimated
Volume/m3

Relative
Error/%
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5. Conclusions 

This research presents a line-structured light-based 3D measuring sensor and deep-learning-
based box volume measuring method. Our box volume measurement method only requires two 
laser-modulated images. We propose a novel end-to-end edge detection architecture based on an 
IHED network to extract the structure straight edge lines in laser-modulated images. By cutting the 
first two side output layers and training without deep supervision of HED, our network can learn 
robust straight line features from laser-modulated images. Moreover, we present a one-step 
calibration method to calibrate our portable measuring sensor automatically. Experimental results 
show that the measuring range of our proposed system is 100–1800 mm with errors less than ±5.0 
mm. Our system is suitable for portable automatic box volume measurement, and it is useful for 
warehouses and distribution and logistics companies. Our future work will focus on small portable 
measuring devices. 
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