ﬂ SCNSors m\py

Article
Dynamic Reference Selection-Based Self-Localization
Algorithm for Drifted Underwater Acoustic Networks

Jingjie Gao 1'*, Xiaohong Shen %3, Haodi Mei %® and Zhichen Zhang %3
1
2

School of Information Engineering, Chang’an University, Xi’an 710064, China

Key Laboratory of Ocean Acoustics and Sensing, Ministry of Industry and Information Technology,
Northwestern Polytechnical University, Xi’an 710072, China; xhshen@nwpu.edu.cn (X.S.);
meihaodi@yeah.net (H.M.); sdhzzhzhch@mail nwpu.edu.cn (Z.Z.)

School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
*  Correspondence: gaojingj@126163@126.com

check for
Received: 2 August 2019; Accepted: 6 September 2019; Published: 11 September 2019 updates

Abstract: Self-localization has become one of the major areas of research in drifted underwater
acoustic networks (DUANSs) since many applications are based on the knowledge of nodes’ positions.
However, self-localization for DUANSs faces two main challenges: the insufficient anchors and the
varying network topology. Both affect the localization performance seriously. In this paper, we focus
on these two challenges and propose a dynamic reference selection-based self-localization algorithm
for DUANSs (DRSL) to improve the localization performance. First, an optimal reference selection
scheme is presented to solve the insufficient anchors” problem. The selected optimal reference node
can not only assist the insufficient anchors in accomplishing the localization procedure, but also
obviously increase the localization accuracy. Based on the proposed optimal reference selection
scheme, a dynamic reference selection-based self-localization algorithm is proposed to solve the
topology changing problem. The proposed algorithm can improve the localization performance for
DUAN:Ss significantly by selecting the reference node dynamically according to the predicted network
topology, which is more suitable for DUANs with mobile sensor nodes. Simulation results show that
the proposed DRSL algorithm can increase the localization accuracy greatly with insufficient anchor
nodes and varying network topology. In addition, DRSL algorithm also has a lower communication
cost than other anchor-free approaches, which distinctly demonstrates the advantages of the proposed
DRSL algorithm.

Keywords: self-localization; drifted underwater acoustic networks; reference selection

1. Introduction

Underwater Acoustic Networks (UANs) are wireless networks defined by a collection of low-cost
and resource-limited sensor nodes. Since UANs have more significant advantages than traditional
wired networks including easy deployment, self-management, and large detection, it has become an
important choice for a vast number of missions at sea such as data acquisition, target tracking, and
remote sensing. However, influenced by the sea waves and ocean currents, nodes in UANSs are often
drifted, other than static, which increases the difficulty of accomplishing many network applications.
Therefore, it is important and practical to do some research into drifted underwater acoustic networks
(DUANS).

Self-localization has become one of the major areas of research in DUANS, since many applications
such as data collection or routing protocols are based on the knowledge of nodes’ positions. Apart
from the challenge that global positioning systems (GPS) is impractical due to the high attenuation of
electromagnetic signals in underwater environment, self-localization for DUANSs also has two main
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challenges: (1) topology changing caused by node’s movement (2) insufficient anchors caused by
hard GPS connectivity, limited energy, and harsh underwater communication channel. Therefore, it
is important and essential to design a localization algorithm for DUANs which can overcome both
challenges to improve the localization performance greatly.

For UANSs, there have been a lot of localization algorithms recently. Some of the existing
algorithms work with the range information between each node such as dive and rise localization
(DNRL), localization with directional beacons (LDB), multi-stage localization (MSL), large-scale
hierarchical localization (LSHL) and AUV (Autonomous Underwater Vehicle)-aided localization (AAL)
methods. These methods work well in static networks, but are not appropriate for DUANs with drifted
nodes. Some methods need AUV to assist which will increase the localization cost dramatically [1-16].
The range-free algorithms based on Sequential Monte Carlo (SMC) method can provide simple and
low-cost approaches to estimate the node’s position [17-19]. However, these algorithms are not as
accurate as the range-based algorithms and need more anchors to characterize the distribution of
node’s location. For mobile underwater networks, inertial navigation systems (INS) can overcome
the problem of mobility and no GPS, which however, will increase the cost of localization system and
introduce large error accumulation [20-25]. SLMP (scalable localization with mobility prediction for
underwater sensor networks) algorithm proposed in [26] and HLA (a hybrid localization algorithm for
mobile underwater acoustic networks) in [27] work well in mobile networks. However, both SLMP
algorithm and HLA algorithm need a lot of anchor nodes which are not practical in real conditions.
Some anchor-free algorithms have been proposed which do not need any anchor assistance to obtain
the unknown nodes’ positions such as motion-aware self-localization (MASL), anchor-free localization
(AFL) and collaborative localization (CL) methods. However, the major drawbacks of anchor-free
localization algorithms are the high communication cost and the low accuracy [28-30].

In this paper, we focus on the problem of accurate self-localization with insufficient anchors and
varying topology for DUANSs. For this problem, we propose a dynamic reference selection-based
self-localization algorithm for DUANS. First, we propose an optimal reference selection scheme to
solve the insufficient anchors’ problem. The optimal reference node can assist anchors in accomplishing
the localization procedure with high localization accuracy. Secondly, we propose a dynamic reference
selection-based self-localization algorithm by combining the prediction-based localization algorithm
with the proposed optimal reference selection scheme. The algorithm can select the reference node
dynamically according to the network’s predicted topology and mobility pattern which is more suitable
for DUANSs with mobile sensor nodes.

The rest of this paper is organized as follows. In Section 2, we will describe the network model
including the network architecture, the mobility model, and the time model. Then, in Section 3, we
will describe the proposed dynamic reference selection-based self-localization algorithm for DUANSs in
details. Following that, we will analyze the simulation results of the proposed algorithm in Section 4.
Finally, we conclude the paper in Section 5.

2. Network Model

Since nodes in DUANSs always have different positions over time due to the drifted movement
by sea waves, in this paper, we consider a time varying network model to represent DUANs which
is denoted as GF = {Vk, L¥}. VK = {®K,T*} is the collection of all anchor nodes ®F and all ordinary
nodes I'* at time k. L* = {(i,)|i,j € V*} is the set of communication links between each node in the
network. In DUAN:S, if di]- < R¢, node i, and node j can communicate with each other, where dl-]- is the
distance between node i and j, R, is the communication range. In this paper, we assume that all nodes
in the network can communicate with each other.

2.1. Network Architecture

In this paper, there are 2 kinds of nodes including anchors and ordinary nodes.
(1) Anchors are nodes which positions are accurately known before the localization process;



Sensors 2019, 19, 3920 30f17

(2) Ordinary nodes are nodes which should get their positions by communicating with anchors
directly or indirectly. Ordinary nodes can be divided into 2 types: the reference nodes and the unknown
ordinary nodes. Reference nodes are nodes which are selected by anchors to assist in the localization
process, while unknown ordinary nodes are nodes which should get their positions by communicating
with anchors and selected reference nodes.

Figure 1 shows the network architecture. In this paper, we assume that only one reference node is
needed for localization. Other conditions can be extended from this assumption.

Reference Node

. O Ordinary Node
OrdinaryNode .

Anchor

. Anchor

Anchor

Figure 1. The network architecture.

2.2. The Mobility Model

Nodes in DUANSs are always moving continuously with water currents and sea waves etc. The
mobility pattern of drifted node in DUANS is a complex but not totally random process. The pattern
is in fact a 6 DOF (Degree of Freedom) motion including pitch, roll, yaw, pitch, roll, and heave. In
addition, the mobility pattern also contains 2 parts, the low frequency part and the high frequency
part. The low frequency part is the main portion of the movement caused by the second order wave
force. The high frequency part is a reciprocating motion created by the first order wave force. The
drifted movement is an overlay of these 2 motion parts as can be seen in Figure 2.

Trajectory

Time
Figure 2. The mobility model of drifted node.
Since the high frequency part is a reciprocating motion which is not the main portion for DUANS,

in this paper, we only focus on the low frequency movement part which indicates the primary trajectory
of the drifted node.
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2.3. The Time Model

Nodes in DUANSs are always floating and mobile as time varies. Therefore, we should define
a time model to indicate the mobility pattern. The time model designed in this paper comprises 3
different kinds.

e  Sampling period tp: sampling period t; is the basic time unit during the localization process,
nodes in the networks will communicate with each other during each t;

1
to=N x =

f

where f is the frequency of high frequency mobility pattern described in the last section, N is a
proper sampling ratio.
e  Estimation period Tp: Estimation period Tj is comprised by some fy which is used for the mobility
pattern estimation.
To = Noto

o  Test period Ts: T; is used for re-estimation procedure to eliminate the error accumulation.

The time model is as shown in Figure 3.

Estimation Period T, gil:;g(llh:g
¥ / ’
[[1] [
Test Period Ts Test Period Ts Test Period Ts

Time
Figure 3. The time model of DUANS.
3. Localization Algorithm

In this section, we will present a dynamic reference selection-based self-localization algorithm for
DUANS (DRSL). The proposed algorithm is elaborated from 3 aspects: (1) The optimal reference
selection scheme; (2) The dynamic reference selection-based self-localization algorithm; (3) The
implementation of DRSL algorithm. Now, we will describe the three aspects in detail.

3.1. The Optimal Reference Selection Scheme

As we know, in three-dimensional underwater networks, ordinary node should communicate
with at least four anchors to get its position. However, due to the anchor node failure or the
harsh underwater communication environment, it is impossible to satisfy the demand of 4-anchor
connectivity in DUANS all the time. Therefore, it is critical to develop an optimal reference selection
scheme to support insufficient anchors in accomplishing the self-localization process precisely.

In this section, an optimal reference selection scheme is proposed to increase the localization
accuracy for DUANSs with insufficient anchors. The scheme is also the foundation and the initialization
of the dynamic reference selection-based self-localization algorithm illustrated in the next section.

Assume that there are only three anchors in the network at time k, (x1(k),y(k),z1(k)),
(x2(k),y2(k),z2(k)) and (x3(k),y3(k),z3(k)) which are not sufficient for the localization process
conventionally. Therefore, we need to select an extra reference node (x;(k),y;(k),z;(k)) to assist
the localization procedure.

First, we set up a relative coordinate system as shown in Figure 4 . In this figure, N;, N, and
Nj are the anchor nodes respectively, while N; is the selected reference node. Let N1 N, make up the
x-axis. N1, Np and Nj are in the xy plane. The z-coordinate of node N; is positive. Thus, the relative
coordinates of the three anchors are (0,0,0), (£2(k),0,0) and (£3(k), 73(k), 0) respectively. £, (k),%3(k)
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and 73(k) are expressed as Equation (1) to Equation (3), where 0 is the rotation angle between the
relative coordinate system and the geodetic coordinate system.

£2(k) = 1/ (x2(k) — 21 (k)2 + (y2(k) — 32 ()2 + (z2(k) — 21 (k))? M)
£3(k) = cos(8) 1/ (x3(k) — x1 (k)2 + (v3(K) — v (K))2 + (z3(k) — 21 (k))? @)
93(k) = sin(8)y/ (xa(k) —x1(k))2 + (y3(k) — y1 (k) + (z3 (k) — 2 (k)2 3)

___________________ .Na
_A

y-axis

Figure 4. The relative coordinate system.

Secondly, as mentioned in [4], we can use the least square method to solve the self-localization
problem. Therefore, in this paper, the least square error is adopted to get the localization error as
mentioned in Equation (4).

E;i(k) = bij(k)" (1 - A(k)(A(k)TA(k)) *A(k)T)bj; (k) 4)

E;j(k) is the least square error of unknown ordinary node j at time k when node i is selected as
the reference node.

(0P +dl(0) — di(k)’
23(k)2 = £ (k)* + 9a(k)% — 9:(k)% — £:(k)* + di(k)? — i (k)?

d]i (k), dé (k), dé (k) are the distances between the unknown ordinary node j and the anchor nodes

at time k. d{ (k) is the distance between the unknown node j and the selected reference node i at time k.

The aim of reference selection scheme proposed in this section is to accomplish the localization
process in DUANSs with insufficient anchor nodes and to improve the localization accuracy
simultaneously. Therefore, the optimal reference node is selected by minimizing the global localization
error in the whole network according to Equation (5).

Assume that there are M ordinary nodes in the network including one reference node which
will be selected and M — 1 unknown ordinary node. The set of ordinary nodes in relative coordinate
system is expressed as I'(k), while T';(k) is the selected reference node i. Thus, the cost function of the
optimal reference selection scheme is expressed as:
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i-1 M
9 ) bii(k)" (1 = A(K)(A(K) T AK)) " A(K) )by (k)
[ %K) —9i(k) —£;(k)
st A= [2(020k) —%i(k)  —20ik)  —28lk)
2(23(k) — 2:(k)  2(95(K) — 9ik))  —22(k)
— (%K) = (yi(k))? = (24(k))* + Ad (k)
bjk)= | 22007 = (3(0)" = (k)" - (&i(K))" + By (k) )
23k — (£16)) + 95(6)% — (91K))” — (21K))" + Adh (k)
Ad;:dj—dﬁ n=1,23
A %i(k)
fi(k)= | g:(k)
2;(k)

3.2. The Dynamic Reference Selection-Based Self-Localization Algorithm

In this section, we will propose a dynamic reference selection-based self-localization algorithm
for DUANS. The algorithm combines the optimal reference selection scheme and the prediction-based
self-localization algorithm together to select the optimal reference node dynamically. The dynamic
reference selection-based self-localization algorithm can solve both the insufficient anchors” problem
and the topology changing problem which is more appropriate for DUANs with mobile sensor nodes
and can increase the localization accuracy dramatically.

3.2.1. The Prediction-Based Self-Localization Algorithm

Considering the mobility model and the observation model of DUANSs, we apply the extension
Kalman filter (EKF) method to predict the node’s position and the mobility pattern in DUANSs [31,32].
Mobility model:

A Xk+1)]
F](k +1) = Uj(k—|— 1) = FF]-(k) + w](k) 6)

where v;(k + 1) is the velocity of node j at time k + 1, a;(k + 1) is the acceleration of node j at time
k + 1, F is the state transformation matrix which can be expressed as

1 00 Ty (—1+atg+e*h)/a?
01 0 Ty (—1+atg+e*T0)/a?
F=10 01 Ty (—1+atg+e*T0)/a?
000 1 (1—e %)/
0 0 0 e~ to
wi (k)
ws (k)
wj(k) = | ws(k)
wy (k)
ws (k)
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X](k+1) = y](k+1)
Z](k + 1)
where w;(k) is the mobility noise vector, a is the model factor. ¢, is the sampling period.

Observation model:
The observation model is derived from the range measurement as shown in Equations (7) and (8).

Z(l,j) Elli-i- 1;
Zipnlk+1
Zik+1) = | 2@ 7
Z;j(k+1)
Z(l,]’) (k + 1) = h(l,]) (Xl(k + 1), X](k + 1)) + ]/l([,]) (k + 1) (8)

= Xi(k+1) = X;(k +1) || +pqjk+1),1=1,2,3,i

where Z(; ;) (k + 1) is the range measurement between node [ and node j at time k + 1. p(; ;) (k + 1) is
the noise vector, j(; ;) (k +1) ~ N(0, R(k)), R(k) is the variance of observation noise.

Since the nonlinearity of the observation model as in Equation (8), we use EKF method to predict

the mobile node’s position and the mobility parameter simultaneously.

Tj(k+1|k)=FT;(k|k)

P(k+1|k+1)=FP(k | kK)FT +Q(k+1)

K(k+1) = P(k+ 1| K)J][P(k+1[ k)] +R(k+1)] 9)
Tj(k+1|k+1)=T;j(k+1|k) +K(k)[Z(k) = h(T;(k+1]k))]
P(k+1|k+1)=P(k+1|k)—K(k)[J;P(k) | KT+ R(k+1)]KT (k+1)

where P is the state covariance matrix, F is the state transformation matrix, Q is the state transformation
covariance matrix, R is the observation noise covariance matrix and | (L) is the Jacobians of the
nonlinear function h; ;).

](1,]) (k + 1)
J)(k+1)
Ji== g (10)
J Jiajk+1)
Jii,j) (k+1)
; oh) (X (k +1), Xj(k+1))
(L) =
/ 0X;(k+1) a1
- xl(k+l)—x,~(k+l) y;(k-‘rl)—yj(k—i-l) zl(k+l)—zj(k+1) 1—123i
d(l,j) (k+1) d(l,]) (k+1) d([/]) (k+1) b= Lye9

3.2.2. The Dynamic Reference Selection Scheme

Based on the prediction-based self-localization algorithm, we can predict the mobility pattern of
any mobile node in DUANSs. According to the predicted mobility pattern, we can estimate the node’s
position directly.
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Ti(k+1]k)=Fx | v(k) (12)

According to Equations (12) and (5), we can get the dynamic reference selection scheme expressed
as (13).

—_

i

~ min v % bij(k+11k)"(I— A(k+1[k)(A(k+1[k) " A(k+1[k)) " A(k+1] k)T )by (k+1]k)
Fi(k+1k) el (k+1]k)  j=1j=i+1
—2i(k+11k) —9i(k+1]k) —2;(k+1|k)
st A(k+11k)= |2(22(k+1) — #;(k+1]k)) —27;(k+1]k) —22;(k+11k)
2(£3(k+1) — 2i(k+1]k)) 2(93(k+1) — §i(k+1]k)) —22;(k+1]k)

—(£i(k+1[k)% = (yi(k+11k))* = (2;(k+1k))* + Adi (k+1)

bij(k+1]k)= { £a(k+1)2 — (% (k+11k)* = @i (k+11k)* = (Zi(k+1k))* + Ad) (k+1) } (13)

23(k4+1)2 — (R (k+1]K))? + 93 (k+1)2 — (Gi(k+1[k))? — (2 (k+1[K))* + Ads (k+1)

Xi(k+1]k)

[i(k+1]k)= FTi(k|k) = [zﬁ,{lﬂ—lk)]
a:(k+1]k)

Ady=d —d5 n=1,23

dij=| X;(k+1]k) — X;(k+1[k) | 1=1,2,3,i

Combining the dynamic reference selection scheme and the prediction-based self-localization
algorithm, we can get the dynamic reference selection-based self-localization algorithm. The
self-localization procedure is shown as follows:

1.  Anchors select the initial optimal reference node according to Equation (5);

2. Each unknown ordinary node predicts its own mobility pattern and position according to the
range measurements as in Equation (9) and sends them to the anchors ;

3. Anchors receive the predicted mobility patterns and positions obtained above, set them to be the
prior information and then update the reference selection dynamically according to the predicted
information as in Equation (13);

4. If the reference selection remains unchanged, the previous predicted mobility patterns will still
be used to estimate the drifted nodes’ positions continually. If the reference selection changes, we
will re-estimate the mobility patterns and re-predict the drifted nodes’ positions again according
to Equation (9).

As described above, we can see that the dynamic reference selection-based self-localization
algorithm can increase the localization accuracy with both insufficient anchors and varying topology
which is more appropriate for the drifted underwater acoustic networks.

3.3. The Implementation of DRSL Algorithm

In this section, we will illustrate the implementation of DRSL algorithm in detail.

Settings:

(1) We apply TDMA (Time Division Multiple Address) protocol to reduce the transmission
interference in DUANSs during the localization process.

(2) We assume that nodes in the network have been well synchronized, so that TOA (Time of
Arrival) ranging method can be well adopted.

(3) There are M ordinary nodes and 3 anchor nodes in the network which is not sufficient for the
localization procedure.

(4) Each node has a unique ID and can communicate with each other.

The implementation procedure is as follows:
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e  Step 1: Each node in the network broadcasts "hello" message with the sending time stamp one by
one to trigger the localization procedure;

e  Step 2: After receiving the "Hello" message, each ordinary node calculates the distance between
each other according to TOA ranging method;

e  Step 3: Based on the distance information obtained in step 2, each ordinary node can calculate its
least square localization error according to Equation (4) and then send the localization error to
anchor 1;

e  Step 4: Based on the receiving least square error, anchor 1 selects an initial optimal reference
node according to Equation (5), and then broadcasts the initial optimal reference node’s ID to the
network;

e  Step 5: Based on the selected optimal reference node’s information, other unknown ordinary
nodes in the network predict their mobility patterns and mobile positions according to Equations
(9) and (12) ;

o  Step 6: After getting the predicted position results of the network, anchor 1 updates the reference
selection dynamically as shown in Equation (13) , and then sends the update information to the
network;

o  Step 7: The network changes the anchor-reference group dynamically to adapt to the varying
topology of DUANS.

e  Step 8: If the reference selection remains unchanged, the previous predicted mobility patterns
will still be used to estimate the drifted nodes’ positions continually. If the reference selection
changes, we will re-estimate the mobility patterns and re-predict the drifted nodes” positions
again according to Equations (9) and (12).

The implementation of DRSL algorithm can be described as in Figure 5.

Receive the “hello” message.
Broadcast "hello" message Calculate the range
with time stamp. measurement and the least

square eIror.

Select an initial optimal
reference node based on the
received least square error.

Send the least square error to
the anchor.

Broadoast the initial reference
node to the network.

Update the reference node
selection.

Receive the selected reference
node and predict its position
and mobility pattern.

Send the predicted position
and mobility pattern to the

anchor.
If the reference selection is
changed, broadcast the new
reference node to the network.

Receive the new reference
selection and re-predict the
mobility pattern.

I O

Figure 5. The implementation of DRSL algorithm.

4. Simulation Results

In this section, simulation experiments are carried out to evaluate the performance of the proposed
DRSL algorithm.

4.1. Simulation Settings

Ten nodes are deployed in a 1000 m x 1000 m x 1000 m region including 3 anchors and 7 unknown
ordinary sensor nodes. The anchors’ positions are known and accurate before the localization process.
The estimation period Ty = 100f in the simulation experiments.
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Our key performance metrics in the simulation experiments are the localization error and the
communication cost, respectively. The localization error is evaluated as in Equation (14). The
communication cost represents the transmission data size that is needed for the localization procedure.

T N

Localization Error = Y Y || XF — xF || (14)
k=1i=1

Where X is the estimated position of node i at time k. X¥ is the actual position of node i at time k.

T is the total time duration of the localization procedure; N is the number of unknown ordinary nodes
in DUANS.

4.2. Results and Analysis

4.2.1. The Reference Selection Analysis

In this paper, several Monte Carlo experiments are performed to evaluate the performance of
the proposed DRSL algorithm. Different initial network topology is adopted for different experiment.
Figure 6 shows one of the network’s initial structure. As can be seen in Figure 6, because of some
device failure problems, sometimes there are only 3 anchors available for the localization procedure
which is insufficient obviously. Therefore, it is important to select an optimal reference node to assist
the anchors in accomplishing the localization procedure precisely.

1000 - ¥ Anchor O

O Unknown ordinary node o

800

600

z-axis/m

400 o (o]

200

1000
oo < 1000
\\ * < 00
500 el
400

y-axis/m 0 o x-axis/m

Figure 6. The initial topology of DUANSs: red star is the anchor; black circle is the unknown
ordinary node.

Different selection will cause different localization result. As can be seen in Figure 7.

In Figure 7a,b have the same network structure; however, Figure 7a has a higher localization
accuracy than that of Figure 7b. The only reason that causes the difference in localization accuracy is
the different reference selection scheme.

Figure 8 shows the comparison of localization error at the initial time between non-optimal
reference selection scheme and the proposed optimal reference selection scheme. Var is the variance of
the observation error.
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® Anchor ® Anchor
0 Reference node 0 Reference node
© Unknown ordinary node © Unknown ordinary node 5
1000 ¥ Localization result s 1000 ¥ Localization result v v
-] =]
800 800
£ 600 £ 600
e a2
3 3
% 400 o @ N 400 ° 9
- -
200 200
0.l ° 0.l g

1000 1000

600

600

400 400

y-axis/m 0 o0 x-axis/m y-axis/m 0 0 x-axis/m

(a) Reference selection 1 (b) Reference selection 2

Figure 7. The Localization result of different reference selection.

140

120

100 |

Localization error/m

Non-optimal reference selection Optimal reference selection
Different reference selection scheme

Figure 8. The comparison of localization error between different reference selection scheme.

As it can be seen in Figure 8, the localization error increases with the growth of the observation
error. Meanwhile, compared with the non-optimal reference selection scheme, the proposed optimal
reference selection scheme can reduce the localization error of DUANS effectively.

Since the topology of DUANS is changing over time, the dynamic reference selection scheme
proposed in this paper is more appropriate for DUANs with mobile sensor nodes. The localization
performance of dynamic reference selection scheme will be illustrated in the next section.

4.2.2. The Localization Error Analysis of DRSL Algorithm

As it can be seen in Figure 9, the topology of DUANS is changing overtime. Therefore, the
dynamic reference selection-based self-localization algorithm is essential for the mobile network.
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% Anchor
O Unknown ordinary node
{ New location of ordinary node o0
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o ¢
‘E‘ 500
w
z o 4
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0 * o]
¢
o®
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1000 i
1000
500
500
. 0 —" 0
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Figure 9. The topology change of DUANS.

The proposed DRSL algorithm is based on a dynamic reference selection scheme and a
prediction-based localization method. The reference selection and the localization error described in
the last section are set to be the initial value for DRSL algorithm.

Figure 10 shows the trajectory of one mobile node in the network.

=——True trajectory
— Estimation trajectory

o
o

Z-axis/m
poy
o
o

w
©
=]

380

1050 \‘\\\}\\
— 500

1000
4w
950
~— 300
.
. 900 200
Y-axis/m 850 100 X-axis/m

Figure 10. The trajectory of one mobile node in the network.

Figure 11 illustrates the localization error of the mobile node in a certain time. The variance of

observation error is 5.
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=&~ Localization error of X-axis
=%~ Localization error of Y-axis
=¥~ Localization error of Z-axis

Localization error/m

0 20 40 60 80 100
Time period/t0

(a) The localization error in different axis

Localization error/m

13 of 17

0 20 40 60 80 100
Time period/t0

(b) The localization error of one mobile node in a certain time

Figure 11. The Localization error analysis.

Compare the localization error between the algorithm with dynamic reference selection scheme
and the algorithm without dynamic reference selection scheme by doing 500 Monte Carlo experiments
in Figure 12. Each experiment has a random and different initial topology.

30

-Dynam\c reference selection
I:|No dynamic reference selection

25

Localization error/m
=) =3 =

o

0 I.H I
5 10

15

20 25

The variance of observation error/a?

Figure 12. The localization error analysis of dynamic reference selection scheme.

As can be seen in Figure 12, With different range measurement variance, the localization error
of the dynamic reference selection scheme is less than that of the scheme without dynamic reference
selection. Figure 12 demonstrates that the dynamic reference selection scheme can greatly improve the
localization performance for DUANSs with network topology changing problem.

Compare the localization accuracy of the proposed DRSL algorithm with more different

algorithms. The result is shown in Figure 13.
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Figure 13. The localization error analysis of different algorithms.

As can be seen in Figure 13, the localization error of all these algorithms in Figure 13 increase
with the growth of the range measurement variance. Furthermore, the proposed DRSL algorithm has
the highest localization precision among the three algorithms. This is because the proposed DRSL
algorithm can both assist insufficient anchors in accomplishing the localization procedure with high
precision and solve the topology changing problem in DUANs with mobile sensor nodes. The MASL
algorithm is an anchor-free algorithm which can work with insufficient anchors; however, it cannot be
adapted to the mobile sensor network environment and will be influenced by the low transmission rate
in underwater environment dramatically which leads to the highest localization error consequently.

4.2.3. The Communication Cost Analysis

In this section, we compare the proposed DRSL algorithm with anchor-free approach on
communication cost. Communication cost is the transmission data size which is needed for the
localization procedure. Since nodes in DUANSs always have limited power, meanwhile, communication
is one of the most important part of power consumption during the localization procedure.
Communication cost is an essential performance metric for the localization algorithm.

The sending message in this algorithm usually has two parts: a packet-header and a packet body.
We design the packet structure as in Figure 14

‘ D ‘ Time ‘ Type ‘ Data ‘

Packet-header Packet-body

Figure 14. The packet structure.

Assume that there are M nodes deployed in the network. The time duration of the self-localization
procedure is T. The test period is Ts. The estimation period is Ty

IDs is the node’s ID that sends message, l0og> M bits;

Time is the time stamp, 2 bytes;

Type is the message’s type, 2 bits

there are 3 types of messages which represent the packet body’s length.

(1) "Hello" packet: "Hello" packet contains the sending anchor’s coordinate. Thus, the length of
"Hello" packet is 4 bytes.

(2) "Range" packet: "Range" packet only triggers the range measurement process. Thus, the
length of "Range" packet is 0 bit.

(3) "Error" packet: "Error" packet contains the receiving node’s ID and the least square error. Thus,
the length of "Error" packet is logo M + 10 bits.

(4) "Reference" packet: "Reference" packet contains the reference node’s ID and coordinate. Thus,
the length of "Reference” packet is §/0goM + 4 bytes.
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The communication cost C is as shown in Equation (15)

co TTTO [(3M—4)log2M+ (210 4 14)M + (2° — 1)6} bits (15)
S

Increase the number of nodes in the network from 10 to 50. The time duration of localization T is
set to be 1000ty and the estimation period Tj is set to be 100t and the test period T is set to be 200ty.
The comparison between the DRSL algorithm and the MASL anchor-free approach on communication
cost is shown in Figure 15.

%10

=#=The proposed DRSL algorithm g
-G MASL Anchor free loclaization algorithm P Li ¥

Communication cost/bit

10 15 20 25 30 35 40 45 50
The number of nodes in the network

Figure 15. The communication cost analysis.

As shown in Figure 15, the communication cost increases with the number of nodes in the network.
This is reasonable since more nodes mean more messages are needed to transmit during the localization
procedure. Furthermore, we can see that the communication cost of DRSL algorithm is lower than that
of MASL algorithm with no anchor. This is because the proposed DRSL algorithm does not need to do
a complete localization process during each time period and does not always have a high sampling
frequency which reduce the communication cost of the localization procedure obviously.

5. Conclusions

In this paper, we focus on the problem of accurate self-localization for DUANs which has
insufficient anchors and varying topology. For this problem, we propose a dynamic reference
selection-based self-localization algorithm for DUANS. First, we present an optimal reference selection
scheme to solve the insufficient anchors’ problem. The optimal reference node can assist the insufficient
anchors in accomplishing the localization procedure and can increase the localization accuracy
obviously. Secondly, a dynamic reference selection-based self-localization algorithm is proposed
by combining the prediction-based self-localization algorithm with the optimal reference selection
scheme. The algorithm can select the reference node dynamically according to the predicted topology
and mobility pattern which is more suitable for DUANSs with mobile sensor nodes. Simulation results
show that the proposed DRSL algorithm can increase the localization accuracy greatly with insufficient
anchor nodes and has lower communication cost than other anchor-free approach which demonstrate
the advantages of the proposed DRSL algorithm distinctly.
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