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Abstract: An improved anti-noise morphology vision navigation algorithm is proposed for intelligent
tractor tillage in a complex agricultural field environment. At first, the two key steps of guided
filtering and improved anti-noise morphology navigation line extraction were addressed in detail.
Then, the experiments were carried out in order to verify the effectiveness and advancement of the
presented algorithm. Finally, the optimal template and its application condition were studied for
improving the image-processing speed. The comparison experiment results show that the YCbCr
color space has minimum time consumption of 0.094 s in comparison with HSV, HIS, and 2R-G-B color
spaces. The guided filtering method can effectively distinguish the boundary between the tillage soil
compared to other competing vanilla methods such as Tarel, multi-scale retinex, wavelet-based retinex,
and homomorphic filtering in spite of having the fastest processing speed of 0.113 s. The extracted
soil boundary line of the improved anti-noise morphology algorithm has the best precision and speed
compared to other operators such as Sobel, Roberts, Prewitt, and Log. After comparing different sizes
of image templates, the optimal template with the size of 140 × 260 pixels could achieve high-precision
vision navigation while the course deviation angle was not more than 7.5◦. The maximum tractor
speed of the optimal template and global template were 51.41 km/h and 27.47 km/h, respectively,
which can meet the real-time vision navigation requirement of the smart tractor tillage operation in
the field. The experimental vision navigation results demonstrated the feasibility of the autonomous
vision navigation for tractor tillage operation in the field using the tillage soil boundary line extracted
by the proposed improved anti-noise morphology algorithm, which has broad application prospect.

Keywords: intelligent tractor; vision navigation; improved anti-noise morphology; boundary line;
guided filtering

1. Introduction

Agricultural machinery [1] automatic navigation systems are a key part of smart tractors [2] for
implementing precision agriculture, which can free drivers from boring work, as well as improve the
work quality. A global positioning technique using GPS or GNSS [3–5] is applied for the automatic
navigation of unmanned tractors during tillage operation in the field to obtain absolute geographic
coordinates dynamically, whereas the navigation precision is heavily influenced by the inclination
angle of the field surface, meteorological conditions, and the strength of the satellite navigation signal,
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especially in remote areas. Inertial sensors [6,7], which have a large error in long-distance navigation,
can only be used as compensation for short-range position correction. Therefore, vision navigation [8],
as a popular method in autonomous vehicles, mobile robots, and aircraft, was introduced to intelligent
agricultural machinery. The Silsoe Research Institute of the United Kingdom focused on machine
vision-based automatic navigation technology and established an extended Kalman filter model for field
vehicles. The research team in Cemagref University in France proposed the MRF algorithm to deal with
the edge recognition problem of harvested crops to identify crop rows from a multi-feature perspective.
Nishiwaki of Japan used a pattern-matching method according to the characteristics of the distribution
shape between rice rows to measure vehicle position. Carnegie Mellon University combined a visual
odometry system with an aided inertial navigation filter to produce a robust tractor navigation system
where the accuracy is measured in meters on rural and urban roads and, thus, does not rely on external
infrastructure. Aiming at crop harvest and management operation, China Agricultural University,
Nanjing Agricultural University, and Nanjing Forestry University proposed plant navigation line
extraction algorithms such as filtering methods based on image scanning, wavelet transform, and
optimized Hough transform, respectively, to improve recognition of plant navigation lines.

A local autonomous navigation method by applying the boundary line of tillage soil is presented
in this paper, with the tractor works in tillage mode inspired by the existing plant line navigation
method. Moreover, a fast image-processing algorithm using optimized templates combined with
guided filtering [9–12], improved anti-noise morphology, and Hough transformation [13,14] is proposed
to meet the practical application of agricultural tillage.

2. Materials and Methods

Here, a traditional tractor of type AXION 850 (CLAAS) was modified into an intelligent tractor
with the aid of a tractor-driving robot that drives the tractor as shown in Figure 1a. This tractor-driving
robot consisted of a steering arm, a gear-shifting arm, a brake leg, a clutch leg, and an accelerator
leg; it can operate a tractor imitating a tractor driver. The steering arm uses the motor to drive the
steering wheel of the tractor through gears and chains, as shown in Figure 1b,c. Moreover, a camera
(BLUELOVER, resolution 1280 × 980) and an RTK GPS (X10, Huace Co., Shanghai, China) were
installed on the tractor for automated guided operation.

The tillage procedure of the intelligent tractor included two steps. Firstly, the tractor tilled a round
line under manual control or teleoperation control to create a boundary between the tillage soil. Then,
the tractor worked an autonomous navigation model based on the boundary calculated using guided
filtering, improved anti-noise morphology, and Hough transformation in sequence, in consideration of
the severe randomness and non-uniformity of the agricultural filed environment.
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2.1. Guided Filtering

2.1.1. Local Linear Model

The local linear model is mostly used for non-analytic functions, defined as the adjacent points on
a function which have a linear relationship with others. The definition shows that a complex function
can be represented by multiple adjacent local simple linear functions, where each point value can be
obtained by averaging the weights of all the linear functions excluding that point.

The input image is denoted as I, which is the image to be filtered, while the output is denoted as q.
The local linear model of the guided filter assumes that q is a linear transform of I in a window wk
centered at pixel k; thus, qi which is a pixel in q can be expressed as

qi = akIi + bk , ∀i ∈ wk, (1)

where a and b are the coefficients of the linear function when the window is centered at the pixel index
value k, and i and k are the indexes of a pixel.

After a gradient operation on both sides of Equation (1), we get

∇q = a∇I, (2)

where q and I have similar gradients; thus, the output q maintains the same edge characteristics with I.

2.1.2. Local Linear Model Solution

The process of calculating linear function coefficients is called linear regression. The true value
of the fitting function p is defined, and the difference value between p and the actual output is as
shown below.

E(ak, bk) =
∑

i∈wk
(
(
akIi + bk − pi)

2 + εa2
k

)
, (3)

where p denotes the image to be filtered, and ε is a parameter used for adjusting the filtering effect,
whose purpose is to prevent a value from being too large. The filtering effect improves remarkably
with the increment of ε. Minimizing Equation (3) transforms it to a least square problem within a
certain window wk, where the solution is given by

ak =

1
|w|

∑
i∈wk

Iipi − µkpk

σk
2 + ε

, (4)

bk = pk − akµk, (5)

where σk
2 and µk are the variance and mean of I in wk, pk is the average value of the image p to be

filtered in the window, and |w| denotes the number of pixels contained in the window.
In view of the fact that a pixel can be described by multiple linear functions, all linear function

values containing the point are weighted and averaged when calculating the output value of the point,
as shown in Equation (6).

qi =
1
|w|

∑
i∈wk

(akIi + bk) = aτIi + bτ. (6)

The process of weighted averaging is a linear translational variation filtering process, and the
calculation of the guided filtering is based on this process.

The processing process of the guided filter is shown in Figure 2. Here, the definition of a guiding
graph is P, and the relationship between P and the original graph I is represented by a local linear
model definition. In the figure, q is the linear transformation of the original image I in the window
adjacent to a pixel value, and a and b are the coefficients of the linear function of the window center
at that pixel value. The output pixel value q is linearly multiplied by the input image I; thus, q has a
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similar gradient to I. The edge characteristics of the original image I are still preserved in the image q
after being processed by the guided filtering process.Sensors 2019, 19, 4 of 19 
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2.2. Improved Anti-Noise Morphology Algorithm for Image Navigation Line Extraction

Introducing the concept of mathematical morphology [15–19] to the image edge detection operator
can overcome the shortcomings of the classical operator [20–22] and can greatly reduce the calculation
amount. This paper proposes an improved anti-noise morphology algorithm for image navigation line
extraction, which selects a pair of smaller-scale structuring elements for further anti-noise processing
to extract an image navigation line based on the edge feature.

In the mathematical morphology algorithm, structuring elements should be selected according
to actual needs. Small-scale structuring elements can make the extracted image edges more detailed
and coherent, and obtain more accurate edge localization, whereas large-scale structuring elements
can reflect the large edge contours in the image and have a good noise suppression effect. Therefore,
small-scale structuring elements were selected for obtaining complete edges in this paper.

The edge of the image is calculated as follows:

yd = ((( f ◦A1) ·A2) ⊕A2) ◦A2 − ( f ◦A1) ·A2, (7)

ye = ( f ◦A1) ·A2 − ((( f ◦A1) ·A2)ΘA2) ·A2, (8)

where A2 and A2 are two different structuring elements, shown below.

A1 = [0, 1, 0; 1, 1, 1; 0, 1, 0],

A2 = [1, 0, 0; 1, 0, 0; 1, 0, 0]

In Equations (7) and (8), f is the image after guided filtering treatment. The anti-noise morphology
edge detection operator is given as follows:

yde = yd + ye. (9)

Via some ordinary operations, the edge information can be easily obtained from the images of the
edges detected by Equations (7) and (8). For detecting more detailed edges, as well as improving the
anti-noise ability of yde under the condition of equal noise, the noise immunity is defined as

y = yde + Emin, (10)

where Emin is min
{
yd, ye

}
, yd is the edge detected by Equation (7), ye is the edge detected by Equation (8),

and yde is the edge detected by Equation (9).
The tillage soil boundary line extracted by using the algorithm mentioned above is shown in

Figure 3b,c shows the boundary line extracted by color space conversion followed by threshold
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processing. There are remarkable errors at both ends of the navigation line in Figure 3b because of the
calculation error caused by the truncation of the image, whereas it is obvious that the truncation error
in Figure 3c is significantly improved for navigation line extraction.Sensors 2019, 19, 5 of 19 
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Figure 3. The edge processing comparison: (a) original; (b) edge information; (c) processed edge
information.

The tractor completed the first returning tillage manually via human driving or tele-operational
driving before implementing the autonomous image-aided navigation operation. The navigation line
of the tractor was calculated by using a Hough transformation from the processed tillage soil boundary
in Figure 3. In the actual operation, the navigation line was attached to one side of the tractor. It was
influenced by the angle of view of the camera position, which resulted in an angular deviation between
the calculated navigation line and the actual line. For this problem, the transverse line of the tractor
was defined as the horizontal line lh The forward direction line of the tractor deviated in the camera
image as shown in Figure 4, where the front lines l f in the left view and right view are rotated to an
acute angle (θ0l) and an obtuse angle (θ0r) to the horizontal line lh.
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Figure 4. Direction correction diagram: (a) left view; (b) right view.

For simplifying the adjustment algorithm of the navigation line, the actual direction angle θ of the
tractor was calculated as follows:

θ = ϕ · k (k =
90◦

θ0
), (11)

where ϕ denotes the navigation angle between the tillage soil boundary and the horizontal line of the
tractor extracted from the image, θe

′ is the angle between the front line and the tillage soil boundary,
and θ0 is the angle between the front line and the horizontal line in the image, equal to θ0l and θ0r,
respectively, when the boundary line gets located at the left side and right side of the tractor.

During tractor navigation using the tillage soil boundary line, θ0 and k are calculated as
initialization. Then, the navigation angle θ is obtained after navigation line extraction from the image.

The tractor needs to turn left if the navigation angle θ is not more than 90◦; otherwise, it needs to
turn right whether the boundary line is located on the left or right side of the tractor. The steering
adjustment algorithm flowchart is shown in Figure 5.
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3. Experiment

In this paper, the computer employed for the tillage soil boundary navigation line extraction was
configured as follows: 64-bit Windows 10 operating system, 8 GB memory, and a two-core processor
Intel (R) Core (TM) i5-4200H central processing unit (CPU) @ 2.80 GHz. The first experiment was
carried out to verify the effectiveness of the proposed algorithm mentioned above using several tillage
images of different farms. Secondly, the navigation algorithm was used for smart tractor tillage in an
experimental farm of Nanjing Agricultural University. Moreover, the optimal template was studied to
improve the efficiency of the algorithm.

3.1. Effectiveness Verification of the Algorithm

3.1.1. Color Space Selection

The time consumption and each optimal effect component of the YCbCr, HSV, HIS, and
2R-G-B [23–26] format images converted from the original image are shown in Table 1 and Figure 7,
which indicate that the tillage soil boundary in the Cr component in the YCbCr format image was
clearest among all the gradation component images, as well as having the fastest conversion speed of
around 0.094 s.

Table 1. Consumption contrast of different color spaces.

Color Space Time Consumption (s)

YCbCr 0.094
HSV 1.541
HIS 1.639
RGB 0.126
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Furthermore, the histogram of the best gradation component in each image, shown in Figure 8,
denotes that the frequencies of I and V gradation components were constantly zero; the 2R-G-B gradation
component had a less obvious threshold segmentation pixel number, whereas the Cr gradation component
had an apparent threshold segmentation point at 15 pixels. Thus, the Cr component was selected for the
identification of the tillage soil boundary.
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3.1.2. Filtering Method Selection

As the illumination strength in the field does not remain constant, to make the algorithm robust,
images used in filter selection were captured in both weak and strong light environments, as shown in
Figure 9.
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Figure 9. Fields with different illumination strength: (a) weak light intensity; (b) strong light intensity.

The homomorphic filtering [27–30] method is very popular in image enhancement processing
because it can enhance the abrupt component (demarcation line) and suppress the slow variation
component at the same time. The two images with weak light intensity and strong light intensity were
processed using the homomorphic filtering method. Processes and the corresponding results under
both the weak and strong light intensities are shown in Figures 10 and 11, respectively. However,
as shown in the below figures, the homomorphic filtering method was not suitable for extracting the
boundary line between tillage soil as the slow varying components were more in proportion than the
abrupt components in the field tillage images.
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Figure 10. The process of the weak-light-intensity image using the homomorphic filtering (HF) algorithm:
(a) grayscale; (b) grayscale histogram; (c) frequency response of the high-pass filter; (d) Butterworth
high-pass filtering; (e) median filtering; (f) homomorphic filtering.

The homomorphic filtering (HF) method and other algorithms such as Tarel [31], multi-scale
retinex [32–34], wavelet-based retinex [35], and guided filtering method were applied to enhance
the boundary distinction between tillage soil for contrast testing, as shown in Figure 12. The Tarel
algorithm could clarify the soil boundary but intensified the dry straw simultaneously, which led to
huge image interference. In contrast, the multi-scale retinex algorithm could eliminate the dry straw
information but weakened the reflection difference between the tillage soil, which resulted in low
discrimination of the soil boundary. Both the wavelet-based retinex algorithm and homomorphic
filtering algorithm could enhance the soil boundaries but darkened or brightened the whole images,
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which made it difficult for them to identify the boundaries using the binarization method. The guided
filtering algorithm could enhance the contrast between the tillage soil, which made it convenient for
the boundary extraction.Sensors 2019, 19, 9 of 19 
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Figure 12. The input image and experiment results of the filtering algorithms: (a) original; (b) Tarel;
(c) multi-scale retinex; (d) wavelet-based retinex; (e) HF; (f) guided.

The contrastive calculation time of the filtering algorithms mentioned above is shown in Table 2.
Among them, the image processing time of the guided filtering algorithm was only 0.113 s, followed
by the multi-scale retinex, HF, Tarel, and wavelet-based retinex algorithms which took 0.552 s, 0.867 s,
0.902 s, and 1.008 s, respectively.
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Table 2. Testing data for the different filtering methods.

Filtering Method Highlighting Time Consumption (s)

Tarel − 0.902
Multi-scale retinex + 0.552

Wavelet-based retinex + 1.008
Homomorphic filtering (HF) − 0.867

Guided + 0.113

Therefore, the guided filtering algorithm was selected for tillage soil boundary identification,
considering the image-processing speed and the contrast of the tillage soil.

3.1.3. Navigation Line Extraction Using Improved Anti-Noise Morphology Algorithm

The edge extraction results and the Hough transform results of the image obtained using the
basic morphology and improved anti-noise morphology algorithms are shown in Figures 13 and 14,
respectively. The improved anti-noise morphology algorithm could eliminate the boundary noise
made by the basic morphology algorithm because of the adopted double structure and minimum
operation. The navigation error decreased from 10◦ using the basic morphology algorithm to 0.5◦

using the improved anti-noise morphology algorithm.
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Figure 14. Results of Hough transform.

Different edge extraction results obtained by applying the improved anti-noise morphology
algorithm and other popular existing edge extraction algorithms such as Sobel [36–40], Roberts [41,42],
Prewitt [43,44], and Log [45] are shown in Figure 15. There were some breakages in the extracted
edges using the latter four algorithms, which led to large errors during navigation line identification
processing. Moreover, the longest extracted navigation line created using the improved anti-noise
morphology combined with Hough transform method had the best precision compared with the others
as shown in Figure 16.
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(f) improved anti-noise morphology.
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(f) improved anti-noise morphology.

The time consumption of the above algorithms is shown in Table 3. Among them, the time
consumption of the improved anti-noise morphology was minimal, followed by the Sobel operator,
the Roberts operator, the Prewitt operator, and the Log operator. The longest line was used as the
tractor navigation line to calculate the orientation error for steering adjustment of the tractor.
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Table 3. Time consumption contrast of different edge operators.

Edge Operators Time Consumption (s)

Sobel 0.089
Roberts 0.090
Prewitt 0.090

Log 0.096
Improved anti-noise morphology 0.073

3.1.4. Image Template Optimization

In order to further improve the real-time vision navigation during linear tillage operation of the
tractor, the appropriate image should be cropped from the whole original image, because a larger picture
needs more computer processing time. The tractor tillage operation includes two work modes, i.e.,
a linear mode and a turning mode. During the linear mode, the longest line of the tillage soil boundary is
firstly created using the above improved anti-noise morphology algorithm. Then, a rectangle centered at
the middle of the longest line is used to crop a part of the original picture for navigation line calculation,
because the position and the navigation angle of boundary line of the soil change a little. During the
turning mode, the original image should be adopted for navigation because the position of the boundary
in the image varies a lot, which leads to boundary information loss in the rectangle.

The optimization template selection scheme is as follows:

(1) The original image is transformed to grayscale and uniformly scaled to 816× 612 pixels.
(2) The middle of the longest line is used as a reference point.
(3) Different size rectangles centered at the reference point are used for navigation precision

comparation, as shown in Figure 17a.

Sensors 2019, 19, 12 of 19 

 

rectangle centered at the middle of the longest line is used to crop a part of the original picture for 

navigation line calculation, because the position and the navigation angle of boundary line of the soil 

change a little. During the turning mode, the original image should be adopted for navigation because 

the position of the boundary in the image varies a lot, which leads to boundary information loss in 

the rectangle. 

The optimization template selection scheme is as follows: 

(1) The original image is transformed to grayscale and uniformly scaled to 816 × 612 pixels. 

(2) The middle of the longest line is used as a reference point.  

(3) Different size rectangles centered at the reference point are used for navigation precision 

comparation, as shown in Figure 17a.  

  
(a) (b) 

Figure 17. Different templates: (a) rectangular frame selection; (b) navigation line extraction result. 

The experimental results, shown in Figure 17b, denote that the navigation angle error decreased 

significantly when the length and width were not less than 260 and 140 pixels, respectively. When 

the template was less than 140 × 260 pixels, the boundary information decreased with the shrinkage 

in template size, as the size of the boundary signal in the image below that template size was not 

more than that of the background noise. Moreover, the processing of the algorithm took only 47 𝑚𝑠 

for the template size of 140 × 260 pixels compared with that containing 816 × 612 pixels, which 

had a time consumption of 520 ms. 

3.2. Navigation Experiment in the Field 

The autonomous navigation experiment using the proposed tillage soil boundary was carried 

out in the farmland of Nanjing Agricultural University using a tractor (CLAAS AXION 850 model) 

equipped with the tractor-driving robot developed by our team. For comparing the navigation 

precision, an RTK GPS (X10, Huace Co., China) was applied, and the navigation line was used as the 

reference, as shown in Figure 18. 

Figure 17. Different templates: (a) rectangular frame selection; (b) navigation line extraction result.

The experimental results, shown in Figure 17b, denote that the navigation angle error decreased
significantly when the length and width were not less than 260 and 140 pixels, respectively. When the
template was less than 140× 260 pixels, the boundary information decreased with the shrinkage in
template size, as the size of the boundary signal in the image below that template size was not more
than that of the background noise. Moreover, the processing of the algorithm took only 47 ms for the
template size of 140× 260 pixels compared with that containing 816× 612 pixels, which had a time
consumption of 520 ms.
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3.2. Navigation Experiment in the Field

The autonomous navigation experiment using the proposed tillage soil boundary was carried
out in the farmland of Nanjing Agricultural University using a tractor (CLAAS AXION 850 model)
equipped with the tractor-driving robot developed by our team. For comparing the navigation
precision, an RTK GPS (X10, Huace Co., China) was applied, and the navigation line was used as the
reference, as shown in Figure 18.Sensors 2019, 19, 13 of 19 
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Figure 18. Tractor experiment diagram.

Before the autonomous navigation tillage operation, the tractor was teleoperationally controlled
for the first round trip of tillage, and then the tractor longitudinal direction was adjusted to be parallel
to the tillage soil boundary line. A navigation line identification diagram in the experiment is shown
in Figure 19.
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Figure 19. Navigation line extraction.

Firstly, the applied condition on the optimal template containing 140× 260 pixels was studied by
altering the deviation angle θe between the tractor’s longitudinal direction and the boundary between
the tillage soil. The experimental results (Figure 20) indicate that the vision navigational deviation
error δ increased dramatically when θe was more than 7.5◦, which means that the optimal template
was suitable for the tractor body course error range of θem = [−7.5◦, +7.5◦]. Then, the limit of the
tillage operational speed of the tractor was studied based on the total processing time of the algorithm
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t = 0.33 s, the maximum permissible deviation angle θem, the physical field size corresponding to the
optimal template of 140× 260 pixels, and the maximum deviation distance dmax.

dmax =
0.62

sin7.5◦
= 4.75m; (12)

vmax =
dmax

t
= 14.40m/s = 51.41km/h. (13)
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optimal template is adopted when the deviation angle 𝜃e is less than 7.5°; otherwise, the global 

template is applied for navigation. 
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Figure 20. Error research.

Therefore, the ideal maximum working speed of the tractor was 51.41 km/h for vision navigation
using an optimized template when θe was 7.5◦. The maximum working speed of the tractor increased
sharply when θe decreased, as shown in Figure 21. Actually, the existing literature shows that the
tractor speed is not more than 5.2 km/h while tilling.
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Based on the above study, the vision navigation method is shown in a flowchart (Figure 22).
The optimal template is adopted when the deviation angle θe is less than 7.5◦; otherwise, the global
template is applied for navigation.
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4. Discussion and Conclusions

Automatic navigation in the field is a pivotal technology for intelligent agricultural machinery [46].
Satellite navigation technologies such as GPS and BDS are applied in field operations of tractors through
the combined use of RTK technology with the disadvantage of high cost for reaching centimeter-level
navigation accuracy; however, this absolute position navigation technology leads to a cumulative
error. In addition, navigation failure or large errors also occur due to the complicated farmland
environment, such as the uneven ground and micrometeorology of remote farmland, which generates
signal interruptions [8]. LiDAR was used for agricultural robot navigation in orchards [47] and seedling
crops [48]; however, it needs tall plants or trees as a reference. Thus, the visual navigation method
was introduced to agricultural machinery navigation. The central position of a cotton seedling row
was identified as a navigation line for tractor navigation according to the regional vertical cumulative
distribution graph of the images [49]. Green maize seedlings were identified, and the accumulation
of green pixels was used to extract curved and straight crop rows for tractor navigation [50]. Most
previous studies extracted the visual navigation line based on the color difference between the crops
and the background.

Inspired by the existing visual navigation methods in the field, this paper put forward a visual
navigation method based on the color difference between the tillage soil during tillage operation,
and the proposed improved anti-noise morphology vision navigation algorithm combined with guided
filtering algorithm worked well in a complex agricultural field environment with a non-uniform nature,
uneven illumination, and straw disturbance. The accuracy of the navigation angle of the proposed
algorithm was not less than 0.5◦, compared with the precision of 1.15◦ using a combination of RTK–GPS
and IMU [51].

The optimal size of the image was studied for improving the algorithm speed. The optimal template
of 140× 260 pixels is applied when the deviation angle θe is less than 7.5◦. At this time, the navigation
line extracted from the edge information processed by the improved anti-noise morphological operator
with the aid of Hough transform was the most accurate and the fastest, with a time consumption
of only 0.047 s. Under this optimal circumstance, the real-time navigation of the tractor body could
be satisfied as long as the tractor speed was no more than 51.41 km/h. In our earlier discussion,
the image-processing time of the guided filtering algorithm was only 0.113 s, followed by the multi-scale
retinex, HF, Tarel, and wavelet-based retinex algorithms which took 0.552 s, 0.867 s, 0.902 s, and 1.008 s,
respectively. Moreover, as shown earlier, the time consumption of the improved anti-noise morphology
was minimal, followed by the Sobel operator, the Roberts operator, the Prewitt operator, and the Log
operator. However, the global template is used to satisfy the real-time visual navigation of the vehicle
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body when the course deviation is greater than 7.5◦. and the speed of the tractor is no more than
27.47 km/h.

The experiment results show that the navigation line extraction algorithm in this paper took
less time and had a good effect in a complex farmland environment. Therefore, the fast navigation
line extraction method based on improved anti-noise morphology has the advantages of short time
consumption and high precision, and it can meet the requirements of real-time vision navigation in
field tillage using an intelligent tractor, which has important practical application value.

Furthermore, a comparison between the existing operators and the proposed improved anti-noise
morphology algorithm was carried out using standard datasets (downloaded from https://www.sensefly.
com/education/datasets/); the results showed that, overall, the time consumption and navigation
precision of our proposed algorithm have significant advantages compared to other previous operators,
as shown in Figure 23.Sensors 2019, 19, 16 of 19 
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