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Abstract: It is significant to identify rock-mineral microscopic images in geological engineering.
The task of microscopic mineral image identification, which is often conducted in the lab, is tedious
and time-consuming. Deep learning and convolutional neural networks (CNNs) provide a method to
analyze mineral microscopic images efficiently and smartly. In this research, the transfer learning
model of mineral microscopic images is established based on Inception-v3 architecture. The four
mineral image features, including K-feldspar (Kf), perthite (Pe), plagioclase (Pl), and quartz (Qz
or Q), are extracted using Inception-v3. Based on the features, the machine learning methods,
logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbors
(KNN), multilayer perceptron (MLP), and gaussian naive Bayes (GNB), are adopted to establish the
identification models. The results are evaluated using 10-fold cross-validation. LR, SVM, and MLP
have a significant performance among all the models, with accuracy of about 90.0%. The evaluation
result shows LR, SVM, and MLP are the outstanding single models in high-dimensional feature
analysis. The three models are also selected as the base models in model stacking. The LR model is
also set as the meta classifier in the final prediction. The stacking model can achieve 90.9% accuracy,
which is higher than all the single models. The result also shows that model stacking effectively
improves model performance.

Keywords: rock-mineral microscopic images; deep learning; model stacking; transfer learning; CNN;
machine learning

1. Introduction

At present, image pattern recognition is widely used in image data analysis, especially in earth
sciences. Analysis of microscopic images of rock, and mineral classification and identification are
fundamental tasks in geological research. The first step of studying a rock-mineral sample in the lab
is also a significant way to determine the rock-mineral type and properties. It is also the basis of
the geochemical analysis, such as in major, minor, and isotope element tests. To date, rock-mineral
microscopic image identification has been conducted manually by engineers and scholars, which
depends on the operators’ experience and skill. It is inefficient and time-consuming. Moreover,
the result is determined largely by the conductor’s knowledge. Incorrect rock-mineral recognition
impairs subsequent work, which may lead to wasted resources and economic loss. It is crucial to develop
efficient, robust, and objective automatic recognition techniques for rock-mineral microscopic images.

Researchers have combined computer vision and machine learning to analyze the automatic
classification and identification of rock-mineral microscopic images. Singh et al. [1] extracted 27 features
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from a thin section of a rock sample and applied a multilayer perceptron neural network to predict
the test data, which achieved 92.2% accuracy. Młynarczuk et al. [2] and Ślipek and Młynarczuk [3]
applied four algorithms—nearest neighbor, K-nearest neighbor, nearest mode, and optimal spherical
neighborhoods—to classify rock-mineral microscopic images. Ładniak and Młynarczuk [4] adopted
a clustering algorithm to classify thin rock-mineral sections, which achieved about 100% accuracy.
Aligholi et al. [5] extracted seven optical features to classify minerals. Mollajan et al. [6] integrated a
fuzzy fusion of support vector machine (SVM), K-nearest neighbors (KNN), and radial basis function
(RBF) to identify pore type. SVM was outstanding in these models, with an accuracy of 94.4%.
Chauhan et al. [7] compared seven machine learning methods, including unsupervised, supervised,
and ensemble clustering techniques, to process X-ray microtomographic rock images. Shu et al. [8]
applied unsupervised learning methods to analyze manual features for rock image classification.
Aligholi et al. [9] proposed a mineral classification scheme using color tracking. Compared to
conventional classification methods, the color-based procedure can provide reliable identification
results. Galdames et al. [10] used the SVM and voting process based on 3D laser range features to
classify rock images. Compared to manual identification for a rock-mineral thin section, machine
learning methods have advantages. Researchers focused on rock-mineral color and texture, and took
related features as inputs for machine learning. However, the inputs for machine learning need to be
preprocessed first, which is called feature engineering. Feature engineering has a significant influence
on the results of machine learning methods; even if the same machine learning model is adopted,
the result will probably not be identical with different types of feature engineering.

Deep learning [11–16] has been increasingly prevalent in image analysis due to the ability of
automatic feature extraction. It has been applied in many fields [17–19]. Moreover, deep learning is also
employed in rock-mineral microscopic image identification. Jiang et al. [20] applied the convolutional
neural network (CNN) to extract sandstone image features. Segmentation based on deep learning was
also adopted in rock-mineral type determination [21,22]. However, there are challenges and limitations
in deep learning. Deep learning is data-hungry and its architecture is complex. Even though in the
same class, thousands of labeled images are required in deep learning model training. It is hard to
collect and label such a large quantity of data, which makes it infeasible for rock-mineral microscopic
image identification. Moreover, training a large deep learning model from scratch has a significant cost
in terms of computation resources.

Transfer learning provides a new approach to deep learning model application for rock-mineral
images. The transfer learning model can be established based on the similarity between different
tasks. The obtained knowledge can be transferred to a related domain with little change using transfer
learning. In the application of deep learning models using transfer learning, the weights of the models
can be reused in new model construction [23]. There are two advantages of transfer learning using
a pre-trained deep learning model. First, the outstanding-performance model can be trained only
using a small dataset. Second, model training is fast using transfer learning and the pre-trained model.
Although there are insufficient images in each class, a good-performance model can be obtained using
transfer learning [24–26]. In geological image analysis, transfer learning and deep learning models
have been adopted. Li et al. [27] classified sandstone microscopic images automatically using transfer
learning. Zhang et al. [28] applied Inception-v3 to classify different geological structures, which proved
the effectiveness of the deep learning model. The research indicates the effectiveness of deep learning
in feature extraction. Transfer learning has been proved to be an efficient analysis method.

Transparent mineral is the main constituent in rock. Accurate rock-mineral identification makes it
possible to conduct microscopic quantitative analysis, which is the basis of rock-mineral research. If the
trained model can achieve human-level accuracy on similar minerals, it can be applied in rock-mineral
microscopic image analysis with higher efficiency than humans. In this research, the orthogonal
polarization spectral (OPS) images of K-feldspar (Kf), perthite (Pe), plagioclase (Pl), and quartz (Qz
or Q) are selected as the study sample. The four minerals are the common rock-forming minerals,
which are widely distributed in metamorphic rocks. However, there are some similarities in their OPS
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image features. We integrated the deep learning model and machine learning methods to undertake a
comprehensive analysis of the rock-mineral OPS images. The results indicate the Inception-v3 model
can extract effective features. The machine learning algorithms based on perceptron are proved to be
outstanding. Model stacking is also proposed to improve model performance further.

2. Methodology

In this research, transfer learning using a deep learning model and several machine learning
algorithms is applied to identify rock-mineral microscopic images. The deep learning model is set as
the pre-trained model, which is trained using a convolutional neural network (CNN). The features
are generated by transfer learning using the Inception-v3 model. Based on the extracted features,
logistic regression (LR), support vector machine (SVM), random forest (RF), k-nearest neighbors (KNN),
multilayer perceptron (MLP), and gaussian naive Bayes (GNB) are applied to establish the models.
Through the comparison of the different models’ performance, the outstanding models can be selected
as the base models in model stacking. The schematic for rock-mineral microscopic image identification
is shown in Figure 1.
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2.1. Convolutional Neural Network

The deep learning model is trained on some data set using convolutional neural network
architecture. A convolutional neural network (CNN) is a kind of feed-forward neural network, which
is designed for unstructured data identification, such as image, text, and sound. It usually consists of
convolutional layers and pooling layers. Compared to the fully connected layer, each neuron in the
convolutional layer is connected to certain neurons in the previous layer, which is a small and squared
area in the image pixel matrix. The size of the small area in the matrix is called the receptive field, which
spans the dimensions of height and width in the image. There are no special parameters for image
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depth. Color information is also significant in model training. As a consequence, the convolutional
layer should be conducted across the whole color space.

The neurons in one convolutional layer share the same weight to recognize certain patterns from
the previous layer. The certain patterns should have translation invariance, which means the features
should be independent of their coordinates in the image. As a result, all the neurons in the same
kernel should share the same parameters, which is called parameter sharing. Since each kernel can
just recognize a certain pattern, there are several kernels in one layer to identify multiple patterns in
different places of the image. A pooling layer is also a significant concept in CNN, and can decrease
the feature dimension and the computation cost. They are also connected to a special region of the
previous layer, like the convolutional layer. Compared to the convolutional layers, pooling layers
are determined by their own set rather than the parameters in the model training process. In CNN,
max and mean pooling are commonly used. The computation is processed in each neuron in the
CNN as follows:

f (x) = act

 n∑
i, j

θ(n−i)(n− j)xi j + b

, (1)

where f (x) is the output, act is the activation function, θ is the weight matrix, xi j is the input, and b is
the bias.

2.2. Inception-v3 and Transfer Learning

Compared to the GoogLeNet (Inception-v1), Inception-v3 [17] has made large progress. It
integrates all the updates in Inception-v2. Furthermore, there are some new improvements in
Inception-v3. In model design, the optimization-SGD (stochastic gradient descent) is replaced by
RMSProp (root mean square prop). In the classifier, the LSR (label-smoothing regularization) is added
after the fully connected layer. In the convolutional layer, the 7 × 7 kernel is replaced by a 3 × 3 kernel.
Normalization is also used and regularization is added to the loss function to avoid overfitting. Figure 2
shows the compressed view of the Inception-v3 model. At the beginning of the model, 3 convolutional
layers and 2 pooling layers are set, then 2 convolutional layers and 1 pooling layer are set, and, finally,
it follows 11 mixed layers, the dropout layer, the fully connected layer, and the softmax layer.

The operations of convolution and padding are conducted repeatedly on the image in each layer.
Table 1 shows the specific process of convolution and padding. The data transformation is presented.
Before the softmax layer, the image is converted to a 2048-dimension vector, as shown in Figure 1.
The high-dimension vector includes several geometric and optical features. Some of the features will
be presented in Section 4.

Table 1. The outline of the Inception-v3 model.

Type Patch Size/Stride or Remarks Input Size

Conv 3 × 3/2 299 × 299 × 3
Conv 3 × 3/1 149 × 149 × 3

Conv Padded 3 × 3/1 147 × 147 × 32
Pool 3 × 3/2 147 × 147 × 64
Conv 3 × 3/1 73 × 73 × 64
Conv 3 × 3/2 71 × 71 × 80
Conv 3 × 3/1 35 × 35 × 192

3 × Inception 1 × 1 and 3 × 3/1 35 × 35 × 288
5 × Inception n × 1, 1 × n, and n × n/2 17 × 17 × 768
2 × Inception 1 × 1, 1 × 3, 3 × 1, and 3 × 3/2 8 × 8 × 1280

Pool 8 × 8 8 × 8 × 2048
Linear Logits 1 × 1 × 2048

Softmax Classifier 1 × 1 × 1000
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In most cases of machine learning application, the model is established from scratch even though
there is an existing model based on similar data. The repeated construction of the model is a waste
of resources. Considering the similarity of the different models, transfer learning can be applied to
establish a new model using the obtained knowledge. Meanwhile, there have been two problems in
deep learning model training: the data is often insufficient and the computation is slow. However, a
good-performance model can be trained using little data and a pre-trained model. Considering the
relationship between the source domain and the target domain, the new model can be established
using transfer learning.

In the process of deep learning model retraining, the extracted features are adopted to train the
new model [29]. As shown in Figure 2, the images are the input; all the convolutional and pooling
layers are reused in the new model training. In other words, Inception-v3 is taken as a feature extractor,
while the extracted 2048-dimension features are fed to multi-machine learning algorithms rather than
the softmax layer. The new model will be established using model stacking. The whole process is
shown in Figure 2. In our research, K-feldspar (Kf), perthite (Pe), plagioclase (Pl), and quartz (Qz or Q)
images are employed.

2.3. Machine Learning Algorithms

Recently, machine learning has been increasingly used in classification and pattern recognition.
In our research, the input data are complex non-linear features, which are generated using the
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Inception-v3 model. LR, SVM, RF, KNN, MLP, and GNB are selected to establish the identification
model. LR, SVM, and MLP are based on perceptron; RF is a tree model; KNN is a non-parameter
model; and GNB is a model based on probability. It is beneficial for the optimized model search to
high-level features (deep model features) training in different machine learning methods.

2.3.1. Logistic Regression (LR)

Logistic Regression is a generalized linear model. Some variables in LR are obtained by linear
models. The nonlinear sigmoid function is used to map predictions to probabilities. The LR model can
be expressed as Equation (2):

hθ(x) =
1

1 + e−θTx
, (2)

where hθ(x) is the probability. The probability values range from 0 to 1, which is an S-shaped curve
and splits the space into two equal parts. θTx is the linear combination of several related variables.

2.3.2. Support Vector Machine (SVM)

The support vector machine (SVM) was proposed by Cortes and Vapnik [30]. Suppose that the
data is (x1, y1) (x2, y2) . . . (xn, yn); x is the input vectors; n is the number of the training samples; and y
is the label, where y = {−1, +1}. In the classification problem using SVM, the target is to search the
hyperplane to maximize the margin between the two support vectors. The objective function and the
constraint are shown in Equation (3): min 1

2‖w‖
2 + C

n∑
i=1

ξi

s.t. yi[(wxi) + b] ≥ 1− ξi (i = 1, 2, . . . , n)
, (3)

where w is the adjustable weight, ‖w‖ is the Euclidean norm of the vector, ξi is the slack variable,
which is used to relax the constraints, and C is the penalty parameter, which makes a trade-off between
margin and misclassification.

2.3.3. Random Forest (RF)

Random forest (RF) was proposed by Breiman [31], and combines multiple decision trees.
Compared to traditional bagging, the base learning model in RF is the decision tree, while the training
process is determined by random attributes selection. The x-dimension vector is fed to the RF model;
then the K decision trees

{
T(x)

}K
1 generate and are independent of each other. The RF model is expressed

in Equation (4). Each tree will make a prediction and voting is applied to make a decision. The label
predicted by the majority of the decision trees is regarded as the final prediction.

f̂ K
γ f (x) =

1
K

K∑
K=1

T(x). (4)

To reduce the correlation of the different decision trees, bootstrap aggregating is adopted.
The decision trees in a different training subset are generated, which can improve the generalization
and robustness of the model.

2.3.4. K-Nearest Neighbors (KNN)

K-nearest neighbors (KNN) is a non-parametric and simple algorithm. It is a lazy algorithm that
does not generalize the training data. The steps in KNN can be described as the following:

• Calculate the distance between the training and the test data;
• Arrange the distance from smallest to largest;
• Select K minimum-distance points;
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• Calculate the frequency of the K points in each group;
• Return the label with the highest frequency of K and the label is the prediction.

If the training dataset has n attributes, the distances of two datasets can be calculated based on
these attributes. The Euclidean distance is usually selected. For example, two datasets are given as
X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn). The Euclidean distance between X and Y is shown in
Equation (5):

d(X, Y) =

√√ n∑
i=1

(xi − yi)
2. (5)

2.3.5. Multilayer Perceptron (MLP)

Multilayer perceptron (MLP) is a computing network that is inspired by biological neural networks.
Generally, the structure of MLP consists of three significant layers, which are the input layer, the hidden
layer, and the output layer, as shown in Figure 3. The number of neurons in the input, hidden and
output layers, network architecture, and the learning rate are the parameters to be selected to develop
an MLP model. The MLP model is trained with a set of known input data and output data. The training
process continues until the network output matches the desired output. Changing the weights and
biases shall reduce the error between the network output and the target output. The training process is
terminated automatically when the error falls below a threshold or the maximum epochs are exceeded.
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2.3.6. Gaussian Naive Bayes (GNB)

Gaussian naive Bayes (GNB) is a supervised learning method, which is based on Bayes’ theory.
GNB supposes that the features are independent of each other. For the label y and the features x1 to xn,
the probability relationship can be expressed as follows:

P(y|x1, . . . xn ) =
P(y)P

(
x1, . . . xn

∣∣∣y )
P(x1, . . . xn)

. (6)

In Bayes’ theory, the features are independent of each other. Equation (6) can be expressed as
Equation (7):

P(y|x1, . . . xn ) =
P(y)

∏n
i=1 P

(
xi
∣∣∣y )

P(x1, . . . xn)
, (7)
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P(x1, . . . xn) is a constant, thus we can analyze Equation (8).

P(y|x1, . . . xn ) ∝ P(y)
∏n

i=1 P
(
xi
∣∣∣y )

⇓

ŷ = argmax
y

P(y)
∏n

i=1 P
(
xi
∣∣∣y ) , (8)

In GNB, the features obey the Gauss distribution, as shown in Equation (9):

P
(
xi
∣∣∣y )

=
1√

2πσ2
y

exp

−
(
xi − uy

)2

2σ2
y

. (9)

2.4. K-Fold Cross-Validation

In k-fold cross-validation, the original data is randomly divided into k equal-sized subsamples.
In the k subsamples, one subsample is set as the validation data, and the remaining k − 1 subsamples
are taken as the training data. The cross-validation process is repeated k times, namely, k folds. Each of
the k subsamples is taken as the validation data for just one time. The results from all folds can make
a comprehensive evaluation. The advantage of this method is that all data can be both training and
validation data, and each one is used for validation exactly once. The k-fold cross-validation is more
objective than the simple cross-validation. The process of the k-fold is shown in Figure 4. The blue fold
is set as validation. The mean value, E, of the k-fold is taken as the final evaluation.
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2.5. Model Stacking

Model stacking [32] is one of the model ensemble methods, which is not the same as bagging
or boosting. Two-stage training is conducted to establish the model. The process of model stacking
is as following:

• The base models are trained on the same dataset using k-fold cross-validation (usually k = 5 or 10);
• The m base models with significant performance are selected to make a prediction and the k-fold

cross-validation is also employed;
• The mean value of the base model’s k-fold cross-validation predictions are taken as the new features;
• Based on the new features, a senior model can be trained.
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It is obvious that there are two stages in model stacking. In the first stage, m base classification
models are selected to build new features. The robustness of the new features as training data is
guaranteed by the adoption of 5-fold cross-validation. In the second stage, LR is commonly chosen
as the meta-model to build the model and make a final prediction. The process of model stacking is
shown in Figure 5.
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3. Data Collection and Preprocessing

In the field, a rock commonly consists of an aggregate of two or more different minerals. In the
identification of the rock-mineral thin section, the main task is to distinguish each mineral and recognize
them under the microscope. In this research, 1-mm thin-section images of K-feldspar (Kf), perthite
(Pe), plagioclase (Pl), and quartz (Qz or Q) are applied to establish the model; the microscope is shown
in Figure 6. The mineral images can be obtained using the camera on the top of the microscope. Under
the microscope carrier, there is a halogen lamp applied as the light source. The focus can be tuned
using the knob beside the microscope.
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Figure 6. Microscope.

The four minerals exist together with other minerals. The target images will be cut from the
whole thin section images. The target mineral image should cover most of the region in the cut image.
Finally, there are a total of 481 images in all the classes. The specific information is listed in Table 2.
In 10-fold cross-validation, the data is divided into training and validation datasets with a 90/10 split
in each cycle. The four minerals’ thin section images are shown in Figure 7. Nine samples in each
group are presented.
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Table 2. The numbers of sample data of rock-mineral microscopic images.

Mineral Number of Images in Each Class Total Number of Images

Kf 116 -
Pe 122 481
Pl 122 -
Qz 121 -Sensors 2019, 19, x FOR PEER REVIEW 10 of 13 
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4. Model Establishment and Evaluation

In the process of OPS microscopic rock-mineral image feature extraction using Inception-v3, there
is no special limitation to the raw data. The size of the images can be processed to be 299 × 299 × 3
automatically before training, where 299 denotes the height and width of the image size, and 3 denotes
the three channels of RGB (red, green, and blue). The feature map visualization based on the image in
Figure 7a is shown in Figure 8. It shows 3 feature maps of each layer in the first 15 layers. The process
of feature extraction is presented. In the different layers, the extracted features are different. It is
easy to see that some features, such as chromatic aberration and texture, can be extracted using the
Inception-v3 model.

Based on the extracted features, LR, SVM, RF, KNN, MLP, and GNB are adopted to establish
the prediction model using Scikit-learn [33]. The data is split into training data and test data with a
90/10 ratio in every fold of cross-validation. Most of the parameters of the algorithm are default ones.
The selected parameters of each machine learning method are listed in Table 3.
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Table 3. The parameters set in the models.

Method Parameters Value

LR Solver Newton-cg
Multi_class Multinomial

LinearSVC C 1.0
RF N_jobs 4

Criterion Entropy
N_estimators 70

Min_samples_split 5
KNN N_neighbors 1

N_jobs 4
MLP Hidden_layer_sizes 300

Based on the model training parameters set in Table 3, all the models are evaluated using 10-fold
cross-validation. Because of the 10-fold cross-validation application, the mean value and standard
deviation of the accuracy can be used to present the model performance. The accuracy and the accuracy
standard deviation of each model are summarized in Table 4. It can be found that LR, SVM, and MLP
have a significant effect on extracted features, with higher accuracy than the other models. The accuracy
is about 90.0%.

Table 4. The data test with different deep learning models.

Models Accuracy (%) Accuracy Standard Deviation (%)

LR 90.0 4.5
SVM 90.6 5.3
RF 81.9 3.2

KNN 83.0 5.4
MLP 89.8 3.5
GNB 78.0 4.3

Since LR, SVM, and MLP are outstanding among all the models, the three models are employed
as the base models in model stacking. The parameters of the three models in Table 3 are also employed
in model stacking. In the first training stage, the three models generate new features, and 5-fold
cross-validation is applied to show objective accuracy; in the second training stage, the final model
is established using LR. The model selection is significant to the performance of the stacking model.
All the base models should have outstanding performance. The base model with low accuracy has a
negative influence on the final result. There are no special constraints to the new features after model
selection. The evaluation results of the stacking model and the three single models are shown in
Table 5.
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Table 5. The data test with different deep learning models.

Models Accuracy (%) Accuracy Standard Deviation (%)

LR 90.0 4.5
SVM 90.6 5.3
MLP 89.8 3.5

Stacking Model 90.9 4.0

Table 5 shows that the stacking model has the highest accuracy and the accuracy standard deviation
is relatively low. In the process of model stacking, the parameters of all the involved models are fixed.
It proves that model stacking can improve the prediction performance without parameter tuning again.
Meanwhile, considering the accuracy standard deviation, the stacking model is relatively stable.

5. Conclusions

In this research, the deep learning model Inception-v3 is adopted to extract high-level features
of quartz and feldspar microscopic images. Different machine learning methods and 10-fold
cross-validation are adopted. The highest accuracy of the single model, SVM, is 90.6% and the
lowest accuracy is that of GNB, of about 78.0%, which indicates that the features extracted by
Inception-v3 are effective. The deep learning models and the extracted features can be applied in smart
identification of rock-mineral thin sections.

Furthermore, based on the extracted features, the six machine learning methods—LR, SVM, MLP,
RF, KNN, and GNB—are applied to make a prediction. The result shows LR, SVM and MLP have
a significant performance, which means the methods based on the perceptron are effective on the
high-level features. The accuracy of the three models is about 90.0%.

Since LR, SVM, and MLP have outstanding performance, the three models are selected as the base
models for model stacking. The 5-fold cross-validation is also applied to evaluate the stacking model.
The result shows that the stacking model has a better performance than the single models, with an
accuracy of 90.9%. It proves that model stacking is also effective for high-dimensional features.

In the future, more types of mineral samples should be added to train the model. Then, the microscope,
the computer, and the model can be integrated to identify rock-mineral thin sections automatically.
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