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Abstract: Navigation is a precondition for ocean space vehicles to work safely in polar regions.
The traditional polar algorithms employ the grid strapdown inertial navigation system (SINS) as the
backbone and Doppler velocity log (DVL) output velocity as measurements to constitute the integrated
navigation system, of which, however, the position errors still accumulate with time. The ultra-short
baseline (USBL) position system can provide position information that can be used to improve the
performance of the SINS/DVL integrated system. Therefore, a grid SINS/DVL/USBL integrated
algorithm for polar navigation is proposed in this paper. In order to extend the availability of the
USBL and improve integration accuracy in polar regions, the USBL observation model is established
based on the relative position measurement firstly. Then, a grid SINS/DVL/USBL integrated algorithm
is proposed to fuse the information of these sensors with a modified Kalman filter (MKF) dealing
with the sparse USBL output. Finally, a vector fault detection method, which takes the measurements
as detection objects instead of the filter, is designed to locate the measurement fault and can be
employed by the centralized filter to improve the fault-tolerant. Simulation and experiment results
show that the proposed grid SINS/DVL/USBL integrated navigation system can further restrain SINS
errors especially the position errors effectively. Meanwhile, the vector fault detection method can
detect and isolate the fault measurements of centralized filter immediately and accurately. Therefore,
the proposed fault-tolerant grid SINS/DVL/USBL integrated navigation algorithm can improve the
reliability and accuracy of polar navigation for ocean space application.

Keywords: polar navigation; grid strapdown inertial navigation system (SINS)/Doppler velocity log
(DVL)/ultra-short baseline (USBL) integrated navigation; relative position measurement; vector fault
detection method

1. Introduction

More and more significant scientific research is carried out in the ocean of the polar regions [1,2].
The high-precision and highly reliable navigation is the precondition for ocean space vehicles to operate
normally and safely [3]. The strapdown inertial navigation system (SINS) has been widely used for
polar vehicles, especially for the underwater vehicles due to its highly autonomous [4]. However,
the SINS output contains periodic oscillation errors and accumulated errors. Navigation with a single
sensor or a single system is often insufficient, so the SINS-based integrated navigation technology is a
potential method for polar navigation [5–8].

The traditional integrated navigation algorithms are based on a north-oriented geographic
framework and will lose efficacy in polar regions because of the meridian convergence [9]. A grid
frame and the grid SINS algorithm have been proposed in [10], which are employed in this paper
to solve the problem of meridian convergence. In polar regions, the geomagnetic navigations may
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fail to work due to the anomaly of geomagnetic field. The visual navigation has a high demand
for visibility. The geophysical field navigation has strong dependence on the completeness of the
database. The global navigation satellite system (GNSS) can provide the position or some other
information to construct the grid SINS/GNSS integration, but cannot provide continuous information
for underwater vehicles, which may decrease the usability and accuracy of the grid SINS/GNSS
integration [11]. The acoustic sensors have high accuracy for ocean space applications and will not
lose performance in polar regions [12], so they can provide external measurements to restrain the SINS
errors [13–15]. However, the reliability of acoustic sensors is influenced by the operation environment.
In this paper, an integrated navigation algorithm consisting of the grid SINS and acoustic sensors is
proposed with a novel fault detection method to achieve a high-precision and high-reliability polar
navigation performance.

It is known that the Doppler velocity log (DVL) is widely used to provide velocities [16], and the
grid SINS/DVL integrated algorithm has been proposed in [17]. But the position errors of a grid
SINS/DVL integrated algorithm still accumulate with time. To overcome this problem, some additional
position measurements could be introduced. The majority of traditional integrated systems choose the
absolute position as measurements [18], but in polar regions the longitude errors will be amplified
and no longitude can describe the position of the North or South Pole [10]. The ultra-short base line
(USBL) position system can provide position information for both the surface and underwater vehicles.
The output relative positions are provide as original information [12,19], i.e., the range R, altitude
angle α and azimuth angle β between the transponder and the vehicle-mounted hydrophone array,
and then the absolute positions, i.e., the position coordinate in the earth-centered earth-fixed (ECEF)
frame, can be calculated based on the relative positions [20]. Influenced by the operation environment,
the USBL can only provide one kind relative position in some cases, such as only the angle α and β,
so the absolute position cannot be provided in these cases. Therefore, the original relative position has
more availability than the absolute position. If the relative position is chosen as the measurements,
together with a proper fault detection method to detect the effective measurements, the availability of
the USBL can be extended, and the integrated filter will have more accuracy and stability than the filter
with absolute position measurements. A grid-based USBL filter observation model can be designed
with the relative position measurements, and then the grid SINS/DVL/USBL filter can be proposed to
improve the navigation accuracy.

The acoustic sensors may be failed due to the operation environment [21], and with the increase of
the measurement information, the fault occurrence may also increase. Although some robust Kalman
filtering approaches have been studied with uncertainties such as model validation-based robust
Kalman filtering with uncertainties satisfying integral quadratic constraints [22], interval Kalman
filtering [23], and robust Kalman filtering for systems with stochastic uncertainties [24], which can
improve the robustness of the system despite the model uncertainties or even the linearization errors,
these methods still cannot detect and exclude the fault measurements. In addition, the output of the
USBL is one kind of sparse measurement signals [25] and influenced by the application environment,
the acoustic sensors may have an unstable update frequency, which also cannot be solved by these
robust Kalman filtering approaches. Therefore, a fault detection method is essential to deal with the
measurement failure firstly. Then, a new or modified Kalman filter (MKF) algorithm to deal with the
measurements with low or unstable frequency is required.

The wavelet filter, sequential probability ratio test and residual χ2 are traditional methods to
detect the measurement fault for the integration filter [26]. But the traditional detection methods are
scalar detection methods, which virtually take the filter as object to detect and locate the fault filter
instead of the measurement. Therefore, the traditional scalar methods can only be employed by the
sub-optimal federal filter to detect and isolate the sub-filter fault, but cannot be employed by the
centralized filter. What is more, the scalar methods also take the filter as object to isolate the fault,
which may be a waste of useful signals because the isolated filter may contain some other fault-free
measurements. For the polar underwater vehicles, the reference navigation information is not as
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abundant as in the low and middle latitude regions, and the effective measurements should be utilized
fully to obtain a proper navigation performance. Therefore, in order to obtain proper accuracy and
maintain high reliability, the centralized filters together with a novel detection method are more proper
choice for polar vehicles than the federal filter with traditional scalar detection methods. The novel
detection method should take the measurement as object to deal with measurement fault and improve
the utilization of effective measurements.

In this paper, a fault-tolerant grid SINS/DVL/USBL integrated navigation algorithm is proposed to
improve the navigation reliability and accuracy in polar regions for ocean space application. The DVL
and USBL outputs are introduced as measurements, and the USBL observation model is designed
based on the grid frame with relative positions as measurements to overcome the position task.
Then the grid SINS/DVL/USBL centralized filter model is proposed for polar navigation. Besides,
to deal with the sparse USBL output measurements, an MKF is employed to maintain the high and
stable filter update frequency and accuracy. Finally, a vector fault detection method is designed
to improve the fault-tolerant of integration. In the vector method, the fault detection vector is
designed based on the classified measurements. Each element of the fault detection vector represents
the quality of the corresponding measurement group. Therefore, the measurement is taken as the
object to be detected and isolated instead of the filter, which can improve the utilization of effective
measurements and fault-tolerant of the filter, especially the centralized filter. All of the design in the
above will improve the accuracy and reliability of the integrated navigation system for vehicles in polar
regions, and some experiments are conducted to validate the performance of the proposed integrated
navigation algorithm.

The remainder sections are organized as follows. Section 2 describes the grid SINS and USBL
position system. The grid SINS/DVL/USBL integrated filter model is proposed in Section 3. Section 4
explores the MKF filter algorithm and vector fault detection method. Simulations and semi-physical
experiments are conducted in Section 5 to validate the performance of the proposed integrated
navigation algorithm. Finally, Section 6 outlines the conclusions and future works.

2. The Grid SINS and USBL Position System

The grid SINS, which is chosen as a backbone navigation system, is employed with the relative
position from the USBL and velocity from the DVL to compose an integrated system for the polar
navigation. Besides, some different frames are reviewed here, i.e., the inertial frame i, the earth centred
earth fixed frame ECEF(e), the geographic frame g, the grid frame G, the body frame b, and the USBL
array frame u.

2.1. The Grid Frame and Grid SINS Mechanization

As shown in Figure 1, the grid SINS chooses the right-handed grid frame as the navigation frame.
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A grid north axis (yG - axis), which is parallel to the Greenwich plane, is employed instead of the
geographic north, and the angle between the grid north and geographic north is σ. The other detail
descriptions of the grid frame can be found in [10].

The mechanization of grid SINS attitude, velocity, and position are:

.
C

G
b = CG

b (ω
G
Gb×) (1)

.
V

G
= CG

b fb
−

(
2ωG

ie +ω
G
eG

)
×VG + gG (2)

.
R

e
= Ce

GVG= (Cg
e )

T
(
CG

g

)T
VG (3)

The detailed processing and physical variables of (1), (2) and (3) can refer to [10].

2.2. The USBL Position System

As shown in Figure 2, the USBL position system consists of four vehicle-mounted hydrophones and
a known-location transponder (denoted as r). The four hydrophones are arranged in two orthogonal
baselines and make up the USBL array. The intersection point of two baselines is the origin of the
USBL array frame (u frame) and the right-handed u frame are then shown as follows:
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It is assumed that the sound velocity and wavelength under water are known. Then, the sound
signals transmit between the USBL array and the transponder to measurement the relative position
between them. As shown in Figure 2, the relative position between the USBL array and the transponder
can be presented as

[
α β R

]
, where α s the altitude angle, and β is the azimuth angle, and R is

the range.

3. Design of the Grid SINS/DVL/USBL Integrated Filter Model with Relative Position
Measurements

As discussed above, the single navigation device cannot maintain the accuracy of polar navigation.
Therefore, a polar grid SINS/DVL/USBL integrated navigation algorithm is proposed to enhance the
navigation performance for vehicles. In this section, the grid SINS/DVL/USBL filter model is designed
for the proposed integrated algorithm. The DVL provides the absolute velocity while the USBL
provides the relative position

[
α β R

]
as the external navigation information. Figure 3 shows the

diagram of the proposed grid SINS/DVL/USBL integrated navigation algorithm. The design details of
the algorithm will be discussed in the following subsections and Section 4.
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3.1. Design of the Dynamic Models

The dynamic models of the integrated navigation system include the grid SINS, DVL and USBL
models, which can be described by state equations as follows:

.
X = FX + GW (4)

where the filter state is X =
[

xSINS xDVL xUSBL
]T

; the filter state noise is W =[
wSINS wDVL wUSBL

]T
; F is the system matrix and F =


FSINS 015×3 015×6

03×15 FDVL 03×6

06×15 06×3 FUSBL

; G is the noise

transition matrix and G =


GSINS 015×3 015×2

03×6 GDVL 03×2

06×6 06×3 GUSBL

. xSINS, xDVL and xUSBL are the system states of

SINS, DVL and USBL respectively. wSINS, wDVL and wUSBL are the system noises of SINS, DVL and
USBL respectively. FSINS, FDVL and FUSBL are the system matrixes of SINS, DVL and USBL respectively.
GSINS, GDVL and GUSBL are the noise transition matrixes of SINS, DVL and USBL respectively.

The detail of the dynamic models will be described in the follow sub-sections, where the dynamic
model of the USBL based on relative position measurements will be discussed in particular.

3.1.1. Dynamic Model of the Grid SINS and DVL

According to [17], the state of grid SINS to be estimated is chosen as xSINS =[
φ δVG δRe εb

∇
b

]T
and the differential equations of grid SINS state can be described as:

.
φ = −ωG

iG ×φ+ CV_φδV + CR_φδRe
−CG

b ε
b

δ
.
V

G
= fG

×φ+ CV_VδVG + CR_VδRe + CG
b ∇

b

δ
.

R
e
= CV_RδVG + CR_RδRe

.
ε

b
= 0

.
∇

b
= 0

(5)

where εb is the gyroscope drift, ∇b is the accelerometer bias, φ is the attitude error, δVG is the velocity
error, and δRe is the position error in ECEF frame. The CV_φ, CR_φ, CV_V , CR_V , CV_R, and CR_R are the
sub-state transition matrixes, which can refer to [17].

Besides, the DVL state is random velocity error, i.e., xDVL = δVm
DVL, which is assumed as the

one-order Markov process:
δ

.
V

m
DVL = −δVm

DVL/τV + wV (6)

where τV is the correlation time of the Markov process and wV is the zero-mean Gaussian white noise.
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Therefore, the grid SINS and DVL dynamic models can be described as (7) and (8), respectively.

.
xSINS = FSINSxSINS + GSINSwSINS (7)

.
xDVL = FDVLxDVL + GDVLwDVL (8)

3.1.2. Dynamic Model of the USBL Based on Relative Position Measurements

The USBL output direction errors
[
δαU δβU

]T
, the range factor error δKU, and the

USBL installation error ψU are chosen as the USBL state, and it can be expressed as xUSBL =[
δαU δβU δKU ψU

]T
.

The range R between the transponder and USBL array can be obtained as:

R =
cT
2

(9)

where c is the sound velocity. T is the signal’s roundtrip time between the transponder and USBL array.
Considering of the range error δR, the range R can be rewritten as:

R + δR = (1 + δKu)R (10)

where δKU is the range factor error, which is related to the scale factor error.
After the calibration, the USBL installation error ψU and the range factor error δKU are considered

as the random constants. The direction measurement errors
[
δαU δβU

]T
are considered as the

one-order Markov processes:  δ
.
αU = −δαU/τα + wα
δ

.
βU = −δβU/τβ + wβ

(11)

where τ is the correlation time of Markov process and w is the zero-mean Gaussian white noise.
The USBL dynamic model is described as:

.
xUSBL = FUSBLxUSBL + GUSBLwUSBL (12)

where FUSBL is the system matrix and FUSBL= diag( −1/τα −1/τβ 0 0 0 0 ); GUSBL is the noise

transition matrix and GUSBL =
[

I2×2 04×2
]T

.

3.2. Design of the Observation Models

The observation models of the grid SINS/DVL/USBL integrated navigation system include the
DVL model and the USBL model, which can be described as follows:

Z = HX + V (13)

where Z =
[

zDVL zUSBL
]T

is the filter observation, zDVL and zUSBL are the observations of the DVL

and USBL, respectively; H =
[

HDVL HUSBL
]T

is the observation matrix, HDVL and HUSBL are the

observation matrixes of the DVL and USBL, respectively; V =
[

vDVL vUSBL
]T

is the observation
noise, vDVL and vUSBL are the observation noises of the DVL and USBL, respectively.

The detail of observation models will be described in the following sub-sections where the
observation model of the USBL based on relative position measurements will be discussed in particular.

3.2.1. Observation Model of the DVL

Both the grid SINS and DVL can output vehicle velocity, which is chosen as one of the
system observations.
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After calibration, the DVL installation error and scale factor error are compensated and neglected
in this paper. The DVL output in G frame can be obtained as follows [17]:

Ṽ
G
DVL = V + VG

DVL(V
G
DVL×)ϕ+ δVG

DVL (14)

where VG is the actual velocity and δVG
DVL is the random velocity error of DVL in the G frame.

Besides, the grid SINS output velocity can be described as:

Ṽ
G
SINS = VG + δVG

SINS (15)

where δVG
SINS is the SINS velocity error in G frame.

Therefore, the DVL observation model of the integrated system can be given as:

ZDVL = Ṽ
G
SINS − Ṽ

G
DVL = HDVLx + vDVL (16)

where HDVL can be described as: HDVL =
[
−VG

DVL× I3×3 03×18
]
.

3.2.2. Observation Model of the USBL Based on Relative Position Measurements

The USBL position system can provide the direction and range between the USBL array and
transponder expressed as

[
αU βU RU

]
. The direction and range between USBL array and

transponder can also be calculated by the grid SINS output and expressed as
[
αS βS RS

]
. Then

the USBL observation is expressed as:

Z =


αU − αS
βU − βS
RU −RS

 =

α+ δαU

β+ δβU
R + δRU

−

α+ δαS
β+ δβS
R + δRS

 =

δαU

δβU
δRU

−

δαS
δβS
δRS

 (17)

where the
[
δαU δβU δRU

]
and

[
δαS δβS δRS

]
are relative position errors of the USBL output

and grid SINS output, respectively.
The

[
δαU δβU δRU

]
can be described as:

δαU

δβU

δRU

 =
[

I2×2 02×1

01×2 R

]
δαU

δβU

δKU

 = HU


δαU

δβU

δKU

 (18)

The position coordinate of transponder r relative to USBL array in u frame can be calculated and

obtained from the grid SINS output, which is defined as Pu
urS =

[
xu

S yu
S zu

S

]T
. Pu

urS can be obtained
by:

Pu
urS = Cu

b Cb
GCG

g Cg
e (P

e
r −Pe

bS −Ce
GCG

b δPb
bu) =

[
xu

S yu
S zu

S

]T
(19)

where Pe
r is the position of the transponder expressed in e frame as a known quantity. Pe

bS is the
position of b frame expressed in e frame and provided by the grid SINS. Cu

b and δPb
bu are the calibration

matrix and the level arm between the b frame and u frame and obtained by off-line calibrations.[
αS βS RS

]
can be obtained by:


αS
βS
RS

 =


arctan
(
zu

S/
√
(yu

S)
2 + (xu

S)
2
)

arctan
(
xu

S/yu
S

)√
(xu

S)
2 + (yu

S)
2 + (zu

S)
2

 (20)
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The first order total differential of (20) is written as:

[
δαS δβS δRS

]T
=



−xu
Szu

S

RS
2
√
(xu

S)
2+(yu

S)
2

−xu
S yu

S

RS
2
√
(xu

S)
2+(yu

S)
2

√
(xu

S)
2+(yu

S)
2

RS
2

yu
S

(xu
S)

2+(yu
S)

2

−xu
S

(xu
S)

2+(yu
S)

2 0
xu

S
RS

yu
S

RS

zu
S

RS



δxu

S
δyu

S
δzu

S


= A

[
δxu

S δyu
S δzu

S

]T

(21)

The error of Pu
urS is denoted as δPu

urS =
[
δxu

S δyu
S δzu

S

]T
. Considering of δPu

urS, equation (19)
can be rewritten as:[

xu
S + δxu

S yu
S + δyu

S zu
S + δzu

S

]T

= Cu
b (I−ψU×)Cb

G(I +φ×)(C
G
e + δCG

e )(P
e
br + δPe

br) −Cu
b (I−ψU×)Pb

bu
= Pu

urS −Cu
b Pb

bu −Cu
b (ψU×)Cb

GCG
e Pe

br
+Cu

b (ψU×)Pb
bu + Cu

b Cb
G(φ×)C

G
e Pe

br + Cu
b Cb

GδCG
e Pe

br + Cu
b Cb

GCG
e δPe

br

(22)

Then δPu
urS can be expressed as:

[
δxu

S δyu
S δzu

S

]T

= −Cu
b (ψU×)Cb

GCG
e Pe

br + Cu
b (ψU×)Pb

bu + Cu
b Cb

G(φ×)C
G
e Pe

br + Cu
b Cb

GδCG
e Pe

br + Cu
b Cb

GCG
e δPe

br
= −Cu

b Cb
G(C

G
e Pe

br×)φ+[Cu
b Cb

G[(C
G
e Pe

br)×]CR2δθ −Cu
b Cb

GCG
e ]δRe + [Cu

b (C
b
GCG

e Pe
br×) −Cu

b (P
b
bu×)]ψU

(23)

where CR2δθ can refer to [17], and equation (21) can be rewritten as:[
δαS δβS δRS

]T
= A

[
δxu

S δyu
S δzu

S

]T

= −ACu
b Cb

G(C
G
e Pe

br×)φ+ A[Cu
b Cb

G[(C
G
e Pe

br)×]CR2δθ −Cu
b Cb

GCG
e ]δRe

+A[Cu
b (C

b
GCG

e Pe
br×) −Cu

b (P
b
bu×)]ψU

= Hφφ+ HδReδRe + HψUψU

(24)

Finally, the USBL observation model of the integrated system can be given as:

ZUSBL =


αS − αU

βS − βU

RS −RU

 =

δαS − δαU

δβS − δβU
δRS − δRU

 = HUSBLX + vUSBL (25)

where HUSBL =
[

Hφ 03×3 HδRe 03×9 −HU HψU

]
.

4. Design of the Modified Filter Algorithm and Vector Fault Detection Method

4.1. The Modified Kalman Filter for Sparse Measurement Signals

The Kalman filter (KF) is a linear recursive filter algorithm based on the linear minimum variance.
The KF filter runs in real time so it has numerous applications in navigation.

It is supposed that there are N measurements with different update frequencies involved in the
KF, and their update periods are T1, T2, . . . , TN. The KF update period TK is designed as the common
multiple in the conventional algorithms, and it can be expressed as:

TK = ni•Ti (i = 1, 2, . . . , N) (26)

where ni is an integer that defines the update period.
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The employed integrated filter model is an approximate linear model and the KF is a linear
algorithm. If the interval between two adjacent filter updates is too long, the filter may lose its
precision especially for the high dynamic range. However, the output of the USBL is one kind of sparse
measurement signals which will decrease the filter update frequency. Therefore, the conventional KF
is not the optimum filter algorithm for the grid SINS/DVL/USBL integrated navigation.

In this section, an MKF is employed to improve the update frequency of filter in this paper.
The MKF update period TK is designed as the common divisor of measurements, and it can be
expressed as:

Ti = ni•TK (i = 1, 2, . . . , N) (27)

where ni is an integer that defines the update period.
If the USBL output has not been updated, the filter works in the time update mode. In this case,

the filter steps are expressed as:
X̂k = Φk,k−1X̂k−1 (28)

Pk = Φk,k−1Pk−1ΦT
k,k−1 + Γk−1Qk−1ΓT

k−1 (29)

When the USBL output has been updated, the filter works in the time and measurement update mode.
In this case, the filter steps are expressed as:

X̂k,k−1 = Φk,k−1X̂k−1 (30)

Pk/k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Γk−1Qk−1ΓT

k−1 (31)

Kk = Pk/k−1HT
k

(
HkPk/k−1HT

k +
¯
Rk

)−1

(32)

X̂k = X̂k/k−1 + Kk(Zk −HkX̂k/k−1) (33)

Pk = (I−KkHk)Pk/k−1(I−KkHk)
T + KkRkKT

k (34)

The update frequency of the MKF will not be influenced by the uncertain and low update frequency of
the USBL. The MKF can also be employed by other integrated navigation systems to effectively deal
with the sparse measurement signal.

4.2. The Vector Fault Detection Method for Filters

To improve the fault tolerance of the polar grid SINS/DVL/USBL integrated navigation system,
the fault detection vector is designed and the vector fault detection method is proposed in this paper.
With the vector, the fault detection method can take the measurements as objects to detect and isolate the
fault, and simultaneously improve the utilization of effective measurements, which can also improve
the integration performance. In this section, a vector fault detection method based on the residual χ2

method, i.e., the residual vector χ2 fault detection method, is proposed as an example to detect and
locate the mutant fault measurement.

Firstly, the measurements as the detection object are classified based on the independence of

fault’s occurrence, and can be rewritten as Z =
[

z1 z2 · · · zn
]T

, where zi(i = 1, 2, · · · , n) is the
measurement group which may contain more than one measurement. In the same group, the fault
probabilities of different measurements are dependent. Whereas, the fault probabilities of different
groups are independent from each other. The fault detection model of zi(i = 1, 2, · · · , n) is then
established as:

ẑik = Hik(Φk,k−1X̂k−1) (35)
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where Hik(i = 1, 2, · · · , n) is part of the observation matrix corresponding with zik , and the subscript k
denotes the kth time-step, and ẑik is the estimation of zik . Taking the grid SINS/DVL/USBL integration

as an example, the measurements can be classified as Z =
[

zDVL zαβ zR
]T

. The fault probabilities
of zDVL, zαβ and zR are independent, but the fault probabilities of α and β are dependent. The fault
detection models of zDVL, zαβ and zR are established as:

ẑDVLk = HDVLk(Fk,k−1X̂k−1)

ẑαβk = Hαβk(Fk,k−1X̂k−1)

ẑRk = HRk(Fk,k−1X̂k−1)

(36)

where
[

HDVLk Hαβk HRk

]T
= Hk.

Then, the residual of the measurement estimation rk can be obtained as:

rk =


r1k

r2k
...

rnk

 =


z1k − ẑ1k

z2k − ẑ2k
...

znk − ẑnk

 (37)

If no fault occurs, rik(i = 1, 2, · · · , n) can be considered as white noise which obeys normal
distribution, i.e., rik ∼ N(0, Aik)(i = 1, 2, · · · , n). The residual rik(i = 1, 2, · · · , n) has zero mean and the
variance Aik(i = 1, 2, · · · , n) is:

Aik = Hik Pk/k−1HT
ik
+ Rik (38)

When the measurement fault occurs, the statistical characteristics of measurement noise will
change, and the residual rik is no longer white noise, which means the statistical characteristics of rik
will change and the mean of rik is no longer zero. Then the statistical characteristics change of rik can be
used to detect the measurement fault.

The fault detection vector is designed as:

Γ =
[

rT
1 rT

2 · · · rT
n

]


A−1
1 0 · · · 0
0 A−1

2 · · · 0
...

...
. . .

...
0 0 · · · A−1

n




r1 0 · · · 0
0 r2 · · · 0
...

...
. . .

...
0 0 · · · rn

 =
[
γ1 γ2 · · · γn

]
(39)

where Γ is the fault detection vector, and γi(i = 1, 2, · · · , n) is the fault detection value of zi. γi obeys
the χ2 distribution and its degree of freedom is m, i.e., ri ∼ χ

2(m). m is the dimension of measurement
group zi.

A detection flag vector F =
[

f1 f2 · · · fn
]

is defined, and the fault detection criteria is:

fi =
{

1; γi > TDi , some f aults occur
0; γi ≤ TDi , no f aults occur

(i = 1, 2, · · · , n) (40)

where TD is the threshold determined according to the false alarm rate.
According to the detection flag vector F, if F is a zero vector, all the measurements perform well.

However, if fi = 1, the fault occurs in the measurement group zi and the filter model should be
reconstructed to isolate the measurement zi.

Taking the grid SINS/DVL/USBL integration as an example, Figure 4 shows the flow diagram of
the vector fault detection method for the integrated navigation system.
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By designing and employing the detection vector, the vector detection method can locate the fault
measurement instead of the fault filter, and fault measurement will be isolated by the reconstruction
of observation matrix but the effective measurements will be kept. Therefore, the vector detection
method can also be employed by the centralized filter. Except for the residual χ2 fault detection
method, some other effective traditional detection methods can also employ a proper detection vector
to improve the accuracy of location fault and meanwhile the performance of integrated navigation.

5. Experiment Results and Discussions

To validate the performance of the proposed grid SINS/DVL/USBL integrated algorithm,
the simulations and experiments are conducted in this section. Besides, the sea state and vehicle
motion status are considered. The sea state is set as moderate condition, and the motion status includes
static, motion with constant velocity, motion with constant acceleration, diving and turning a corner.
The main inertial measurement unit (IMU) and motion parameters of the simulation experiment are
described as follows.

Firstly, the gyroscopes drifts are set as 0.05 degrees per hour and the random errors of gyroscopes
are set up as zero-mean Gaussian white noises. The accelerometer biases are set as 6 × 10−5 g and the
random errors of accelerometers are set up as zero-mean Gaussian white noises.

Secondly, the attitude of the vehicle is set as a sine function to simulate the influence of the
moderate sea state. The amplitude and period (denoted as amplitude/period) of pitch angle, roll angle
and yaw angle are set as 2◦/7 s, 3◦/9 s and 1◦/8 s, respectively.

Thirdly, the acceleration of the vehicle is set as 0.2 m/s2 and the vehicle has the maximum speed
5 m/s. The latitude and longitude of the initial position P is set as (75◦ N, 126◦ E). To facilitate
understanding, the position errors of navigation algorithms are expressed as the position errors along
the longitude, latitude and altitude direction respectively, and the unit of position errors is meter.

Finally, the DVL output frequency is 1 Hz, and the USBL output frequency is 0.2 Hz. The DVL
velocity error is less than 0.3 m/s. The USBL range measurement error is less than 20 m, and the angle
error is less than 1.5◦.
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5.1. Simulation Results and Discussions

In this section, the simulation experiments are conducted to assess the performance of the proposed
grid SINS/DVL/USBL integrated navigation algorithm, including the integrated navigation algorithm
and the vector fault detection method.

5.1.1. Comparisons of the Integrated Navigation Algorithms

There are three polar integrated navigation algorithms discussed in this section, i.e., the traditional
grid SINS/DVL integrated algorithm, the traditional grid SINS/DVL/USBL integrated algorithm 1 and
the proposed grid SINS/DVL/USBL integrated algorithm 2. The traditional grid SINS/DVL/USBL
1 employs the absolute position as measurements, and the proposed grid SINS/DVL/USBL 2 employs
the relative position as measurements. All the three integrated navigation algorithms choose the MKF
as the filter algorithm.

The navigation errors of the grid SINS and three integrated algorithms are depicted in Figure 5.
Besides, Table 1 shows the position error statistics of the grid SINS/DVL/USBL integrated navigation
algorithms with different USBL position measurements.
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Table 1. The grid SINS/DVL/USBL integrated navigation position errors.

Parameters USBL Measurement Maximum Improvement RMS Improvement

Latitude/(m) Absolute position 2.0635
88.44%

0.6150
79.43%Relative position 0.2384 0.1265

Longitude/(m) Absolute position 2.7332
57.34%

0.5737
55.83%Relative position 1.1660 0.2534

Height/(m) Absolute position 0.9198
41.41%

0.4243
87.56%Relative position 0.5389 0.0528

As shown in Figure 5, the grid frame can effectively restrain the navigation error amplification,
and all the three integrated navigation algorithms can restrain the grid SINS errors effectively.
As shown in Figure 5a,b, three integrated algorithms have almost the same attitude and velocity
accuracy. However, the position errors of the grid SINS/DVL integrated navigation algorithm, shown
as the blue curves in Figure 5c, still accumulate with time, which cannot maintain the necessary
of high-precision polar navigation, and the grid SINS/DVL/USBL integrated navigation algorithms
have higher position accuracy than the grid SINS/DVL algorithm. As shown in Figure 5c and
Table 1, the position errors of both two grid SINS/DVL/USBL algorithms do not accumulate with
time, and the proposed grid SINS/DVL/USBL algorithm (algorithm2) has higher accuracy than the
traditional SINS/DVL/USBL algorithm (algorithm1). Compared to the traditional algorithm1, the
latitude, longitude and height accuracies of the proposed algorithm2 are improved 88.44%, 57.34%,
41.41% (maximum error), and 79.43%, 55.83%, 87.56% (RMS), respectively. Therefore, compared to
the traditional integrated algorithms, the proposed grid SINS/DVL/USBL integrated algorithm with
relative position measurements can ensure the safety operation of ocean space vehicles in polar regions
with high navigation accuracy.

5.1.2. Simulation Experiments of the Vector Fault Detection Method

In this section, the performance of the vector fault detection method and the fault-tolerant grid
SINS/DVL/USBL integration are discussed. The centralized MKF is the filter algorithm and the residual
vector χ2 fault detection method is employed for the centralized filter. Some possible mutant fault
measurements are involved in this experiment. The starting and termination times of the mutant
measurement fault are shown in Table 2 and the measurement errors and the fault detection flags are
shown in Figure 6.
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Table 2. The starting and termination time of measurement fault.

Fault Measurement DVL USBL α and β R

Starting time/(s) 1800 3600 5400 7200
Termination time/(s) 2250 4050 5850 7650

As description in the Section 4.2, the measurements are classified as three measurement groups
according to the independence of fault’s occurrence, i.e., the range R from the USBL, the direction

angles
[
α β

]T
from the USBL and the velocity from the DVL. The R flag is the fault detection flag of

the USBL measurement R. The angle flag is the fault detection flag of the USBL measurement
[
α β

]T
.

The DVL flag is the fault detection flag of the DVL measurement. If no fault occurs, the corresponding
flag is 0. If some fault occurs, the corresponding flag is 1. The detection flag vector contains three
elements, i.e., the DVL flag, angle flag and R flag. The fault measurement can be identified by its flag
in the vector. The measurement errors and corresponding flags are shown in Figure 6.
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As the flag lines showing in Figure 6, the DVL fault during 1800 s to 2250 s and the USBL fault
during 3600 s to 4050 s both can be detected and located by the detection vector. During the time
5400 s to 5850 s β and α contain mutant fault but R works normally. So the angle flag becomes 1 and
the R flag is still 0, and only the angle measurements, i.e., α and β, are isolated to reconstruct the filter.
Then, during the time 7200 s to 7650 s, R contains mutant fault but α and β work normally. So the R
flag becomes 1 and the angle flag is still 0, and only the R measurement is isolated to reconstruct the
filter. Owing to the detection vector, the fault measurements of the centralized filter can be detected
and located effectively. Especially, when the measurement device contains two kinds of navigation
information, the fault occurrence of which is mutually independent, such as the angle

[
α β

]
and R

from the USBL in this experiment, the fault measurements can also be located. The vector detection
method successfully takes the measurement as object to locate the fault, so the fault location has
more accuracy than the traditional scalar method and the utilization of effective measurements has
been improved.
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The navigation errors in this experiment are shown in Figure 7. The blue curves indicate the
errors of the grid SINS/DVL/USBL integrated algorithm without the fault detection, and the red
curves indicate the errors of the grid SINS/DVL/USBL integrated algorithm with the vector fault
detection method.
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As shown by the blue curves in Figure 7, when the measurements fault occurs, the integrated
navigation algorithm without the fault detection loses its accuracy. However, with the fault detection,
the fault can be detected and located by the fault detection vector, and then the filter is reconstructed
to isolate the fault measurement immediately. In this case, as shown by the red curves in Figure 7,
the integrated navigation can maintain high accuracy because the reconstructed filter keeps updating
uninterruptedly and accurately. On the other hand, the uninterruped filter ensures the uninterrupted
fault detection. Therefore, when the measurements return to normal, the recovery is detected,
and the isolated measurements are introduced into the integrated navigation filter again by another
reconstruction without an obvious convergence time.

As a whole, the proposed vector fault detection method chooses the measurement as objects to
locate the fault by employing the detection vector, so it also can detect and locate the fault measurement
effectively when employed by the centralized filter. With the help of the vector fault detection method,
the grid SINS/DVL/USBL integrated navigation algorithm can improve the fault tolerance and maintain
the accuracy when some measurement mutant fault occurs.

5.2. Semi-Physical Experiment Results and Discussions

In this section, the semi-physical experiments are conducted to further validate the performance
of the proposed algorithm due to the geographic restriction of the polar experiment. The semi-physical
experiments are designed based on two principal factors which mainly affect the performance of the
standard polar and ocean navigation strategies, i.e., the amplification of navigation errors caused by the
meridian convergence and the navigation precision mainly influenced by the IMU measurement errors.
Therefore, the semi-physical experiment, which can simulate the polar meridian convergence and



Sensors 2019, 19, 3899 17 of 26

simultaneously contain the actual IMU output errors, will be more realistic to verify the performance
of the proposed navigation algorithm.

Moreover, compared to the simulation experiments, more standard navigation strategy and
experiment condition are involved in the semi-physical experiment [27]. The GNSS signals are
employed as measurements to give more comparative common navigation strategies and the vehicle
trajectory is also designed to include both the surface environment where the GNSS can provide
position coordinates and also the underwater environment where the GNSS signals are lost. Then
the simultaneous faults of the DVL and USBL are involved to verify the performance of fault
detection method.

The semi-physical experiment contains three parts, i.e., the extraction of sensor errors and
generation of the semi-physical experiment data, the performance validation of the integrated
algorithms, and the performance validation of the fault detection method, which will be discussed in
the following subsections.

5.2.1. Extraction of Sensor Errors and Generation of the Semi-Physical Experiment Data

In this subsection, a set of polar semi-physical experiment data that contain the actual IMU
output errors and ideal IMU outputs is generated and will be employed to verify the performance
of the algorithm. In this experiment, the ideal IMU outputs in polar regions can be generated by the
trajectory generator, and the key point to get the semi-physical experiment data is to get the actual
IMU output errors.

The signal flow to get the actual IMU output errors, i.e., δωb
ib and δfb

ib, and the semi-physical
experiment data, i.e., ωb

ibs and fb
ibs, is shown as Figure 8.
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In the turntable experiment, an IMU is installed on a high-precision three-axis turntable as shown
in Figure 9. The main parameters of the three-axis turntable and IMU are shown in Tables 3 and 4.

During the turntable experiment, the IMU output, i.e., ω̃b
ib and f̃

b
ib, and the turntable movement

data are collected. Then, a trajectory generator is employed, which can generate the ideal reference of
IMU output, i.e., ωb

ib and fb
ib, when the vehicle’s movement is input or designed. As shown in Figure 8,

the movement data of the turntable, i.e., the attitude, velocity, and position, are inputted into the
trajectory generator, and the reference IMU output data, i.e., ωb

ib and fb
ib, are generated.

Then the actual IMU output errors are obtained as: δωb
ib = ω̃

b
ib −ω

b
ib

δfb
ib = f̃

b
ib − fb

ib

(41)

The δωb
ib and δfb

ib are the actual IMU output errors gained from the above turntable experiment.
Meanwhile, the trajectory generator is designed to simulate the polar region geographic

environment which leads to the meridian convergence. The ocean space vehicle trajectory in polar
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regions and the corresponding ideal IMU outputs, i.e.,
–
ω

b
ib and

–
f
b

ib, are generated by the polar
trajectory generator.

Therefore, by adding the actual IMU errors, i.e., δωb
ib and δfb

ib, to the ideal outputs, i.e.,
–
ω

b
ib

and
–
f
b

ib, a set of semi-physical experiment sensor output data, i.e., the ωb
ibs and fb

ibs, can be obtained.
Then the semi-physical sensor output data are employed to conduct the following performance
validation experiments.
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Table 3. Main parameters of the three-axis turntable.

Outer Axis Middle Axis Inner Axis Unit

Angular position accuracy ±3/1 ±3/1.5 ±3/1 arc-sec
Minimum angular rate ±0.001 ±0.001 ±0.001 ◦/s
Maximum angular rate ±180 ±250 ±400 ◦/s
Angular rate accuracy and stability 5 × 10−5 5 × 10−5 5 × 10−5 ◦/s
Angular rate resolution 0.0001 0.0001 0.0001 ◦/s

Table 4. Main parameters of the IMUs.

Constant Bias Random Bias

Gyroscope <0.05 ◦/h <0.05 ◦/h
Accelerometers <7 × 10−5 g <5 × 10−5 g

5.2.2. Semi-Physical Experiments of the Integrated Navigation Algorithms

The standard navigation strategies for ocean vehicles include the SINS/DVL integration,
SINS/DVL/GNSS integration and SINS/DVL/USBL integration, in which the DVL provides the velocity
and the GNSS and USBL provide the absolute position. The grid SINS/DVL/USBL integrated navigation
algorithm proposed in this paper employs the DVL to provide velocity and the USBL to provide the
relative position as measurements.

There are four integrated navigation algorithms discussed in this section including the standard
strategies and the proposed novel strategy:

Algorithm 1: the standard grid SINS/DVL integrated navigation algorithm;
Algorithm 2: the standard grid SINS/DVL/GNSS (absolute position measurement) integrated

navigation algorithm;
Algorithm 3: the standard grid SINS/DVL/USBL1 (absolute position measurement) integrated

navigation algorithm;
Algorithm 4: the proposed grid SINS/DVL/USBL2 (relative position measurement) integrated

navigation algorithm.
As shown in Figure 10, the first three waypoints of the vehicle trajectory (P1–P3) are on the surface

where the GNSS can provide position coordinates. Then the vehicle descends to depths of about
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90 m where the GNSS signals are lost and the grid SINS/DVL/GNSS strategy is switched to the grid
SINS/DVL strategy.
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Figure 10. Description of the designed vehicle trajectory.

The corresponding semi-physical sensor output data obtained in Section 5.2.1 is employed in this
experiment. Besides, all the integrated algorithms choose the MKF as the filter algorithm.

The navigation errors of different algorithms in the semi-physical experiment are depicted in
Figure 11. Besides, the position errors of grid SINS/DVL/USBL algorithms with different USBL position
measurements are shown in Table 5.
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Table 5. The grid SINS/DVL/USBL integrated navigation position errors.

Parameters USBL Measurement Maximum Improvement RMS Improvement

Latitude/(m) Absolute position 2.9663
87.38%

0.9263
87.01%Relative position 0.3742 0.1203

Longitude/(m) Absolute position 2.8152
63.84%

0.7142
65.26%Relative position 1.0179 0.2481

Height/(m) Absolute position 2.5741
91.73%

0.4782
89.36%Relative position 0.2127 0.0509

As shown in Figure 11, the proposed navigation algorithm can conquer the error amplification
caused by the meridian convergence because of the grid navigation frame. As shown by the black
curves, the grid SINS output still contains the periodic oscillation error and accumulated error, and
the integration technique can restrain the grid SINS errors effectively with the help of velocity or
position measurements from the DVL, GNSS and USBL. Besides, firstly the grid SINS/DVL, grid
SINS/DVL/GNSS and the grid SINS/DVL/USBL integrated algorithm have nearly the same accuracy
of attitude and velocity, but the position errors of the grid SINS/DVL integrated algorithm still
accumulate with time. Secondly, when the vehicle operates on the surface, the position errors of the
grid SINS/DVL/GNSS and the grid SINS/DVL/USBL do not accumulate, but when the vehicle navigates
under water, the GNSS signals are lost and position performance between two navigation strategies
becomes larger. Figure 12 shows the position comparison between four integrated navigation strategies.
According to Figures 11 and 12 and Table 5, the position accuracy of the proposed grid SINS/DVL/USBL
2 is higher than that of the traditional grid SINS/DVL/USBL 1 and compared to algorithm1, the latitude,
longitude and height accuracies of algorithm2 are improved 87.38%, 63.84%, 91.73% (maximum error),
and 87.01%, 65.26%, 89.36% (RMS), respectively. The maximum errors of latitude, longitude and height
are reduced from 2.9663 m to 0.3742 m, 2.8152 m to 1.0179 m, and 2.5741 m to 0.2127 m, respectively,
which can maintain the position accuracy of ocean space vehicles in polar regions.



Sensors 2019, 19, 3899 21 of 26
Sensors 2019, 19, x FOR PEER REVIEW 21 of 26 

 

 

Figure 12. Position comparison between four integrated navigation strategies. 

5.2.3. Semi-Physical Experiments of the Vector Fault Detection Method  

The proposed vector fault detection method and the fault-tolerant grid SINS/DVL/USBL 
integrated algorithm are discussed in this section. To validate the performance of the vector fault 
detection method, some mutant constant errors are added into the measurements. Compared to the 
simulation experiments, the ocean space vehicle trajectory and the corresponding semi-physical 
sensor output data obtained in Section 5.2.1 are employed in this experiment. Meanwhile, the 
possible condition, when part of USBL measurements and DVL measurements malfunction 
simultaneously, is involve in this semi-physical experiment. The starting and termination times of 
the measurement fault are shown in Table 6. 

Table 6. The starting and termination times of measurement fault 

Fault 
Measurement 

DVL USBL α  and 
β  R DVL and R 

Starting time/(s) 2100 4800 7200 8000 8261 
Termination time/(s) 3550 5250 7650 8260 8450 

The measurement errors and the fault detection flags are shown in Figure 13, and the navigation 
errors of the fault-tolerant grid SINS/DVL/USBL integrated algorithm are shown in Figure 14.  

Figure 12. Position comparison between four integrated navigation strategies.

5.2.3. Semi-Physical Experiments of the Vector Fault Detection Method

The proposed vector fault detection method and the fault-tolerant grid SINS/DVL/USBL integrated
algorithm are discussed in this section. To validate the performance of the vector fault detection
method, some mutant constant errors are added into the measurements. Compared to the simulation
experiments, the ocean space vehicle trajectory and the corresponding semi-physical sensor output
data obtained in Section 5.2.1 are employed in this experiment. Meanwhile, the possible condition,
when part of USBL measurements and DVL measurements malfunction simultaneously, is involve in
this semi-physical experiment. The starting and termination times of the measurement fault are shown
in Table 6.

Table 6. The starting and termination times of measurement fault

Fault Measurement DVL USBL α and β R DVL and R

Starting time/(s) 2100 4800 7200 8000 8261
Termination time/(s) 3550 5250 7650 8260 8450

The measurement errors and the fault detection flags are shown in Figure 13, and the navigation
errors of the fault-tolerant grid SINS/DVL/USBL integrated algorithm are shown in Figure 14.
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As shown in Figure 13, different kinds of measurement fault, including the DVL fault, the USBL
fault, the simultaneous DVL and USBL fault, can be detected and located by the proposed vector fault
detection method.
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Owing to the detection vector, the fault measurements can be isolated by the reconstruction of
filter, and as the red lines showing in Figure 14, the integrated performance has not been influenced by
the measurement fault. But as the blue curves show in Figure 14, when the measurement fault occurs,
the grid SINS/DVL/USBL integrated navigation algorithm without the fault detection method loses
its accuracy.

Though the R measurements and angle measurements, i.e., α and β, which are both provided
by the USBL, the fault of the two kinds of measurements are independent from each other. During
the time 8261 to 8450 s, the integrated filter is challenged by both the velocity measurement fault
from DVL and the R measurement fault from the USBL. Then the DVL and R measurements are
located by the detection flag vector and isolated by the reconstruction. And meanwhile the filter is still
operating with the α and βmeasurements to ensure the grid SINS errors were restrained uninterrupted
during the short time. However, if the traditional scalar fault detection method is employed to isolate
the simultaneous R and DVL fault, or the absolute position is employed as measurements, all the
measurements would be isolated and the filter would be interrupted. As a result, the grid SINS
errors would not be restrained by integration and the navigation accuracy would decrease sharply.
Compared with the traditional scalar method, the vector method can improve the utilization of effective
measurements and navigation performance.

Hence, the proposed vector fault detection method can be employed by the centralized filter to
detect and locate the fault measurements and improve the grid SINS/DVL/USBL integrated algorithm’s
reliability and fault-tolerant to maintain the requirement of ocean space vehicles.

6. Conclusions

A fault-tolerant grid SINS/DVL/USBL integrated navigation algorithm based on the centralized
filter and relative position information is proposed to improve the performance of ocean space navigation
systems in polar regions. Firstly, the USBL and DVL output are employed as the measurements and
the filter observation model of the USBL is proposed based on the relative position measurements to
improve the USBL availability. Then, the grid SINS/DVL/USBL filter model is designed to improve
the navigation accuracy. Moreover, considering of the sparse measurement from the USBL, the MKF
is employed to improve the filter update frequency and estimate accuracy. Finally, the vector
fault detection method, which takes the measurements as detection object instead of the traditional
filter, is proposed to detect and isolate the measurement fault of centralized filter. Simulations and
semi-physical experiment results show that the vector fault detection method can detect and isolate the
measurement fault of centralized filter effectively, and together with the novel fault detection method,
the grid SINS/DVL/USBL integrated algorithm can provide high-precision and high-reliable navigation
information for ocean space vehicles to operate normally and safely in polar regions. Some important
further developments are planned for the future. Firstly, if the conditions allow, a polar experiment
is expected, and more kinds of external measurements will be employed to improve the integrated
navigation accuracy and reliability.
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