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Abstract: In this paper, a new control-centric approach is introduced to model the characteristics
of flex sensors on a goniometric glove, which is designed to capture the user hand gesture that
can be used to wirelessly control a bionic hand. The main technique employs the inverse dynamic
model strategy along with a black-box identification for the compensator design, which is aimed
to provide an approximate linear mapping between the raw sensor output and the dynamic finger
goniometry. To smoothly recover the goniometry on the bionic hand’s side during the wireless
transmission, the compensator is restructured into a Hammerstein–Wiener model, which consists of
a linear dynamic system and two static nonlinearities. A series of real-time experiments involving
several hand gestures have been conducted to analyze the performance of the proposed method. The
associated temporal and spatial gesture data from both the glove and the bionic hand are recorded,
and the performance is evaluated in terms of the integral of absolute error between the glove’s and the
bionic hand’s dynamic goniometry. The proposed method is also compared with the raw sensor data,
which has been preliminarily calibrated with the finger goniometry, and the Wiener model, which
is based on the initial inverse dynamic design strategy. Experimental results with several trials for
each gesture show that a great improvement is obtained via the Hammerstein–Wiener compensator
approach where the resulting average errors are significantly smaller than the other two methods.
This concludes that the proposed strategy can remarkably improve the dynamic goniometry of the
glove, and thus provides a smooth human–robot collaboration with the bionic hand.

Keywords: flex sensor; hand gesture; Hammerstein–Wiener

1. Introduction

Hand gesture recognition refers to the process of understanding the mathematical interpretation of
the hand’s movement by a computing device [1]. It is one of the popular research topics in the past few
decades due to the rapid advancements in sensor and smart device technologies [2–4]. Its applications
are not just limited to human–computer or human–machine interaction [5], but also include a diverse
range of fields such as sign language recognition [6], clinical rehabilitations [7,8], human–robot
collaborations [9,10], gaming and virtual reality control [11]. In a typical hand gesture recognition
system, the initial stage is the data acquisition which can be performed either via vision-based [12] or
non-vision-based [13] techniques. Both have their own advantages and disadvantages regarding their
applications. A hybrid approach which combines the two methods has also been employed in some
specific areas that require high speed and precision such as augmented reality technologies [14].

The vision-based technique, as the name suggests, uses cameras or optical sensors to capture
hand gestures. A notable superiority of this technique is that it eliminates the need for using wearable
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interfaces or multi-sensory devices, hence providing a natural interaction with the computer. In other
words, the minimal interference offered allows the user to perform any hand motion in the most
convenient way possible. Nonetheless, the tracking performance is greatly affected by environmental
factors such as illumination or lighting variations, cluttered background, and interruption from
other moving objects in the scene particularly with the same hand skin color. Other major problems
caused by the user’s motion include out-of-range detection, high-speed movement, and self-occlusion.
Such circumstances entail high specification cameras [15,16] or optical sensors such as Leap Motion
controller [17–22] and Microsoft Kinect sensors [23] to enhance its performance and robustness. In some
cases, multiple cameras at different view angles and positions are required, which may eventually
increase the computational burden and associated costs [24,25]. This can also lead to bulkiness and
may not be desirable for mobile applications.

The non-vision-based method, on the other hand, has the advantage of not being susceptible to
occlusion or environmental factors. This approach is also frequently termed as sensor-based method,
although literally it encompasses any kind of sensing devices but image or vision sensors. The most
commonly used interface is the glove-based gestural system which is constructed by several sensors
attached to a cloth glove, a computing device for data processing and transmission, and a power
supply. A major benefit of this method over the vision-based technique is its fast response and precise
tracking [10]. The performance can be boosted by increasing the number of sensing devices, but it
will pose a trade off with the size, power consumption, building costs, and most importantly, user
convenience. In the non-vision-based technique, different sensors serve to capture different types
of hand gestures, such as palm orientation, wrist movement, hand rotation, and fingers goniometry.
The first three types mentioned can be simply registered using accelerometers, gyroscopes or inertial
measurement units (IMUs). With proper calibrations, the combination of the gestures allows the
overall 3D motion to be captured with a good performance.

The predominant gesture recognition that is of interest in much research and yet remains a
significant technical challenge is nevertheless the finger goniometry [6,8,26,27]. Goniometry in
general refers to the measurement of angles created at human joints by the bones of the body [28].
A crucial stage before the goniometry can be acquired is the procedure to model the hand, where the
variations can be recorded either temporally, spatially, or both, depending on the target applications.
Via non-image-based data acquisition approach, the 2D hand modeling for temporal or spatial pattern
assessment can be accomplished by using the flex sensor as it has a prominent advantage of being
able to change its resistance when bent. This characteristic makes it suitable to be positioned on the
finger’s joints where the goniometry can be correlated with the sensor’s bend angle. Plus, this type
of sensor only requires a simple electronic interface to translate the resistance into a voltage output.
For specific applications that only need a nonlinear gesture mapping to discrete interpretations [29],
for instance, the sign language recognition [24,30], the difficulty level of the task will be minimized
as a static analysis will suffice. Simply put, only the initial and final postures of the fingers can be
prioritized for further extraction and classifications. For some others where a linear gesture mapping is
the main design requirement, monitoring a patient’s hand’s functionality or motor performance [31,32],
as an example, the task will be relatively more cumbersome. In this scenario, if one is to use the flex
sensor as the primary tool, a dynamic analysis with a high degree of accuracy within the sensor data
acquisition subsystem is needed to provide a precise mapping to the target applications.

One major challenge in using the flex sensor for dynamic goniometry purposes is correlating
the flex sensor’s bending angle with the goniometry as the resistance tends to be time-varying and is
prone to uncertainties particularly when sewn or attached to a cloth glove [33,34]. Moreover, some
cloth materials used may provide stiffness or are bound to wear and tear, which consequently cause
erroneous representation of the bending angle [32]. Owing to this, several data processing algorithms
have been introduced in the literature that operate on the sensor raw output to improve the gesture
tracking performance. One of the most common approaches is by using machine learning tools such as
artificial neural network [35,36] and Hidden Markov Model [37,38]. While this can provide flexibility
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of training and verification, and is useful to detect nonlinear relationships between variables, a large
training data set is required and many free parameters need to be optimized in order to obtain a model
with great accuracy [39]. In some cases where a high sample rate in data acquisition is used, or the
sensor output is frequently perturbed by the Gaussian noise, Kalman filtering approach will be better
suited, provided that the sensor bending angle has been well calibrated with the static goniometry [26].
Another recent technique via first principle modeling is proposed in [27] where the mathematical
representation that relates the flex sensor’s resistance and the bending angle is derived based on the
understanding of the system’s underlying physics. The advantage of this approach is the detailed
insight into the behavior of the system and hence leads to a better prediction on the performance,
whereas the disadvantage is the difficulties in determining the phenomenological parameters caused
by internal and external disturbances.

It is also worth to note that even though similar types of sensors are used in a glove-based gestural
system, a straightforward comparison between the methods that have been introduced over the years
may not be appropriate due to different application-specific tasks and design requirements particularly
those concerning the types and speed of gestures, sampling time, sensor locations, as well as data
mapping [13]. In this work, a new control-centric approach is introduced to model the characteristic
of flex sensors on a goniometric glove, which is designed to capture the user hand gesture that can
be used to wirelessly control a bionic hand. The main technique employs the inverse dynamic model
strategy along with a black-box identification for the compensator design, which is aimed to provide
an approximate linear mapping between the raw sensor output and the dynamic finger goniometry.
To smoothly recover the goniometry on the bionic hand’s side during the wireless transmission, the
linearity of the mapping needs to be improved. Hence, we propose a Hammerstein–Wiener model to
enhance the structure of the compensator, which consists of a linear dynamic system and two static
nonlinearities. The linear system is constructed by simplifying the dynamic model from the inverse
dynamic design technique, while the static nonlinearities are introduced based on the constraints of
the bionic hand, and to account for the uncertain behavior of the sensors as well as the unmodeled
dynamics from the black-box identification method. A series of real-time experiments involving
several hand gestures have been conducted to analyze the performance of the proposed method.
In the experiments, the goniometric speed for each finger is controlled at approximately 83◦/s for
all gestures. The associated temporal and spatial data from both the glove and the bionic hand are
recorded via an image processing technique, and the performance is evaluated in terms of the integral
of absolute error between the glove’s and the bionic hand’s dynamic goniometry. The proposed
method is also compared with the raw sensor data, which has been preliminarily calibrated with the
finger goniometry, and the Wiener model, which is based on the initial inverse dynamic design strategy.
Experimental results with several trials for each gesture show that the raw sensor data result in average
errors between 515◦s and 1347◦s, whereas for the Wiener model, the average errors lie between 186◦s
and 370◦s, which are well below the range from the raw data. A significant improvement is obtained
via the Hammerstein–Wiener compensator where the resulting average errors are no greater than
102◦s. This concludes that the proposed strategy can remarkably improve the dynamic goniometry of
the glove, and thus, provides a smooth human–robot collaboration with the bionic hand.

The remainder of the paper proceeds as follows: Section 2 discusses the background and statement
of the problem concerning the nonlinear characteristics of the flex sensor from a preliminary analysis.
The bionic hand description, the goniometric glove structure, the proposed compensator design
method, and the experimental setup are explained in detail in Section 3. Section 4 presents the
experimental results from several hand gesture tests, and the average error for each method. The
results are finally concluded and discussed in Section 5, together with future work.

2. Background and Problem Statement

A flex sensor is basically a variable resistor that reacts to bends, i.e., it changes its resistance when
the bending angle increases. The flex sensor considered in this work is of unidirectional type as shown
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in Figure 1. When in default position (i.e., flat/relaxed), the resistance measures around 25 kΩ, and
may increase up to 125 kΩ as it bends towards 180◦. This is illustrated as in Figure 2 where θ and R1

denote the bending angle and resistance, respectively.

Figure 1. A 2.2′′ unidirectional flex sensor.

Figure 2. Illustration on the relation between the flex sensor bending angle, θ, and the resistance, R1.

The sensor can be configured to act as a voltage divider where the corresponding output, Vout

is simply:

Vout =
R1

R1 + R2
Vin. (1)

Theoretically, the value of R1 (in kΩ) relates to the bending angle as follows:

R1 = 100 · θ

180
+ 25. (2)

When the value of R2 is fixed, we have the relation

Vout =
100θ + 4500

100θ + 180(25 + R2)
Vin, (3)

which implies a linear relationship between θ and Vout. Nevertheless, when the sensor is attached to
a moving finger, the exact value of θ will not be smoothly recovered due to the non-smooth finger’s
movement. Also, the position of the sensor with respect to the finger may additionally affect the
resistance, leading to unpredictable behavior. A preliminary analysis has been conducted to investigate
the correlation between the sensor output voltage and the bending angle when the sensor is tied on a
cloth glove as shown in Figure 3. Results from four tests when R2 = 35 kΩ and Vin = 5 V have been
recorded in Figure 4, which are also compared with the theoretical values from Equation (3). From the
figure, the inconsistencies of the sensor output and the mismatch with the theoretical values reflect the
existence of nonlinearities and uncertainties in the sensor model itself.
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Figure 3. A preliminary analysis to investigate the correlation between the sensor output voltage and
the bending angle when the sensor is tied on a cloth glove.
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Figure 4. Comparisons between real and theoretical sensor output voltages with respect to the
bending angle.

The focus of this research is to propose a compensator for the goniometric glove with the
aforementioned flex sensors which can dynamically recover the gesture of each finger. To wirelessly
control a bionic hand using the recovered gesture, the glove has also been preliminarily designed by
taking into account the constraints of the bionic hand. The main strategy to achieve this objective is
explained in detail in the next section.

3. Methodology and Experimental Setup

3.1. Bionic Hand Description

Throughout this paper, the index i = 1, 2, 3, 4 and 5 will represent signals associated with the
thumb, pointer, middle, ring, and pinky fingers, respectively. The bionic hand system used in this
work is controlled by five dc motors where the input, β̃ = [β1, β2, β3, β4, β5]

T , is supplied by the signals
from an ATMega microcontroller (denoted as µC1). The overall closed-loop system can be illustrated
as in Figure 5 where C(s) and H(s) denote the proportional-integral-based motor controller and the
bionic hand, respectively. Each motor is assigned to control the flexion or extension of each finger from
the metacarpophalangeal (MCP) joint, and the system is subject to possible bounded disturbances, din.
In this work, the effects of the disturbance are assumed only in terms of slow and slightly nonlinear
movements due to deadzones or frictions, and do not lead to instability of the system.
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Figure 5. Bionic hand (left); Closed-loop control structure of the bionic hand (right).

The bionic hand has also been designed to mimic the normal behavior of finger movements which
can be mathematically described by

θD
i ≈

2
3

θi for i = 2, 3, 4, 5; (4)

θP
i ≈

3
4

θi for i = 2, 3, 4, 5 and θP
i ≈

1
2

θi for i = 1 (5)

where θD
i , θP

i and θi are the goniometry measured at distal interphalangeal (DIP), proximal
interphalangeal (PIP) and MCP joints respectively (see the corresponding counterparts in Figure 6).
Equations (4) and (5) imply that the fingers’ bending angles from DIP and PIP joints are often influenced
by the movement from the MCP joints [26]. For i = 2, 3, 4 and 5, the goniometry share the same
reference line as illustrated by the pointer finger in Figure 6, while for i = 1, the reference line is
−90◦ below that of those for i = 2, 3, 4, 5 (shown in Figure 7), and only MCP and interphalangeal (IP)
joints exist.

The overall movement is controlled by the motors attached at the MCP joints, which automatically
changes θD

i and θP
i when θi is changed. Ideally, θ̃ = [θ1, θ2, θ3, θ4, θ5]

T should follow the reference
command, β̃, but it may not always be the case due to the presence of din which can randomly enter
the system at any time instance. Apart from that, a constraint, Ψ = diag(ψ1, ψ2, ψ3, ψ4, ψ5), is imposed
on θ̃ to resemble the typical range of joint motions, which is described as

ρi = Ψi(θi) =


θL if θi < θL
θi if θL ≤ θi ≤ θU

θU if θi > θU

(6)

where θL and θU denote the lower and upper bounds, respectively. For i = 1 (i.e., thumb), the
movement is limited by θL = 90◦ and θU = 170◦, whereas for i = 2, 3, 4, 5, the bounds are θL = 28◦

and θU = 113◦.

Figure 6. Illustration on the goniometry of the pointer finger and its’ reference line. The figure shows
θ2 = 90◦.
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Figure 7. Illustration on the goniometry of the thumb and its’ reference line. The figure shows
θ1 = 135◦.

3.2. Goniometric Glove with Compensators

In this research, the goniometric glove is made of cotton with a thickness of around 2 mm.
Preliminary analyses with a grab and release movement have been conducted to investigate suitable
positions of the sensors on the goniometric glove. Let ρ̃r = [ρr1, ρr2, ρr3, ρr4, ρr5]

T be the angles
measured at the MCP joints of the goniometric glove. An image processing technique in MATLAB is
used to capture ρ̃r. Figure 8 (left) shows suitable positions of the sensors with respect to the MCP and
PIP joints which can register an acceptable and predictable goniometry for each finger. The outputs
of the sensors are connected to analog pins of an ATMega microcontroller (denoted as µC2) with a
sample rate of 10 Hz. We denote the raw sensor values read by µC2 as α̃ = [α1, α2, α3, α4, α5]

T , where
each αi ranges from 0 to 1023. The goniometric glove response in one of the tests is shown in Figure 9.

From Figure 9, it can be observed that when the sensors are positioned as depicted in Figure 8,
the response does not deviate far from the fingers’ goniometry. On the other hand, it also suggests that
the bionic hand requires a good precompensator to minimize the error between the goniometry and
the sensors’ response.

Figure 8. Positions of flex sensors with respect to the MCP and PIP joints (left figure); Flex sensors
attached to the goniometric glove (right figure).
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Figure 9. Goniometric glove response with respect to a grab-release-grab movement. The finger
goniometry and the raw sensor outputs are represented by ρri (blue line) and αi (orange line)
respectively.

To this end, we propose a dynamic compensator, P(s), which is constructed based on the inverse
dynamic approach where the structure is designed using the inverse of the internal model that
characterizes the behavior of ρ̃r and α̃. The black-box system identification technique is used to
estimate the dynamics of the model where the input is fed from the value of α̃ while the output is the
value from ρ̃r. The highest accuracy from several datasets from the black-box system identification
is approximately 70%, and the model with the highest accuracy is given by a linear time-invariant
(LTI) model, P ∼ (Ap, Bp, Cp, Dp) where Ap =diag(A1, A2, A3, A4, A5), Bp =diag(B1, B2, B3, B4, B5),
Cp =diag(C1, C2, C3, C4, C5), with

A1 =

−84.51 −56.92 −21.02
32 0 0
0 16 0

 , Ai =

[
−31.6 −14.7

16 0

]
, for i = 2, 3, 4,

A5 =

−7863 −673.9 −81.33
512 0 0

0 64 0

 , B1 =

4
0
0

 , Bi =

[
4
0

]
, for i = 2, 3, 4, B5 =

8
0
0

 ,

C1 =
[
0 0 5.073

]
, C2 =

[
0 3.252

]
, C3 =

[
0 4.666

]
, C4 =

[
0 4.424

]
, C5 =

[
0 0 11.27

]
,

and Dp =diag (0, 0, 0, 0, 0).
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As the output of the bionic hand system is constrained, a static nonlinearity,
Φw = [φw1, φw2, φw3, φw4, φw5]

T block is included in the compensator to ensure the
input to the bionic hand system stays within the range. The nonlinearity is described as

φwi(σwi) =


σwl if σwi < σwl
σwi if σwl ≤ σwi ≤ σwu

σwu if σwi > σwu

(7)

where σwl = 90◦ and σwu = 170◦ when i = 1, and σwl = 29◦ and σwu = 112◦ when i = 2, 3, 4, 5. The
combination of P(s) and Φw in series forms a Wiener-type compensator, which is illustrated as in
Figure 10.

Figure 10. Bionic hand with a Wiener compensator.

The accuracy of 70% from the black-box system identification actually reflects the effects of
nonlinearities in the model. To further enhance the tracking performance of the compensator, these
effects need to be suppressed. Based on the variations of resistance in the preliminary analysis as shown
in Figure 4, we propose a slight modification on the compensator where P is partitioned into two blocks
as depicted in Figure 11, consisting of a simplified LTI model, Phw, and another static nonlinearity,
Φh = [φh1, φh2, φh3, φh4, φh5]

T . The Phw is constructed based on the estimated dominant pole
from P, which results in only first order linear model for each finger. The new configuration of the
compensator is well-known as the Hammerstein–Wiener structure which, in general, is an LTI system
in series with two static nonlinearities.

Figure 11. Overall control system structure with the Hammerstein–Wiener compensator.

The simplified dynamic block of the compensator, Phw ∼ (Aph, Bph, Cph, Dph), is constructed
as follows:

Aph =


54 0 0 0 0
0 19 0 0 0
0 0 19 0 0
0 0 0 21 0
0 0 0 0 15

 , Bph =


69 0 0 0 0
0 24 0 0 0
0 0 27 0 0
0 0 0 28 0
0 0 0 0 21

 , Cph =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





Sensors 2019, 19, 3896 10 of 21

and Dph =diag (0, 0, 0, 0, 0), whereas for the static nonlinearity, it can be described as

φhi(αi) =


αi + ε l for αi < −ε l

0 for −ε l ≤ αi ≤ εu

αi − εu for αi > εu.
(8)

where ε l = 10 and εu = 20 when i = 1, 2, 3, 4, and ε l = 10 and εu = 30 when i = 5.

3.3. Experimental Setup

For wireless communication between the goniometric glove and the bionic hand, an HC-12 serial
communication module is connected to µC1 as a receiver, and another similar module is connected to
µC2 and configured as a transmitter. Six different sets of gestures are considered for the experiments
as follows:

• Gesture 1: Grab-release-grab
• Gesture 2: Number two sign
• Gesture 3: Call sign
• Gesture 4: Okay sign
• Gesture 5: Mixed Gestures A
• Gesture 6: Mixed Gestures B

These are illustrated as in Figure 12. The first four gestures involve at most three hand movement
transitions, while the last two gestures involve six movement transitions. The experimental setup is
depicted in Figure 13 where the performance of the overall system is evaluated based on the temporal
mismatch between the glove’s and the bionic hand’s goniometry which are registered through cameras
connected to a PC desktop via USB cables. The values of ρ̃r and ρ̃ are extracted via image processing
techniques in MATLAB.

(a)
Gesture
1.

(b)
Gesture
2.

(c) Gesture
3.

(d)
Gesture
4.

(e) Gesture 5. (f) Gesture 6.

Figure 12. Hand gestures considered for the experiments.
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Figure 13. Schematic diagram for the experimental setup. The goniometric glove with the flex sensors
is represented by "Device Under Test (DUT)", and cameras are used together with image processing in
MATLAB for performance evaluations.

4. Experimental Results and Performance Evaluations

In the experiments, the bionic hand response, i.e., ρ̃, is compared when there is no compensator at
all, and when Wiener and Hammerstein–Wiener compensators are implemented, which are denoted by
“Raw”, “W”, and “HW” respectively in all figures. The response is also compared with the reference,
ρ̃r, which is from the glove goniometry. The experiments conducted focus on temporal analysis, and
the goniometric speed for each finger is controlled at approximately 83◦/s. A series of postures from
the bionic hand are also recorded for a simple spatial analysis.

For the first experiment, i.e., Gesture 1, the hand gesture starts from the grab position, and all
fingers slowly stretch at t ≈ 4 s, remain at this position between t ≈ 4.5 s and t ≈ 5.5 s, and finally
return to the grab position at t ≥ 6 s. The values of ρi for i = 1, 2, 3, 4 and 5 are plotted in Figure 14,
and it can be clearly observed that without any compensator, the bionic hand fingers are slightly
moving when there is no movement from the glove. The movement becomes worse for certain fingers
as shown by the large fluctuations of ρ2, ρ3 and ρ5 between t = 4 s and t = 6 s. Also, ρ1 shows an
unexpected behavior after t = 6 s when the thumb is supposed to bend. These undesired responses
can however be alleviated using both Compensators W and HW. It is also clear that the best response
is obtained when the goniometric glove is controlled by Compensator HW, particularly during the
“grab” instances. To show the error response, we define ei = ρri − ρi which represents the mismatch
between the glove’s and the bionic hand’s goniometry. The corresponding ei for Gesture 1 experiment
is presented in Figure 15.

For Gesture 2 experiment, which is showing the number two sign, the values of ρi for i = 1, 2, 3, 4
and 5 are plotted in Figure 16. The hand gesture starts when all fingers are vertically stretched, and the
thumb, middle and pinky fingers slowly flex between t ≈ 2.6 s and t ≈ 4 s. In this experiment, ρr2 and
ρr3 are not supposed to vary too much, but large fluctuations in ρ2 and ρ3 can be seen when there is no
compensator applied. A quite similar behavior is also observed after t = 4 s for ρ4 and ρ5, resulting
in a large error. In this case, Compensator HW provides a significant improvement as compared to
Compensator W due to the erratic readings as seen in ρ1, ρ4 and ρ5 before t = 4 s. The error can also
be clearly seen from the plot of the corresponding ei in Figure 17.
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Figure 14. Gesture 1: The mismatch between the glove’s and bionic hand’s goniometry is significantly
reduced by using Compensators W and HW. Compensator HW is seen to provide a better response as
compared to Compensator W, particularly before t = 4 s and after t = 6 s.
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Figure 15. Gesture 1: The corresponding error from the response in Figure 14. The error due to the
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Figure 16. Gesture 2: The mismatch between the glove’s and bionic hand’s goniometry is significantly
reduced by using Compensator HW, which also provides a better response as compared to Compensator
W, particularly before t = 4 s.
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Figure 17. Gesture 2: The corresponding error from the response in Figure 16. The error due to the
response from Compensator HW is significantly lower at all time instances as compared to the others.

The bionic hand response for Gesture 3 experiment is shown in Figure 18 where the gesture
starts when all fingers are vertically stretched. The pointer, middle and ring fingers start to flex at
t ≈ 3.5 s, and the hand stays in the “call sign” gesture after t ≈ 4 s. The figure excludes ρ1 as the thumb
stays stationary in this gesture, and all responses from “Raw”, “W” and “HW” are very close to ρr1.
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Similar to the behavior seen from Gesture 2 experiment, Compensator HW outperforms the rest as the
fluctuations and the error are minimized as can be observed from ρi (i = 2, 3, 4 and 5), as shown in
Figure 19.
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Figure 18. Gesture 3: The mismatch between the glove’s and bionic hand’s goniometry is minimal
when Compensator HW is applied as compared to the others.
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Figure 19. Gesture 3: The corresponding error from the response in Figure 18. The error due to the
response from Compensator HW is the least at all time instances as compared to the others.

For Gesture 4, the response is shown in Figure 20 where the gesture starts when all fingers are
vertically stretched. The thumb and pointer fingers start to flex at t ≈ 3.5 s, and the hand completely
forms the “okay sign” after t ≈ 4 s. In this gesture, the middle, ring, and pinky fingers almost stay
stationary and ρ3, ρ4, ρ5 for “Raw”, “W” and “HW” do not show significant deviations from ρr. Hence,
only ρ1 and ρ2 are highlighted in the left column of the figure, together with the corresponding error
in the right column. The response shows very large fluctuations when the goniometric glove is not
compensated, and the undesired behavior is significantly suppressed by using Compensators W
and HW.
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Figure 20. Gesture 4: The mismatch between the glove’s and bionic hand’s goniometry is significantly
reduced when both Compensators W and HW are applied.

The experiments with Gesture 5 and Gesture 6 are slightly different than the previous four
gestures as they are designed to analyze the robustness of the proposed strategy when a rapid hand
movement is involved. For the Gesture 5 experiment, the hand starts when all fingers are vertically
stretched, and then one thumb bends towards the palm, followed by the rest after approximately
0.8 s. The transition proceeds with the pointer until pinky fingers stretch back, close, and stretch again
within approximately 2 s. The experiment ends when the thumb is released to its initial position.

As can be observed from Figure 21, by using Compensator HW, the mismatch between the glove’s
and bionic hand’s goniometry is drastically minimized as compared to that when the raw sensor data
or Compensator W are implemented. The is also clearly seen in Figure 22 where the resulting error
from Compensator HW implementation does not deviate too much from the zero value.
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Figure 21. Gesture 5: The mismatch between the glove’s and bionic hand’s goniometry is minimal
when Compensator HW is applied as compared to the others.
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Figure 22. Gesture 5: The corresponding error from the response in Figure 21. The error due to the
response from Compensator HW is the least at all time instances as compared to the others.

For the last gesture, which is Gesture 6, the hand starts when all fingers close, but the pointer
is stretched away from, and the middle is slightly bent towards the palm. Then the pointer and the
middle fingers exchange their positions, followed by all fingers close. The pointer until pinky fingers
stretch back and close again within 1 second, and the transition ends when all fingers are released.

The responses are recorded in Figure 23, and a similar outcome can still be seen from this last
experiment where the implementation of Compensator HW provides the least mismatch between the
goniometric glove and the bionic hand. The corresponding error response is shown in Figure 24.
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Figure 23. Gesture 6: The mismatch between the glove’s and bionic hand’s goniometry is minimal
when Compensator HW is applied as compared to the others.



Sensors 2019, 19, 3896 17 of 21

0 2 4 6 8

-50

0

50

e 1 (
°
)

0 2 4 6 8

-50

0

50

e 2 (
°
)

0 2 4 6 8

Time (sec)

-50

0

50

e 5 (
°
)

0 2 4 6 8

Time (sec)

-50

0

50

e 3 (
°
)

0 2 4 6 8

Time (sec)

-50

0

50

e 4 (
°
)

Raw W HW

Figure 24. Gesture 6: The corresponding error from the response in Figure 23. The error due to the
response from Compensator HW is the least at all time instances as compared to the others.

Some images taken from the camera during the performance evaluations are shown in Figure 25.
Each of them illustrates the final position of each finger for each gesture (i.e., grab, number two, call,
and okay signs).

(a) Gesture 1. (b) Gesture 2. (c) Gesture 3.

(d) Gesture 4. (e) Gesture 5. (f) Gesture 6.

Figure 25. Bionic hand gestures during the image processing in MATLAB from the six experiments.
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As the closed-loop bionic hand system is susceptible to unknown disturbances, the experiments
for Gesture 1 until Gesture 6 are repeated for three times to provide a better evaluation, and the
performance is quantified in terms of the integral of absolute error, E ( ◦s), as follows:

Ei =
∫ t f

0
|ei(t)|dt, ei(t) = ρri(t)− ρi(t) (9)

where t f denotes the final time of execution. The total error from each finger, which is calculated as

ET =
5

∑
i=1

Ei, (10)

for all trials and gestures are recorded in Table 1 when there is no compensation at all, and Table 2
when Compensators W and HW are applied. Table 1 shows average errors between 515◦s and 1347◦s
for all gestures, which are much bigger than those from Table 2. Interestingly, Compensator HW
shows average errors of less than 102◦s, while the average errors when Compensator W is applied
vary between 186◦s and 370◦s. This signifies that Compensator HW can provide a major improvement
over Compensator W in terms of the temporal mismatch between the goniometric glove’s and the
constrained bionic hand’s movements.

Table 1. Total error, ET (◦s), for each gesture and its average value when there is no compensator on
the goniometric glove.

Gesture 1 2 3 4 5 6

Trial 1 1036.2 1701.5 2014.2 1201.2 1479 418.5
Trial 2 545.71 654.14 1023.1 721.78 1080.25 525.3
Trial 3 461.21 512.23 1001.2 657.12 700.23 602.3

Average 681.04 956.0 1346.2 860.0 1086.5 515.4

Table 2. Total error, ET (◦s), for each gesture and its average value when Wiener and
Hammerstein–Wiener compensators are applied on the goniometric glove.

Wiener Hammerstein–Wiener
Gesture 1 2 3 4 5 6 1 2 3 4 5 6

Trial 1 354.2 412.21 401.28 70.254 299.5 315.9 136.7 97.75 254.3 76.76 39.47 48.4
Trial 2 144.25 152.25 101.25 98.321 441.2 401 49.8 39.1 39.34 37.03 108.3 81.3
Trial 3 60.214 101.27 124.27 452.12 300.2 389.3 6.131 6.137 12.08 3.283 85.3 104.9

Average 186.25 221.91 208.93 206.90 347 368.7 64.21 47.66 101.90 39.02 77.69 78.2

5. Discussions and Conclusions

This paper has introduced a new control-centric approach to model the characteristic of flex
sensors on a goniometric glove, which is designed to capture the user hand gesture that can be used to
wirelessly control a bionic hand subject to some constraints. The main technique employs the inverse
dynamic model strategy along with a black-box identification for the compensator design, which is
aimed to provide an approximate linear mapping between the raw sensor output and the dynamic
finger goniometry. To smoothly recover the goniometry on the bionic hand’s side during the wireless
transmission, the compensator is restructured into a Hammerstein–Wiener model, which consists of a
linear dynamic system and two static nonlinearities. The linear system is constructed by simplifying
the dynamic model from the inverse dynamic design technique, while the static nonlinearities are
introduced based on the constraints of the bionic hand, and to account for the uncertain behavior
of the sensors as well as the unmodeled dynamics from the black-box identification method. A
series of real-time experiments involving several hand gestures have been conducted to analyze the
performance of the proposed method. The experimental results with several trials for each gesture
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show that a great improvement is obtained via the Hammerstein–Wiener compensator approach where
the resulting average errors are significantly smaller than the other two methods considered. This
concludes that the proposed strategy can remarkably improve the dynamic goniometry of the glove,
and thus, provides a smooth human–robot collaboration with the bionic hand.

While the experimental results show a great accuracy via the proposed method, this work only
considers one degree-of-freedom movement from the MCP joint. For future work, the framework will
be extended to include the overall 3D motion of the goniometric glove to further enhance the bionic
hand control system. This however may require some modifications on the bionic hand’s structure to
allow more gestures from the glove to be recovered. The proposed method can also be combined with
another technique such as artificial neural network to find the correlations between the hand palm and
the fingers, as well as the correlation between the fingers itself.
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Notations and Abbreviations

The following notations and abbreviations are used in this manuscript:

i The subscript i = 1, 2, 3, 4 and 5 on a symbol indicates the signal associated with the thumb,
pointer, middle, ring, and pinky fingers, respectively.

βi input signal to the bionic hand’s system
MCP metacarpophalangeal
DIP distal interphalangeal
PIP proximal interphalangeal
θD

i angle measured at the DIP joint of the bionic hand
θP

i angle measured at the PIP joint of the bionic hand
θi angle measured at the MCP joint of the bionic hand (without constraint)
θL, θU lower and upper bounds of θi
ψi the constraint imposed on θi
ρi angle measured at the MCP joint of the bionic hand (with constraint)
ρri angle measured at the MCP joint of the goniometric glove
ei error or mismatch between ρi and ρri
αi raw sensor value
φwi static nonlinearity after the compensator’s dynamic model
φhi static nonlinearity before the compensator’s dynamic model
σwi output of the compensator’s dynamic model
σhi input of the Hammerstein–Wiener compensator’s dynamic model
din unknown input disturbance within the bionic hand system
P dynamic model of the Wiener compensator
Phw dynamic model of the Hammerstein–Wiener compensator
µC1 microcontroller for the goniometric glove
µC2 microcontroller for the bionic hand
Ei integral of absolute error
t f final time of execution
ET total error from each finger
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