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Abstract: Recently, wireless energy transfer technology becomes a popular way to address energy
shortage in wireless sensor networks. The capacity of the mobile wireless charging car (WCV) and
the wireless channel between the WCV and the sensor are two important factors influencing the
energy efficiency of the wireless sensor network, which has not been well considered. In this paper,
we study the energy efficiency of a wireless rechargeable sensor network charged by a finite capacity
WCV through an imperfect wireless channel. To estimate the energy efficiency, we first propose a
new metric named waste rate, which is defined as a function of the charging channel quality. Then,
energy efficiency optimization is modeled as minimizing the waste rate. Through optimizing the
distance between the WCV and sensor nodes, the set of optimal charging sensor nodes is obtained.
By using the Hamiltonian circle, the nearest neighbor algorithm is proposed to find the traveling
path of the WCV. Furthermore, to avoid the untimely death of sensor nodes and the coverage hole,
an extended node dynamic replacement strategy is proposed. The simulation results show that the
proposed method can reduce the waste rate and the total charging time; i.e., the sum of traveling time
and charging delay can be significantly reduced, which indicates that the proposed algorithm can
improve the energy efficiency of the network.

Keywords: wireless charging; wireless sensor network; energy efficiency; mobile wireless charging car

1. Introduction

1.1. Background and Motivation

Wireless sensor networks (WSNs) have a wide range of applications, such as military surveillance,
environmental monitoring, disaster relief, smart home, etc. [1–3]. In the traditional wireless sensor
network, the energy of the sensor node is provided by the battery. However, the capacity of the
battery is limited by the size of the node, and the available energy of the sensor node is extremely
insufficient, which greatly limits the application of the WSNs [4]. At the same time, the sensor node
is often not easily accessible, and the cost of replacing the battery is often large, even is impossible
sometimes. In order to make wireless sensor networks more practical, there are many works on the
self-sustainability of the wireless sensor network [5,6]. The rechargeable sensor network offers a
promising opportunity for the WSN [7–9].

In the rechargeable sensor network, many kinds of energy from the environment are used by the
wireless sensor nodes, such as heat energy, solar energy, wind energy, and so on. In Reference [10],
authors assume that sensors can harvest energy from natural energy source during the working period.
Furthermore, Reference [11] considers the spatiotemporally coupled constraint in wireless rechargeable
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sensor networks (WRSNs) and proposes a distributed algorithm to get the optimal sampling rate to
maximize network utility. By considering the time-varying recharging rate caused by the unreliable
natural energy resource, an effective algorithm is proposed in Reference [12] to maintain the battery at
the desired target level through optimizing the sampling rate and end-to-end routing path.

However, the natural energy often varies with the time and environment and the variation is
unpredictable and uncontrollable, and sensor nodes are in the risk of unstable and insufficient energy
supply. Different from the energy-harvesting technique, wireless energy transfer technology with
magnetic resonance coupling [13] or electromagnetic effect [14] can provide a stable energy supply,
which is a promising solution for extending the lifetime of wireless sensor networks. The result in
Reference [15] shows that the wireless energy transfer technology is not only efficient but also immune
to its surrounding environment. Industry research further demonstrates that it is possible to transfer
60 W of power over a distance of up to two to three feet with an energy transfer efficiency of 75% [16].
In the wireless rechargeable sensor network (WRSN), a wireless energy transfer technology realized by
a mobile wireless charging vehicle (WCV) is applied to power sensor nodes. The results show that
the lifetime of the WRSN is extremely extended [17]. The adoption of the WCV can provide high and
stable charging rates to sensors. Thus, the cost of sensors and the complexity of energy management in
WRSN is significantly reduced.

In this paper, we study the use of the WCV to replenish energy to sensor nodes in WRSNs.
Some works have been done on the wireless sensor network with wireless energy transfer technology.
In References [18–20], solutions for mobile charger scheduling and charging infrastructure deployment
of rechargeable nodes are proposed. In Reference [21], the author assumes that the power of each
charger is adjustable, and then finds a charger placement and a corresponding power allocation.
Authors in Reference [22] study an on-demand energy replenishment problem and formulate it as
an optimization problem with an objective of maximizing the number of charged sensors per tour.
In Reference [23], the author assumes that each sensor node can be partially charged so that more
sensor nodes can be charged by the WCV before their energy is depleted. Besides, the WCV not only
serves as an energy transmitter to charge the static sensor nodes but also serves as a data collector in
some works, such as [24–27]. Different from References [24–26] which focus on extending network
lifetime, Reference [27] considers the problem of scheduling minimum mobile devices to periodically
charge and collect data from sensors. The traveling path planning of the WCV is an important factor
in the performance of WRSNs. Reference [28] aims to minimize the traveling cost of the WCV based
on the energy monitoring and reporting protocols. In Reference [29], the author first analyzes the
optimization opportunity and then proposes a novel charging strategy by modeling the problem
as traveling salesman problem (TSP) with neighborhood. The model is able to exploit the wireless
charging ability and reduce the moving delay of the charger at the same time. In Reference [30],
the association between the WCV charging cycle and operational lifetime of sensor nodes is considered.
A novel periodic charging algorithm is proposed which jointly considers charging tour planning and
the WCV depot positioning. As the wireless energy transferring is over the wireless channel, the
charging efficiency is sensitive to the Charging Channel Quality (CCQ). However, this factor has not
been considered in the above works.

The distance between nodes is one of important factors influencing the CCQ. In Reference [31],
the influence of the distance is considered. However, authors assumed that the capacity of the WCV is
infinite, which is impossible in many cases in real life. In this paper, the WRSN is charged by a WCV
which has limited capacity, at the same time, the influence of the CCQ on the energy replenishment
of the sensor node is also considered. As the capacity of the WCV is finite, how to efficiently utilize
the limited energy is important. To estimate the energy efficiency, we propose a metric named waste
rate. Then, an algorithm is proposed to minimize the waste rate through finding optimal charging
sensor nodes.
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1.2. Contribution

As the WCV has limited capacity, minimizing waste rate is an important and realistic problem in
the WRSN. To address this problem, through finding optimal sensor nodes charged by the WCV, the
energy waste rate is reduced. The main contribution can be summarized as follows.

First, we take the limited capacity of WCV and the channel quality between the WCV and
rechargeable sensor nodes into consideration and model the minimizing waste rate as an optimization
problem. Then, we propose a method to find the optimal charging sensor nodes and use the nearest
neighbor algorithm to get the traveling path of WCV. Furthermore, we also propose an extended node
dynamic replacement strategy, which can avoid the death of uncharged sensor nodes and coverage
holes. The experimental results demonstrate that our proposed solution can effectively reduce the
waste rate and the total charging time comparing with the baseline scheme.

1.3. Paper Organization

The remaining sections are organized as follows. Section 2 introduces the system model in detail.
In Section 3, we formulate the problem and provide a solving method. An extended node dynamic
replacement strategy (ENDRS) is also proposed to avoid the death of uncharged nodes in Section 3.
The simulation result is provided in Section 4. At last, we conclude the whole paper in Section 5.
The main notations used in our paper are listed in Table 1.

Table 1. Symbol definitions.

Symbols Definition

Ei,0 The initial energy level of sensor node vi
Ei,t The residual energy of node vi at time

Emax The capacity of the sensor node vi
Emin The minimum energy required by the regular operation
εi,t The energy consumption rate of sensor node vi before time t
Ti,d The charging time of sensor node vi

T(i−1),i The total charging time from sensor node vi−1 to sensor node vi
Ttravel(i−1→i) The time spent by the WCV from sensor node vi−1 to sensor node vi

Tper The total charging time during a charging circle
Vc The speed of the WCV
Nc The number of selected charging clusters

NRc The number of sensor nodes which send the charging request in the cth cluster
Num The number of clusters which send the charging request

Tp,max The maximum time of the WCV in a charging round
Ec−i,t The residual energy of sensor node vi in the cth cluster at time t
Bc,max The capacity of the WCV
Pi,waste The waste rate of sensor node vi
ρ The density of the sensor node

2. System Model

2.1. Network Model

In this paper, we consider a set of sensor nodes, which is denoted by V, distributed over a limited
two-dimensional area. The two-dimensional coordinate of sensor node vi ∈ V is (xi, yi). In the sensor
network, there is a fixed base station S, which is also a sink node used to collect sensing data. We
assume that the energy of S is unlimited comparing to sensor nodes. The set E constitutes the edges
between two nodes which are in the transmission range of each other. Each sensor node vi is equipped
with a battery whose capacity is Emax. The initial energy level of sensor node vi is Ei,0 and Ei,0 = Emax.
Notation Ei,t denotes the residual energy of node vi at time t, and Ei,t = Ei,0 when t = 0. The minimum
energy level for regular operations is Emin, hence the sensor nodes would stop working if the residual
energy is lower than Emin.
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The energy consumed by sensor node vi can be divided into three parts: ei,t, ei,s, and ei,r, which
represent the energy consumed by sensor node vi in sending data, sensing data, and receiving data
during [0,t], respectively. Among them, ei,t and ei,r include: <1> The energy consumed by receiving and
sending data from its own nodes; <2> As the network works in the multi-hop pattern, some energy is
used to receive and transmit data from neighboring sensor nodes. The energy consumption rate of the
sensor node vi is defined as the energy consumed by the sensor node vi within unit time. The energy
consumption rate of the sensor node vi before time t is denoted as εi,t, which can be calculated as

εi,t =
ei,t + ei,r + ei,s

t
(1)

The operation of the WCV in the network is introduced in the following. The WCV with limited
capacity leaves from the base station and charges the optimal sensor nodes which are selected by our
proposed algorithm one by one. After charging these sensor nodes, it would back to the base station,
and the traveling path of the WCV forms a cycle path.

Notation Pi,c represents the charging rate of the WCV to sensor node vi, and the charging delay
Ti,d is the time that the WCV charges the sensor node vi, which is defined as

Ti,d =
Ei,0 − Ei,t − Ti,d ∗ εi,t

Pi,c
(2)

Let T(i−1),i denote the total charging time from the moment that the WCV leaves sensor node vi−1

to the moment that the WCV leaves sensor node vi, which is expressed as

T(i−1),i = Ti,d + Ttravel(i−1→i) = Ti,d +
hi − hi−1

Vc
, (3)

where Ttravel(i−1→i) is the time spent by the WCV from sensor node vi−1 to the sensor node vi, which is
a function of the distance and the velocity. We use hi = (xi, yi) to denote the coordinate of sensor node
vi, and hi − hi−1 to denote the horizontal distance between sensor node vi−1 and sensor node vi, which

is defined by Euclidean distance. Hence, hi − hi−1 =

√
(xi − xi−1)

2 + (yi − yi−1)
2. The WCV moves

with a constant velocity which is denoted by Vc. According to Reference [32], we let Vc = 5 m/s in the
simulation.

In practical, due to the limited capacity of the WCV, the WCV may not be able to meet the charging
requirement of all sensor nodes. Thus, choosing proper sensor nodes to be charged by the WCV is
important. The CCQ is an important factor which influences the charging quality from the WCV to
sensor node vi. A good charging strategy should make the WCV with limited capacity charge more
sensor nodes with better CCQ. To better measure the energy efficiency of the WCV, we innovatively
propose the concept of waste rate, which also can be used in maximizing the efficiency of wireless
charging at each node.

To support wireless power transmission, we assume that a receiving coil is installed on each
sensor node. The CCQ between the sensor node vi and the WCV is related to many factors, such
as the distance between the sensor node and the WCV, the noise, obstacle, and so on. In this paper,
to simplify the model, we assume that the CCQ is only related to the distance. The waste rate is
defined as the energy loss of the WCV to the sensor node when the CCQ is determined by the distance.
The waste rate is an increasing function of distance. With the increase of distance, the waste rate
increases exponentially [33]. Let D denote the charge range of the WCV.

2.2. Cellular Structure

We assume that the wireless rechargeable sensor area is a two-dimensional plane. For better
zoning, we partition the two-dimensional plane into many hexagonal cells. Under the cellular structure,
we denote di as the distance from sensor node vi to its cell center. The sensor nodes in a cell constitute
a cluster. In the remaining paper, we use the cluster to represent the cell and sensor nodes in the cell.
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The number of sensor nodes in a cluster is a random variable which is no less than 1. Some sensor
nodes will send the charging requests to the base station which contains NRc and Ec−i,t, where NRc

is the number of sensor nodes which send the charging request in the cth cluster, and 0 ≤ NRc ≤ ρ,
ρ is the maximum number of sensor nodes in the cth cluster; Ec−i,t is the residual energy of the sensor
node vi which is in the cth cluster at time t. According to the residual energy of the sensor node which
sends charging request in cluster, we divide these sensor nodes into three types: a, b, and k, where a
represents the sensor nodes whose residual energy is greater than Emin and less than 0.1∗Ei,0 at time t,
b represents the sensor nodes whose residual energy is greater than 0.1∗Ei,0 and less than 0.2∗Ei,0 at
time t, and k represents the sensor nodes whose residual energy is greater than 0.2∗Ei,0 and less than
0.3∗Ei,0 at time t. The number of different types of sensor nodes in the cth cluster is denoted as ac, bc,
and kc respectively. When the residual energy is larger than 0.3∗Ei,0, the sensor node does not send the
charging request, thus NRc = ac + bc + kc.

We assume that when the WCV reaches the charging working place, each sensor node can send
its own CCQ to the WCV. After the WCV arrives in the cluster, it can stop and charge at any position.
Therefore, there are infinite stopping points in the cluster, which leads to high complexity of finding
the optimal stopping position. Since the size of the cell is small, the difference in the traveling cost of
the WCV caused by different stopping points is very small. To simplify the model, we assume that the
stopping point of the WCV is the center of the cell.

2.3. Limited Rechargeable Clusters

In our paper, we consider the limited capacity of the WCV, the WCV may not have enough
energy to charge all sensor nodes which send charging requests in the clusters. Combining the cellular
structure, we define the priority level of each cluster and use weightc to denote the weight value of the
cth cluster. The priority of the cth cluster weightc is defined as

weightc = ωNRc + χ[αac + βbc + γkc], (4)

where ω, χ, α, β, and γ are harmonic coefficients, which satisfy

ω+ χ = 1 (5)

α+ β+ γ = 1 (6)

From Equation (4), it can be found that different design goals can be achieved through adjusting the
value of harmonic coefficients during cluster selection. When ω has a larger value, the number of
sensor nodes which send charging requests is a main influence of cluster selection. When χ is larger,
the distribution of residual energy becomes more uniform. The values of α, β, and γ mainly affect the
preference of three types of sensor nodes. For example, when α is larger, we prefer to choose the cluster
with more nodes of type a.

Clusters sending charging requests are sequentially stored in set A according to weight values.
A = {c1, c2, · · · , cNum}, where Num represents the number of clusters sending charging requests. Due to
the limited capacity of the WCV, not all required charging clusters can be charged in a charging cycle.
Therefore, the cluster with larger weight value should be selected first. This means that clusters with
less energy and more sensor nodes sending charging requests often have a higher charging priority.
At the same time, we assume that the WCV can only charge one sensor node in a cluster. This means
that the number of selected charging clusters equals to the number of optimal charging sensor nodes.
The selected cluster is stored in set B =

{
c1, c2, · · · , cNc

}
, where Nc the number of selected charging

clusters. Obviously, Nc ≤ Num. The WCV will charge optimal sensor nodes in these clusters according
to the Hamiltonian circle. The number of selected charging clusters is related to Tp,max, which is the
maximum time used by the WCV in a charging cycle. The relation between charging time T(i−1),i and
the maximum time Tp,max is
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Nc∑
i=1

T(i−1),i ≤ Tp,max. (7)

When the traveling path is determined, the traveling time of the WCV is constant which is
expressed by NcTtravel where Ttravel is the average value of Ttravel(i−1→i). According to Equation (2),
the charging time is proportional to the residual energy of the charged sensor node. Hence, when
the remaining energy of all sensor nodes sending charging requests in the cluster is 0.3∗Ei,0, the total
charging value gets the maximum. When the remaining energy of all sensor nodes sending charging
requests in the cluster is the threshold Emin, the total charging time is the minimum value of

∑Nc
i=1 T(i−1),i.

Thus, the range of the charging time can be expressed as

Nc(
0.7 ∗ Ei,0 + Ti,d ∗ εi,t

Pi,c
+ Ttravel) ≤

Nc∑
i=1

T(i−1),i ≤ Nc(
Ei,0 + Ti,d ∗ εi,t

Pi,c
+ Ttravel) (8)

By transforming Equation (8), the range of NC can be obtained as

Nc∑
i=1

T(i−1),i

(
Ei,0+Ti,d∗εi,t

Pi,c
+ Ttravel)

≤ Nc ≤

Nc∑
i=1

T(i−1),i

(
0.7∗Ei,0+Ti,d∗εi,t

Pi,c
+ Ttravel)

(9)

According to the relationship between T(i−1),i and Tp,max in Equation (7), we derive the upper
bound of the number of selected charging clusters, which is expressed as

Nc ≤
Tp,max

(
0.7∗Ei,0+Ti,d∗εi,t

Pi,c
+ Ttravel)

(10)

Furthermore, we can also use the capacity of the WCV, Ti,d, and the initial energy of the sensor
node to calculate NC which is given as

Bc,max

Ei,0 + Ti,d ∗ εi,t + Etravel(i−1→i)
≤ Nc ≤

Bc,max

0.7 ∗ Ei,0 + Ti,d ∗ εi,t + Etravel(i−1→i)
, (11)

where Bc,max is the capacity of the WCV.
To demonstrate the above calculation, here is an example shown in Figure 1. It can be found that
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Figure 1. Sample diagram of prior charging clusters.

As shown in Figure 1, each cluster has a random number of some sensor nodes and the number
is in the range of [1,6]. According to the energy setting, in the 4th cluster, a4 = 2, b4 = 1, k4 = 1.
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Let ω = 0.2, χ = 0.8, α = 0.7, β = 0.2, and γ = 0.1, respectively. Using Equation (4), we can obtain
the weight value of 4th cluster: weight4 is 2.16. Similarly, the weight values of other clusters can be
calculated, which are given in Table 2.

Table 2. The weight value of each cluster.

Cluster Number 1 2 3 4 5 6 7 8 9 10

weight 2.24 2.52 1.36 2.16 0.64 1.04 2.84 0.64 1.52 1

According to the weight value of each cluster, the clusters sending charging requests are sorted as
follows: c7 > c2 > c1 > c4 > c9 > c3 > c6 > c10 > c8 > c5. That is, A = {c 7, c2, c1, c4, c9, c3, c6, c10, c8, c5}.
Then, we use Equation (10) to find the prior charging clusters when NC is assumed to be 5, and obtain
set B = {c7, c2, c1, c4, c9}. Therefore, the WCV will charge the optimal sensor nodes in the 7th cluster,
the 2th cluster, the 1th cluster, the 4th cluster, and the 9th cluster firstly.

As the capacity of the WCV is limited, the traveling path should be designed to reduce unnecessary
energy waste on the journey. We make the WCV to charge along the Hamilton circle. The schematic
diagram is shown in Figure 2.
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The WCV starts from the base station and charges sensor nodes according to the Hamilton circle.
In this paper, we use the nearest neighbor algorithm to get the optimal charging tour.

3. Problem Formulation and Solution

3.1. Problem Analysis

As discussed in Section 2, the CCQ between the WCV and the sensor node is only related to the
distance. The waste rate Pi,waste at sensor node vi is defined as

Pi,waste =
Ui, f ull −Ui,in

Ui, f ull
, (12)

where Ui, f ull is the output charging power from the WCV and Ui,in is the charging power received by
sensor node vi. The charging power Ui,in can be expressed as

Ui,in = $(di) ∗Ui, f ull, (13)

where $(di) is a function of distance di and 0 < $(di) < 1, which is used to expressed the CCQ.
By combining Equations (12) and (13), the relation between the waste rate and $(di) is

Pi,waste = 1−$(di). (14)
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According to Equation (14), it can be found that the energy waste rate is closely related to the
CCQ. Because the CCQ between the WCV and the sensor node is only related to the distance, the waste
rate Pi,waste depends on the distance. This means that energy efficiency is related to the distance.
As improving energy efficiency can be realized through minimizing the energy waste rate, we optimize
the distance between the WCV and the sensor node to minimize the energy waste rate. For the optimal
object, we propose an algorithm to find the optimal traveling path of the WCV and optimal charging
sensor nodes.

Due to the large number of sensor nodes, to estimate the waste rate of all selected sensor nodes,
we define the average of energy waste rate of optimal sensor nodes as

Pwaste =
1

Nc

Nc∑
i=1

Pi,waste < 1. (15)

According to Equations (14) and (15), the waste rate Pi,waste at sensor node vi and the average
waste rate of sensor nodes Pwaste are less than 1.

Based on the above analysis, we model minimizing energy waste rate as an optimal problem,
which is given by:

min Pwaste =
1

Nc

Nc∑
i=1

Pi,waste (16a)

s.t.
1

Nc

Nc∑
i=1

Pi,waste < 1 (16b)

Nc∑
i=1

T(i−1),i ≤ Tp,max (16c)

Pi,waste = 1−$(di) < 1 (16d)

The constraint in Equation (16b) indicates that the average of waste rate should be less than 1
while Equation (16c) indicates that the total charging time is less than the maximum time of the WCV
in a charging cycle.

As the different traveling path affect the energy consumed by the WCV moving from one sensor
node to another one, the number of chargeable sensor nodes is influenced by the traveling path of
the WCV. Besides, according to constraint (16d), the waste rate depends on the distance between the
sensor node and the WCV. Hence, the minimum value can be achieved by choosing the optimal sensor
node. To solve the problem in Equation (16a), we proposed two algorithms to plan the traveling path
of the WCV and select the optimally charged sensor node, respectively.

3.2. The Traveling Path Planning

According to the above discussion, the different traveling paths results in different traveling
distances, the time and the energy spent on different traveling paths will be different, thus the optimal
traveling path of the WCV should be proposed to reduce the unnecessary energy waste. Though the
path planning has been researched in some previous works, such as Reference [17], the energy waste
suffered by the traveling path of the WCV has not been considered. The traveling path not only affects
the energy waste rate but also has an influence on the charging time for each node. In order to avoid
unnecessary energy waste, we optimize the traveling path of the WCV to minimize the energy waste
rate. We assume that the WCV travels along the Hamiltonian circle, which is a traveling salesman
problem (TSP) [34]. Analogous details of proof process could be found in Reference [17].

To solve the required Hamiltonian circle, the nearest neighbor algorithm is proposed. The detail
of the nearest neighbor algorithm is provided in Algorithm 1.
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Algorithm 1. The nearest neighbor algorithm.

Input: [xi, yi], 0 ≤ i ≤ Nc

Output: The traveling path of the WCV

1: Calculate the distance between each priority cluster and the base station, and sort the distance in
ascending order. Select the cluster ccount which is closest to the base station. The initial value of count is 1.

2: Calculate the distance of the remaining clusters from the cluster ccount, then select the cluster ccount+1
which is closest to the cluster ccount, count = count + 1.

3: Repeat step 2 until count = Nc, Nc is the number of selected clusters.
4: The WCV drive from the cluster cNc to base station.

To illustrate Algorithm 1, we use an example shown in Figure 3. Assume that there are five
to-be-charged clusters in the network at some time point (see Figure 3a). First, we calculate the
distance between each cluster and the base station, and sort the distance in ascending order which
is d1< d2< d3< d4< d5. The nearest cluster c1 is first selected (see Figure 3b). Then we calculate the
distance of the remaining clusters from the cluster c1, and the order is d2< d3< d4< d5. The cluster c2 is
selected since it is closest to the cluster c1 (see Figure 3c). Similarly, the remaining clusters are selected
one by one (see Figure 3d,e). Finally, after charging cluster c5 (see Figure 3f), the WCV will return to the
base station to recharge itself. A charging tour according to the nearest neighbor algorithm is formed.
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3.3. The Selection of Optimal Charging Nodes

According to the above discussion, the energy efficiency is related to the distance. As improving
energy efficiency can be realized through minimizing the energy waste rate, the distance between the
WCV and the sensor node is optimized to reduce the energy waste rate. To minimize the energy waste,
based on the results of Algorithm 1, we propose a node selection algorithm shown in Algorithm 2.



Sensors 2019, 19, 3887 10 of 19

Algorithm 2. Procedure of solution for our problem.

Input: Two-dimensional coordinates of sensor nodes [xi, yi], the distance between each sensor node vi in the cth
priority cluster and the WCV di, the number of selected charging nodes Nc, the density of nodes ρ, initial
energy of each sensor node Ei,0 and the remaining energy Ei,t, the speed of the WCV Vc.

Output: Energy average waste rate Pwaste, the total charging time Tper, the traveling path of the WCV.

1: Partition the two-dimensional plane with hexagonal cells. When the residual energy of nodes Ei,t reaches
the charging threshold, each node sends a charging request in units of clusters. The clusters are sorted
according to the weight values.weightc which is obtained by Equation (4), Nc prior charging clusters are
selected and then Nc optimal sensor nodes are selected for charging.

2: Sort the waste rate Pi,waste between the WCV and sensor node vi after the WCV enters the cluster which is
determined by the distance between the WCV and the sensor nodes di.

3: Find the optimal charging sensor nodes by considering their waste rate, which means that the sensor
nodes with better CCQ are selected for charging.

4: Calculate the corresponding charging time Tper and achieve the traveling path of the WCV according to
Algorithm 1.

To illustrate the execution of Algorithm 2, we use a similar example shown in Figure 4. Assume
that there are some clusters sending charging requests in the network at some time point (see Figure 4a).
The clusters are sorted according to the weight value of the cth cluster weightc by Equation (4), which
is c7 < c5 < c4 < c6 < c1 < c3 < c2. We assume Nc = 3 which can be obtained by Algorithm 1 and
Equation (10), it means the WCV can only charge 3 clusters (see Figure 4b). According to Algorithm 1,
the WCV will charge cluster c1 first, after entering cluster c1, there are three to-be-charged sensor nodes
v1,1, v1,2 and v1,3. Sort the waste rate Pi,waste which is determined by the distance between the WCV
and sensor nodes di, and the order is P1,waste < P2,waste < P3,waste. As sensor node v1,1 has better CCQ,
it is selected to be charged (see Figure 4c). Then, the WCV leaves cluster c1 to cluster c2, the order of
waste rate Pi,waste of sensor nodes v2,1 and v2,2 is P2,waste < P1,waste. Thus, the node v2,2 is selected (see
Figure 4d). Similarly, the optimal charging sensor node v3,1 in cluster c3 can be found (see Figure 4e).
Finally, the WCV will return to the base station and the charging round of the WCV is finished (see
Figure 4f).
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First, we prove Theorem 1 to illustrate sensor nodes obtained by Algorithm 2 are optimal sensor
nodes. Then, we study the complexity of Algorithm 2.

Theorem 1. Through Algorithm 2, we can get the optimal charging sensor nodes which can minimize the energy
waste rate.

Proof. Assumption: Given an optimal solution ψ∗ = (V*, T∗, P∗waste), where some of the sensor nodes

selected are not optimal. Then we could construct a new solution
∧

ψ = (
∧

V,
∧

T,
∧

Pwaste) where all the
selected sensor nodes are optimal. With the assumption, V* in ψ∗ is the set of these selected charging
sensor nodes, while some of nodes such as V∗i and V∗j are not optimal, and we assume that the Nc in ψ∗

and
∧

ψ is same, that is, N∗c =
∧

Nc. Then the new solution
∧

ψ could be constructed as follows. Let
∧

V is

the set of selected optimal charging sensor nodes and
∧

T is the related total charging time per cycle.

Because all nodes in
∧

V is optimal, we can get
∧

Pi,waste ≤ P∗i,waste,
∧

P j,waste ≤ P∗j,waste, from Equation (16d),

where the
∧

Pi,waste,
∧

P j,waste and P∗i,waste, P∗j,waste represent the waste rate of sensor nodes vi, v j in the ψ∗ and
∧

ψ, respectively. For N∗c =
∧

Nc, we can get that in the ψ∗ and
∧

ψ, the average waste rate of sensor nodes is

different, that is,
∧

Pwaste ≤ P∗waste. At the same time, the difference in waste rate results in the difference
of charging efficiency, thus results in the difference of total charging time with different solutions. From

Equation (2), we can get
∧

T ≤ T∗. Then it can be found that the solution
∧

ψ could provide an improved
objective. �
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Next, we show that the solution
∧

ψ is feasible for our optimal problem. To verify feasibility, we need

to show that
∧

ψ satisfy constraints Equations (16b–d). Since the
∧

ψ is a feasible solution for our problem,

it should satisfy the constraints Equations (16b–d). For
∧

T ≤ T∗, from Equation (16c), T∗ < Tp,max, we

can get
∧

T ≤ Tp,max, which could satisfy Equation (16c). For
∧

Pwaste ≤ P∗waste, it can be straightforwardly

found that
∧

Pwaste ≤ P∗waste < 1, which satisfy Equation (16b). We assume that sensor nodes vi in the

ψ∗ is not optimal, thus
∧

Pi,waste ≤ P∗i,waste. Because P∗i,waste < 1, we can get
∧

Pi,waste ≤ P∗i,waste < 1, which
satisfies Equation (16d).

Thus, the solution
∧

ψ = (
∧

V,
∧

T,
∧

Pwaste) is a feasible solution, which could provide an improved
objective comparing to the optimal solution ψ∗.

Theorem 2 shows an analysis of the time complexity of our algorithm.

Theorem 2. The time complexity of the Algorithm 2 is bounded in O(( l
Rc
)

2
+ n + N2

c ), where l, n, Nc denote
the side length of the sensor field, the number of deployed sensors, and the number of optimal charging sensor
nodes, respectively.

Proof. Because l is the length of the sensor field, the division of the sensor field requires at most

O(( l
Rc
)

2
). n sensor nodes are considered for calculating related CCQ for the selection of the optimal

charging sensor nodes, the complex of the nodes is O(n). Nc selected optimal charging sensor nodes
are considered in turn to obtain the traveling path of the WCV. For example, at first, there are Nc

optimal charging sensor nodes are considered to calculate the traveling path of the WCV, the complex
is O(Nc).Then, there are Nc − 1 selected optimal charging sensor nodes are considered to calculate
the traveling path of the WCV, the complex is O(Nc − 1)., at the end of the algorithm, there is only
one sensor node, the complex is O(1),. Thus, the complex of the optimal charging sensor nodes
is O(Nc + Nc ∗ (Nc − 1)/2), that is, O(Nc)

2. So, the complexity of the Algorithm 2 is bounded in

O(( l
Rc
)

2
+ n + N2

c ). This completes the proof. �

3.4. Extend Node Dynamic Replacement Strategy

According to the description of Algorithm 2, the optimal charging sensor node in a cluster may
not be the one with the least energy. The sensor node whose residual energy is close to the threshold
Emin is named the life-critical sensor node. Since the WCV does not charge the life-critical sensor node
timely, the residual energy will be exhausted in a short time and the sensor node will be dead due to
the shortage of energy. To avoid the death of sensor nodes whose charging requests are not satisfied,
we also proposed the extended node dynamic replacement strategy (ENDRS).

According to the above discussion, the optimal charging sensor node in a cluster may not be the
one with the least energy. To avoid the death of nodes in this charging cycle, the life-critical sensor
node will go to sleep and its work will be transferred to the optimal charging sensor node. In the next
round of the charging cycle, the sleep node will be considered according to the ENDRS which is based
on Algorithm 1 and Algorithm 2. The detail of the ENDRS can be described as follows.

After choosing optimal charging nodes, clusters which have sleep sensor nodes are recorded.
In the next charging round, the values of harmonic coefficients in Equation (4) during prior cluster
selection are changed. This change should ensure that the cluster with sleep nodes has more chance to
be selected. After the WCV enters a cluster with the sleep node, the tradeoff between the charging
efficiency and the lifetime of the sensor node is considered during the optimal charging sensor node
selection. We define the weight of optimal charging sensor node selection as ζdi + (1− ζ)Ec−i,t, where
different goals can be achieved through adjusting the value of the harmonic coefficient ζ. When (1− ζ)
has a larger value, the residual energy is a main influence of selection. This means that the WCV



Sensors 2019, 19, 3887 13 of 19

prefers to choose the life-critical node to ensure the connectivity of network. To further illustrate the
ENDRS strategy, we provide an example in Figure 5.Sensors 2019, 19, x FOR PEER REVIEW 13 of 20 
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Figure 5. An example to introduce the node replacement strategy.

As shown in Figure 5, there is a cluster constituting of 5 sensor nodes. According to Algorithm 2,
the WCV selects node 1 which has 12% energy, instead of node 2 which has 5% energy. The node 2 will
die soon, which may lead to coverage holes in this area. Moreover, the connectivity and stability of the
network may be degraded. If the ENDRS strategy is adopted, node 2 will go to sleep and the work of
node 2 is transferred to node 1. In the next round of the charging cycle, node 2 will have chance to
be charged by adjusting the harmonic coefficient and the weight in the ENDRS, which ensures the
connectivity and stability of the network.

4. Simulation Evaluation

In this section, some simulation results are provided to evaluate the performance of the proposed
algorithm. Through studying these results, the impact of the network parameter on the network
performance is obtained.

4.1. Parameter Setting

We assume that each cell contains a random number of sensor nodes, and define ρ as the density
of the sensor node. The density of the sensor node is defined as the maximum number of sensor nodes
in a cell, e.g., ρ ≥ 1. When the density of the sensor node increases, the total number of sensor nodes in
the network also increases. By using MATLAB software, a network scenario in which the density of
the sensor node is 2 are generated, which is shown in Figure 6.
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Figure 6. The scenario diagram.

In order to prevent the WCV from running out of energy and being unable to drive back to the
base station, we set that the WCV can charge for 25 nodes in a charging cycle. The size of each hexagon
cell is 3 m. The consumption rate of each sensor node is set as rand(1)/1011 J, and the initial energy of
each sensor node is E0 = 0.02 J. The WCV moves at a constant speed of Vc = 5 m/s with an energy
consumption rate of Ev = 1/1012 J/m. The base station is the origin (0, 0). According to the curve
fitting experiment in Reference [35], we define Pi,waste = −0.095812 ∗ di

2
− 0.03771 ∗ di + 1.0. When the

distance of charging is more than 3 m, we assume that the charging efficiency of the WCV is 0, that is,
the waste rate Pi,waste is 1. According to Equation (14), we draw the relation between the energy waste
rate and the distance, which is given in Figure 7.
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Figure 7. Energy waste rate varying with the distance.
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The result in Figure 7 indicates that the energy waste rate increases with the increasing of the
distance, which is consistent with Equation (14). In order to decrease the waste rate, the distance
between the sensor node and the WCV should be short as much as possible. Furthermore, this
one-to-one correspondence relationship makes the distance be replaced by the waste rare during
parameter setting of the simulation.

4.2. Results and Analysis

Under the same constant density of the sensor node, we study the impacts of energy waste rate
and the capacity of WCV on the number of chargeable sensor nodes in a charging cycle. We first
observe the number of chargeable sensor nodes when the energy waste rates are 0.24, 0.34, 0.44, 0.54,
0.64, 0.74, and 0.84, respectively. The results are shown in Figure 8 when the capacity of WCV Bc,max is
0.6 J, 0.8 J, 1.0 J, and 1.2 J, respectively.
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Figure 8. The number of chargeable nodes under different energy waste rate.

From Figure 8, it can be found that the number of chargeable sensor nodes increases with the
decreasing of the energy waste rate or the increasing of the capacity of the WCV. This phenomenon
can be explained by using Equation (11). Take the right side of the equation, the number of
chargeable sensor nodes is Nc =

B∗c ,max
0.7∗Ei,0+Ti,d∗ρi,t+Etravel(i−1→i)

, where B∗c,max = (1− Pi,waste) ∗Bc,max represents

the energy actually used. The original formula is changed into: Nc = ψ ∗ (1 − Pi,waste), where
ψ =

Bc,max
0.7∗Ei,0+Ti,d∗εi,t+Etravel(i−1→i)

.
The density of the sensor node ρ has a great impact on the number of sensor nodes in the

work. Next, we study the impact of the density of the sensor node on the average energy waste rate
Pwaste. In the simulation, the density of the sensor node ρ is 2, 3, 4, 5, 6, 7, 8, 9, and 10, respectively.
The comparison results of three different algorithms is given in Figure 9. In Figure 9, the proposed
algorithm is expressed by “OfWR”, “energy only” represents the algorithm only considers the impact
of residual energy of sensor nodes, and “Random” denotes sensor nodes are randomly choose to be
charged according to the Random algorithm. In the energy only algorithm, the WCV will choose the
node which has the least residual energy to charge. In the Random algorithm, the WCV randomly
choose one of sensor nodes which send the charging request. From the results in Figure 9, it can be
found that the energy waste of the OfWR is the least and the decreases with the increasing of the
density of the sensor node. Hence, the proposed algorithm can achieve better performance in the
energy waste rate, especially when the density of the sensor nodes is higher. It indicates that our
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proposed algorithm can achieve higher energy efficiency in the network with a large density of the
sensor node.
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Figure 9. The comparison of the energy waste rate.

Furthermore, we compare the charging time when the WCV can charge for 25 sensor nodes in a
round. The variation of total charging time in terms of the density of the sensor nodes is shown in
Figure 10.
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Figure 10. The comparison of the total charging time.

The results in Figure 10 shows that the total charging time of the proposed algorithm is less
than half time of other algorithms when the density of the sensor node is 2. With the increasing of
ρ, the difference between the proposed algorithm and the other algorithms is enlarged. It indicates
that our proposed algorithm can reduce the charging time in the network with a large density of the
sensor node.

Finally, we observe the total charging time varying with the speed of the WCV under different
densities of the sensor node, and the result is in Figure 11. The result in Figure 11 shows that the
total charging time decreases with the increasing of the speed of the WCV, and the difference among
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different densities of the sensor node is not obvious. This result indicates that the total charging time
can be decreased through increasing the speed of the WCV, and when the speed of the WCV is more
than 20 m/s, the proposed algorithm can achieve the almost same performance of the charging time
under a smaller density of sensor node.Sensors 2019, 19, x FOR PEER REVIEW 17 of 20 
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Figure 11. The total charging time varying with the speed of WCV.

According to the analysis in Section 3, to optimize the traveling path of the WCV, the WCV should
travel along the Hamiltonian circle, which is a traveling salesman problem. By using the nearest
neighbor algorithm, the traveling path of the WCV can be found. In the simulation, the traveling path
of the WCV obtained by Algorithm 1 is shown in Figure 12. The result in Figure 12 demonstrates that
the WCV moves according to the Hamilton circle.
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Figure 12. The traveling path of the WCV.

5. Conclusions

In this paper, we consider that the mobile WCV charges sensor nodes in clusters to achieve a
self-sustainable rechargeable wireless sensor network. Due to the limited capacity of WCV, it may
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be impossible to charge all sensor nodes which send the charging request within a charging round.
To maximize energy efficiency, we model an optimization problem with the object of minimizing the
average energy waste rate when the limited capacity of the WCV and the imperfect CCQ are considered.
The problem is solved by using two proposed algorithms: Algorithm 1 and Algorithm 2. Algorithm 1
is used to attain the traveling path of WCV while Algorithm 2 is used to find the optimally charged
sensor node. An extended node dynamic replacement strategy is further proposed to avoid the death
of uncharged life-critical sensor nodes. The simulation result shows that the proposed algorithms can
reduce the energy waste rate and the total charging time, especially when the density of the sensor
node is large.
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35. Kurs, A.; Moffatt, R.; Kurs, A.; Soljačic, M. Simultaneous mid-range power transfer to multiple devices.
Appl. Phys. Lett. 2010, 96, 44102. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TVT.2017.2668990
http://dx.doi.org/10.1126/science.1143254
http://dx.doi.org/10.1109/TNET.2012.2185831
http://dx.doi.org/10.1002/sec.1582
http://dx.doi.org/10.1109/TMC.2017.2771425
http://dx.doi.org/10.1109/TMC.2014.2307335
http://dx.doi.org/10.1002/dac.3050
http://dx.doi.org/10.1109/TNET.2017.2684159
http://dx.doi.org/10.1109/TNET.2014.2303979
http://dx.doi.org/10.1109/ACCESS.2017.2665471
http://dx.doi.org/10.1109/TVT.2015.2391119
http://dx.doi.org/10.1137/1033004
http://dx.doi.org/10.1063/1.3284651
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background and Motivation 
	Contribution 
	Paper Organization 

	System Model 
	Network Model 
	Cellular Structure 
	Limited Rechargeable Clusters 

	Problem Formulation and Solution 
	Problem Analysis 
	The Traveling Path Planning 
	The Selection of Optimal Charging Nodes 
	Extend Node Dynamic Replacement Strategy 

	Simulation Evaluation 
	Parameter Setting 
	Results and Analysis 

	Conclusions 
	References

