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Abstract: The privacy and security of the Internet of Things (IoT) are emerging as popular issues in
the IoT. At present, there exist several pieces of research on network analysis on the IoT network, and
malicious network analysis may threaten the privacy and security of the leader in the IoT networks.
With this in mind, we focus on how to avoid malicious network analysis by modifying the topology
of the IoT network and we choose closeness centrality as the network analysis tool. This paper makes
three key contributions toward this problem: (1) An optimization problem of removing k edges to
minimize (maximize) the closeness value (rank) of the leader; (2) A greedy (greedy and simulated
annealing) algorithm to solve the closeness value (rank) case of the proposed optimization problem
in polynomial time; and (3)UpdateCloseness (FastTopRank)—algorithm for computing closeness
value (rank) efficiently. Experimental results prove the efficiency of our pruning algorithms and show
that our heuristic algorithms can obtain accurate solutions compared with the optimal solution (the
approximation ratio in the worst case is 0.85) and outperform the solutions obtained by other baseline
algorithms (e.g., choose k edges with the highest degree sum).

Keywords: Internet of Things; network analysis; closeness centrality; greedy algorithm; optimization

1. Introduction

1.1. Background

In recent years, centrality analysis, a kind of network analysis tool, has been applied in the area
of Internet of Things (IoT) and can be used to analyze the topology of the IoT network. For example,
closeness centrality can be chosen as the measurement for IoT device selection by identifying the
central nodes in the dynamic IoT network [1]. However, if attackers use centrality analysis to find the
important nodes in the IoT network, they can launch more accurate attacks such as DDoS attacks or
deceive the important nodes to spread fraudulent information in the network [2]. As a consequence,
defensive strategies against malicious centrality analysis are especially necessary, i.e., the question
turns into “How to avoid being detected by malicious centrality analysis?”.

As far as we know, few researchers have focused on this question in the area of Internet of Things
(IoT) and the research most relevant to this question was proposed by Waniek [3]. Inspired by Waniek’s
work, our work aims at helping the leader in the IoT network avoid being detected by malicious
closeness analysis. Closeness centrality [4] is chosen as the measurement of the importance of the
nodes in the IoT network and leader (the protected target of our work) is the node that has the highest
closeness value in the network. The leader often has the greatest impact on other nodes or has the
clearest understanding of the network [5] and it is vulnerable to be analyzed and attacked by attackers.

Against this background, to guarantee individual privacy and cyber security, we attempt to
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solve the above problem by removing limited links in the network to help the leader not be found
by the attackers who use the closeness centrality analysis. Two cases of closeness value and rank are
concerned. In both cases, we assume that the attacker finds the leader node by top-k algorithm and in
the closeness value case the leader node does not know the exact value of k and has to minimize its
closeness value. To evade attacker’s analysis, the leader needs to remove limited links in the network
(guaranteeing the connectivity of the network) and minimize (maximize) its closeness value (rank).
In our work, formally, the above problem is considered to be an optimization problem: “ How to
minimize (maximize) the closeness value (rank) of the leader by removing k edges ? ”

1.2. Our Contributions

This paper is the expansion of the shorter conference version presented at the 5th International
Symposium on Security and Privacy in Social Networks and Big Data. The contributions of our initial
conference paper show as follows:

• An optimization problem of removing k edges to minimize the closeness value of the leader and
its complexity analysis.

• A greedy algorithm to solve the proposed optimization problem in polynomial time and
theoretical proof of the lower bound of its solution.

• An effective pruning algorithm—UpdateCloseness for computing closeness value after removing
an edge.

• Experimental evaluation of the efficiency and accuracy of the proposed algorithms.

In this paper, we extend the optimization problem proposed in the conference paper to the
closeness rank case. The contributions of this paper show as follows:

• An optimization problem of removing k edges to maximize the closeness rank of the leader and
its complexity analysis.

• An approximation algorithm (GSA) combing greedy algorithm and simulated annealing
algorithm to solve the proposed optimization problem in polynomial time.

• An effective pruning algorithm—FastTopRank for computing closeness rank of the high
ranking nodes.

• Experimental evaluation of the efficiency and accuracy of the proposed algorithms.

2. Preliminaries

2.1. Basic Notation

Let G = (V, E) be a network which is a simple undirected graph, and which has n := |V| nodes
and m := |E| edges. The edge with u, v ∈ V is denoted as (u, v). For the node u, N(u) denotes the
neighbors of u, i.e., N(u) = {v|(u, v) ∈ E}. For nodes u and v, P = {u, ..., v} denotes the shortest path
between u and v and duv denotes the distance of the shortest path P.

Given a set of edges R ⊂ E, G(R) denotes the subgraph after removing the set of edges R in G,
i.e., G(R) = (V, E/R). Also, after removing a set of edges R, the shortest-path distance between node
u and node v can be denoted as duv(R).

Closeness centrality was proposed by Beauchamp [4]. This measurement quantifies the
importance of a given node according to the shortest-path distances from the given node to all other
nodes and requires the connectivity of the network. For a given node u, the normalized closeness
centrality cu is defined as follows:

cu =
n− 1

∑v∈V\{u} duv
(1)

The closeness rank of the node u is denoted as ru and it is possible that the closeness values of
two nodes are equal. To measure the rank of them, standard competition ranking (“1224” ranking) is
used in this paper.
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2.2. Related Work

2.2.1. Closeness Algorithm

In tradition schemes, the closeness value of s node can be computed by running a breadth-first
search (BFS) in the network and it requires O(n + m) time. Therefore, it requires O(n(n + m)) to obtain
the closeness rank of the node by computing all closeness values of each nodes. Obviously, the IoT
network is a kind of complex network and the traditional way to compute the closeness value and
rank is infeasible in our work. The related works of closeness computation algorithm of our work are
as follows:

Top-k closeness and approximate closeness rank: In real-life scenarios, people pay more attention
to identifying top-k nodes in the network or the rank of a node than the closeness value of a node.
Okamoto [6] proposed the first study of top-k closeness algorithm and several works are proposed to
improve this algorithm [7–10]. Saxena [11] first proposed closeness rank approximation algorithm by
sigmoid curve and the time complexity is O(m). Bisenius [12] first proposed a dynamic top-k closeness
algorithm, i.e., computing the top-k nodes after removing or adding an edge.

Dynamic update closeness: To compute the closeness value in the dynamic network, several
pieces of research try to update value or rank after edge deletion and addition. Tong [13] analyzed
the characteristics of edge deletion and addition on centrality and proposed a scalable and efficient
algorithm to find the edges that help information propagation in the network. Santos [14] proposed an
approximation closeness value algorithm that can be used after edge deletion. Sarıyüce [15], Kas [16]
and Yen [17] proposed their novel closeness value update algorithm in the dynamic network.

The pruning algorithms UpdateCloseness and FastTopRank are inspired by Yen’s work [17] and
Bergamini’s work [7] mentioned above, respectively.

Table 1. Comparison with related works.

Scheme Edges Updated Measurement Selection Range Hidden Effect Solution Goal

Waniek [3] Addition and Deletion Degree Centrality [18] Neighbors Yes Value
Crescenzi [19] Addition Harmonic Centrality [20] Neighbors No Value

Our work Deletion Closeness Centrality [4] Entire Network Yes Value and Rank

2.2.2. Topic

To the best of our knowledge, there are two works whose topics are closely related to our work.
Table 1 shows the comparison between our work with the existing related works. Our work differs
from [3,19] in several aspects as follows:

• Please note that [3,19] focused on the optimization of the value after updating edges. In a
further step, we propose methods that can achieve the optimization of the closeness value and
rank simultaneously.

• As shown in Rochat’s work [21], harmonic centrality only performs a little better in the
unconnected network. However, usually the Internet of Things needs to be connected. Hence,
differing from Crescenzi’s work [19], we choose closeness centrality as the measurement of
identifying the importance of a node.

• We extend the selection range of the removing edges from the neighbors of the target node to the
entire network despite the extra time cost.

3. Problem Definition

3.1. Theoretical Definition

In this section, we propose the basic theoretical definitions of the optimization problems
mentioned in Section 1 and analyze the complexity of the problems. We choose the node with
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the highest closeness (also called leader) and attempt to minimize (maximize) its closeness value (rank)
by removing limited edges.

Definition 1 (Leader Closeness Value Minimization Problem). The problem is defined by a tuple
(G, u, R, k). Let G = (V, E) be a network which is unweighted, undirected and connected, u ∈ V is leader
with the maximum closeness value, R ⊂ E is the set of edges that to be removed, k ∈ Z denotes the maximum of
the edges to be removed. The problem is to find a set of edges, R ⊂ E and |R| ≤ k, and G(R) = (V, E\R) is
connected, and R is in:

arg min
R⊂E,|R|≤k

cu(G(R)). (2)

Definition 2 (Leader Closeness Rank Maximization Problem). The problem is defined by a tuple
(G, u, R, k). Let G = (V, E) be a network which is unweighted, undirected and connected, u ∈ V is leader
with the maximum closeness value, R ⊂ E is the set of edges that to be removed, k ∈ Z denotes the maximum of
the edges to be removed. The problem is to find a set of edges, R ⊂ E and |R| ≤ k, and G(R) = (V, E\R) is
connected, and R is in:

arg max
R⊂E,|R|≤k

ru(G(R)). (3)

In the problem LCVMIN and LCRMAX, we assume that the modified network G(R) is still
connected after removing the edges of set R to remain the integrity of the network. We consider a
budget k to limit the negative effects of removing edges on the network. For ease in explanation,
the networks in our work are undirected unweighted.

3.2. Complexity Analysis

In this section, we study the optimization problems from the computational point of view.
We prove the NP-hard of the LCVMIN and LCRMAX problem by Theorem 1 and 2 as follows.
In the following Theorem 1 and 2 , we will make use of the Hamiltonian cycle problem to prove that
LCVMIN and LCRMAX problem cannot be solved by a polynomial-time scheme unless P = NP and
these two problems are NP-hard.

Theorem 1. Leader Closeness Value Minimization Problem is NP-hard.

Proof. Reduction from Hamiltonian cycle problem to the LCVMIN problem: First, we propose the
decision version of the LCVMIN problem: given a connected and undirected network G = (V, E),
the leader u, a budget k ∈ Z and a value x ∈ R, does there exist a set of edges to be removed R such
that R ⊂ E, |R| ≤ k and the modified network G(R) is still connected and cu(R) ≤ x ?

To prove the decision version problem is NP-hard, the possible smallest closeness value of the
node m in the connected and undirected network is denoted as t ∈ N and we find that m = n−1

∑n−1
i=1 i

= 2
n

for the case that the leader u is the end of a path (Figure 1). This kind of network can be denoted as M
and the closeness value of the leader u is m, i.e., cu = 2

n . Hence, we select an arbitrary instance of the
Hamiltonian cycle problem (i.e., whether there is a cycle through the network that visits each node
exactly once) and convert it into an arbitrary instance of the decision version of the LCVMIN problem,
such that reduce the closeness value of the leader to a value smaller than or equal to m.

Given an arbitrary network G = (V, E) (undirected and connected), we will show that if G has a
Hamiltonian cycle then it is possible to obtain M by removing |E| − |V|+ 1 edges as follows:

• At first, we choose a set of edges R∗ = {e1, ..., em}, and |R∗| = m = |E| − |V|. After removing the
set of edges R∗, there is a Hamiltonian cycle in the modified network G∗ = (V, E\R∗) = (V, E∗).

• Secondly, for the leader u in the Hamiltonian cycle, there are two edges (u, w), (u, v) ∈ E∗ and
after removing one of these two edges, the target network M is obtained and the closeness value
of the leader u, cu = 2

n .
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We have proposed the procedure of the reduction above and will present an example of the
reduction. We use bold red line to represent the deleted edge (Figure 2a). After removing all bold
red lines, there exists a Hamiltonian cycle in the graph (Figure 2b) and in Figure 2c we can find
a Hamiltonian path from u to v, which is the minimum case of the closeness of the leader node u.
Therefore, we have proved that the LCVMIN problem is NP-hard by this reduction.

u

Figure 1. The minimum (maximum) case of closeness value (rank).

(a)

u

v

(b)

u

v

(c)

Figure 2. The specific steps of the reduction from the Hamiltonian cycle problem to the LCVMIN
and LCRMAX problem: (a) original sample network, (b) modified network with a Hamiltonian cycle,
(c) modified network with a Hamiltonian path.

Theorem 2. Leader Closeness Rank Maximization Problem is NP-hard.

Proof. Reduction from Hamiltonian cycle problem to the LCRMAX problem: Similar to Theorem 1,
we can find that the node u in Figure 1 also has the maximum closeness rank, i.e., we can make leader
the last in the graph by the reduction from Hamiltonian cycle problem to the LCRMAX problem.
Therefore, we can prove that the LCRMAX problem is NP-hard by this reduction and a simple example
is shown in Figure 2.

4. Approach

In Section 3, we define the LCVMIN and LCRMAX optimization problem and prove the NP-hard
of the LCVMIN and LCRMAX problem. To solve these two optimization problems in real-life scenarios,
in this section, we design two approximation algorithms to find the set of edges to be removed to
minimize (maximize) leader node’s closeness value (rank) in polynomial time and design two pruning
algorithms to compute the closeness value (rank) in limited time.

4.1. Approximation Algorithm for LCVMIN Problem

4.1.1. Greedy Algorithm

In this section, we consider a greedy algorithm to obtain an approximate solution of the
optimization problem(LCVMIN) in polynomial time, and the detail of the original greedy algorithm is
shown in Algorithm 1. Our greedy algorithm attempts to find the edge e ∈ E which minimizes the
closeness value of the leader at each iteration (Line 3–7). Despite that greedy algorithm can obtain
solutions in polynomial time, we have to run BFS ( breadth-first search ) to compute the closeness
value after removing an edge at line 5 in Algorithm 1, which requires O(n + m) and is infeasible in
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real-life complex networks. Therefore, in our work, we provide a pruning algorithm to reduce the
number of traversed edges and nodes when recomputing the leader’s closeness value after removing
an edge. We name it as UpdateCloseness algorithm and this pruning algorithm is inspired by Yen’s
work [17].

Algorithm 1: GreedyReduction.
Input: A network G = (V, E), leader u, and a selected integer k ∈ N;
Output: A set of removed edge R ⊂ E and |R| ≤ k;

1 R := ∅;
2 while |R| < k do
3 foreach e ∈ E do
4 if G(V, E\e) is connected then
5 Compute cu(e)

6 emin = arg min cu(e)
7 R := R ∪ emin

8 return R;

4.1.2. The Approximation Ratio of the Greedy Algorithm

In this section, we prove that the greedy algorithm can offer an approximate solution to the
LCVMIN problem while the greedy solution can have a (1− 1

e )-approximation ratio. To complete
this proof, the shortest-path sum function is chosen as the objective function of this proof, not the
closeness computation function. In other words, the LCVMIN problem has been converted into
the shortest-path sum maximization problem and the greedy solutions to this problem can obtain a
(1− 1

e )-approximation ratio by proving its monotone and submodular [22]. The detail is shown in
Theorem 3.

Theorem 3. For the leader node u, let R∗ be the optimal solution of the LCVMIN problem, and let R
′

be the
solution obtained by greedy algorithm, and given the shortest-path sum function f (R) = ∑v∈V\{u} duv(R).

Then f (R
′
)

f (R∗) =
∑v∈V\{u} duv(R

′
)

∑v∈V\{u} duv(R∗) ≥ 1− 1
e .

Proof. We assume that the connectivity of the network cannot be influenced by edge deletion.
First, for the given network G = (V, E), we can observe that the shortest-path distance between
the leader node u and the other node t, dut(E\e), cannot be decreased by edge deletion, i.e., dut(E\e) ≥
dut(E). Therefore we find that for any subset of solutions for LCVMIN problem A ⊆ R, f (A ∪ e) ≥
f (A) for all edges e ∈ R− A where R is the solution set for LCVMIN problem. We prove that the
shortest-path sum function f is monotone.

Second, we assume that there are two solutions for LCVMIN, A and B, and A ⊆ B ⊆ R. For each
edge e ∈ R− B, we should prove that

f (A ∪ e)− f (A) ≥ f (B ∪ e)− f (B) (4)

Or another form of expression as follows:

∑
v∈V\{u}

duv(A ∪ e)− ∑
v∈V\{u}

duv(A) ≥ ∑
v∈V\{u}

duv(B ∪ e)− ∑
v∈V\{u}

duv(B) (5)

To prove the inequality (5) , we discuss two possible cases as follows:
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(1) We assume that all the shortest path distances between the target node and the other nodes
remain constant after removing an edge e, i.e., ∑v∈V\{u} duv(A ∪ e)− ∑v∈V\{u} duv(A) = 0. In this
case, we must prove that

0 ≥ ∑
v∈V\{u}

duv(B ∪ e)− ∑
v∈V\{u}

duv(B) (6)

this inequation can only hold when ∑v∈V\{u} duv(B ∪ e) = ∑v∈V\{u} duv(B) because f is monotone
which has been proved above.

(2) We assume a set of edges C = R− B and ∑v∈V\{u} duv(B ∪ C) = ∑v∈V\{u} duv(R). Hence,
we must prove that

∑
v∈V\{u}

duv(B)− ∑
v∈V\{u}

duv(A) > ∑
v∈V\{u}

duv(A ∪ C)− ∑
v∈V\{u}

duv(R) (7)

In inequation (7), ∑v∈V\{u} duv(B)−∑v∈V\{u} duv(A) > 0 because f is monotone. Meanwhile,
A∪C ⊂ R and therefore, by the monotone of the function, ∑v∈V\{u} duv(A∪C)−∑v∈V\{u} duv(R) < 0.
Hence, the inequation (7) is proved. Now, we have proved inequation (5) by the above two cases and
hence, the submodular of the shortest-path sum function f is proved.

Considering the optimal solution for the LCVMIN problem R∗ and let R
′

be the solution obtained
by the greedy algorithm, according to the Nemhauser’s work [22], we can prove that:

f (R
′
) ≥ (1− 1

e
) f (R∗) (8)

Thus, Theorem 3 is proved.

Corollary 1. The LCVMIN problem subjected to a cardinality constraint admits a 1 − 1
e

approximation algorithm.

Therefore, we have exploited that the greedy approximation algorithm can obtain a solution of
the LCVMIN optimization problem in a lower bound 1− 1

e ≈ 0.63. Furthermore, in Section 5, we show
that the solution obtained by the greedy approximation algorithm can be more accurate than this
lower bound.

4.1.3. Example of the UpdateCloseness Algorithm

The goal of our UpdateCloseness algorithm is to update the shortest paths of the nodes which is
affected by removing an edge and avoid recomputing closeness value by traversing the entire network.
In this section, we propose a simple example to illustrate the principle of our UpdateCloseness
algorithm. Suppose that we have a network G = (V, E), leader t and its BFS tree GB in Figure 3,
we attempt to remove an arbitrary edge e = (u, v) ∈ E in the network and dtv ≥ dtu. By observing the
BFS tree GB, we investigate that there are three edge deletion cases as follows:

• dtu = dtv : Since the ends of the removed edge e, u and v are at the same level of the bfs tree,
it will not influence the shortest paths from t to all other nodes , i.e., ct(e) = ct.

• dtv > dtu and ∃w ∈ N(v) , dtw = dtu: Assume that for s ∈ V, there exists a shortest path
P = (t, ..., u, v, ..., s) in GB. Since after removing the edge (u, v), there still exists a shortest
path P′ = (t, ..., w, v, ..., s) which has the same length, i.e., dts(e) = dts as shown in Figure 3b.
Hence, it will not influence the shortest paths from t to all other nodes, i.e., ct(e) = ct.

• dtv > dtu and ∀w ∈ N(v) , dtw > dtu: Since after removing the edge (u, v), as shown in Figure 3c,
dtv(e) = dtw + 1 > dtv , so an update of the closeness value ct(e) is needed, specifically update
the shortest paths of the affected nodes, v and its child nodes which have no neighbors in the
upper level of the BFS tree (blacked out in Figure 3c).
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(b) Case 2

t

v
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w

(c) Case 3

Figure 3. Three cases of the edge deletion.

4.1.4. UpdateCloseness Algorithm

From the above observation, we have found that there are three cases after removing an edge in
the network and only Case 3 needs to update the shortest paths of the affected node set. Due to such
property, we propose the UpdateCloseness algorithm for the purpose of updating the closeness value
of leader after removing an edge. The goal of our UpdateCloseness algorithm is to reduce the time
cost of running a BFS, s.t., reduce the number of traversed edges and nodes when computing the sum
of all shortest paths. The whole process of UpdateCloseness algorithm is summarized in Algorithm 2.
In line 1–6, just similar to the Case 1 and 2 in Figure 3, if we find that the removed edge will not change
the shortest paths from leader to all other nodes in the network, the algorithm will return the original
closeness value and shortest paths array d.

Algorithm 2: UpdateCloseness.
Input: A network, G = (V, E), the number of nodes N = |V|, leader t, edge

e = (start, end) ∈ E, shortest-path array d, the original total distance ToD
Output: The updated closeness cup := (N − 1)/ToD′ and the updated shortest-path array d′

1 S := ∅;
2 if dt,start == dt,end then
3 return (N − 1)/ToD;

4 foreach x ∈ Nend do
5 if x in the upper level of BFS tree then
6 return (N − 1)/ToD;

7 S := FindA f f ectSet
8 while S 6= ∅ do
9 x := S.dequeue()

10 if ∃y ∈ Nx in the same level of BFS tree then
11 dux(e) = Min(duy) + 1;
12 ToD′ := ToD− dux + dux(e);

13 return (N − 1)/ToD′ and d′;

As mentioned in the example above, if the removed edge is similar to the Case 3, we must find
the affected node set in the network. Therefore, we design an algorithm FindAffectSet to achieve this
goal and the detail of this algorithm is shown in Algorithm 3. The result of Algorithm 3 is the affected
node set S. In Algorithm 3, end is denoted as the node of the removed edge e ∈ E which is in the lower
level of the BFS tree. The queue Q is designed to run a search in the child nodes of the node end to
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find the affected node set (lines 3–8). For each neighbor node of the node extracted from the queue Q,
if there are no neighbors in the upper level of the BFS tree (line 7), it will be pushed into the queue Q.
This search repeats until the queue Q is empty. By this pruning search, the affected node set S is found.

Algorithm 3: FindAffectSet.
Input: A network, G = (V, E), leader t, removed edge (start, end)
Output: The Affect set of nodes S

1 S := ∅, Q := ∅;
2 Q := Q ∪ end;
3 while Q 6= ∅ do
4 x := Q.dequeue();
5 S := S ∪ x;
6 foreach y ∈ Nx and duy > dux do
7 if !∃z ∈ Ny not in the upper level of BFS tree then
8 Q := Q ∪ y;

9 return S;

After finding the affected nodes set S (line 7 in Algorithm 2) , we need to update the shortest
paths from leader to all other affected nodes. For each node extracted from S, if it has neighbor nodes
in the same level of the BFS tree, we update its distance from its neighbor node which is the nearest
to leader t and update the total of all distances to t (lines 10–12 in Algorithm 2). This procedure will
be repeated until all nodes in S have been updated and at last our UpdateCloseness algorithm will
return the updated closeness value cup and the updated shortest paths array d′. Intuitively, we can use
this array d′ in the next computation of the closeness value.

4.1.5. Time Complexity Analysis

The time complexity of our pruning algorithm is analyzed in this section. In traditional way,
after removing an edge, we must recompute the closeness value by BFS, which requires O(n + m). In
our UpdateCloseness algorithm, we can reduce the traverse time by pruning the number of nodes
that have to be traversed. In Case 1 or Case 2, the time complexity of the UpdateCloseness algorithm
is only O(1). In Case 3, the number of the traversed nodes and edges is defined as τnm, whose worst
case is O(n + m); however, the worst case rarely happens, as shown in Section 5. We can find that
the time complexity of our UpdateCloseness algorithm in Case 3 is O(τnm) and therefore the greedy
algorithm’s time complexity is O(k · m · τnm). In most cases, we exploit that our UpdateCloseness
algorithm can reduce plenty of time compared to BFS.

4.2. Approximation Algorithm for LCRMAX Problem (GSA)

In Section 3 we exploit that the optimization problem of closeness rank maximization is NP-hard.
Hence, to obtain approximate solution in polynomial time, we consider a heuristic method combining
greedy algorithm and simulated annealing algorithm (GSA). Algorithm 4 shows the detail of the
heuristic algorithm. In the early work, we have found that the optimal solution in small-scale network
is made up of neighbor nodes of leader which have higher degree. Hence, in Algorithm 4, we sort
the neighbors of leader, i.e., N(u) in the descending order of degree (Line 1) so as to make the results
obtained by greedy algorithm closer to the optimal solution. Due to the fact that we find that only
greedy algorithm cannot obtain a (1− 1

e ) approximation ratio like the value case, we exploit simulated
annealing algorithm which takes greedy solution as an initial solution for the purpose of converging
faster to a better solution in less time (line 9) and the detail of simulated annealing algorithm is shown
in Algorithm 5.
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Algorithm 4: Greedy and Simulated Annealing algorithm (GSA).
Input: A network, G = (V, E), leader u, and a selected integer k ∈ N;
Output: A set of removed edge R ⊂ E and |R| ≤ k;

1 sort N(u) by degree;
2 Rgreedy := ∅;
3 while |Rgreedy| < k do
4 foreach s ∈ N(u) do
5 if G(V, E\(u, s)) is connected then
6 Compute ru((u, s))

7 emax = arg max ru((u, s))
8 Rgreedy := Rgreedy ∪ emax

9 R := SA(G, Rgreedy)

10 return R;

Algorithm 5: Simulated Annealing algorithm.

1 . Input: A network, G = (V, E), leader u, and a selected integer k ∈ N, Initial solution R0,
Fitness function f (), Initial Temperature T0, Cooling Rate α, Stopping Threshold t;

Output: A set of removed edge Ri ⊂ E and |R| = k;
2 T := T0;
3 f0 = f (R0)

4 while T > t do
5 create a new solution Ri+1;
6 fi+1 = f (Ri+1);

7 if fi+1 > fi || e−| fi− fi+1 |

T > rand(0, 1) then
8 Ri := Ri+1;

9 T := T ∗ α;
10 i := i + 1;

11 return Ri

4.2.1. The Reason for Proposing this Heuristic Method

Compared with the value approximation algorithm, we not only use the greedy algorithm to
obtain the approximate solution due to the fact that the optimization problem in the closeness rank
case is not submodular and there are situations where the gap between the approximate solution
obtained by greedy algorithm and optimal solution is very huge. Table 2 shows a simple example to
compare the closeness value case with the rank case.

In the closeness value case, generally, the closeness value decreases as the number of removed
edges increases. Therefore, we can distinguish each edge by the closeness value result after removing
it. Thus, the greedy algorithm works well in this case and we prove the monotone and submodular
of this problem in Theorem 3. However, this does not apply in the rank case. In the network that
leader has a huge advantage over other nodes in terms of closeness value (for example the scale-free
network), when the size of the removed edges is less than 5, the probability of improving leader’s rank
is very little, in other words, the rank of leader remains unchanged in most cases. Also, after removing
a certain number of edges, the rank of leader can dramatically decrease, e.g., as shown in Table 2,
after removing 5 edges, the leader’s rank varies from 1 to 6. In this example, the network has 17 nodes
and leader has 15 neighbors, which satisfying the characteristics of scale-free network. In other words,
except for one node, other nodes in the network have direct links with leader. Hence, the closeness
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value of leader is 0.94, which is close to the theoretical maximum of closeness value. The closeness
values of other nodes in the network are mostly between 0.5 and 0.7, which are far less than leader.
Therefore, we find that if the number of deleted edges is less than 5, then the closeness value of leader
is still the largest in all the cases of edge deletion. In all cases, the minimum value of closeness is about
0.7, and the rank of leader is still 1, but the gap between leader and other nodes has been reduced.
When five edges are deleted, the closeness value of leader drops to about 0.66 in the optimal case.
At this time, there exist five nodes whose closeness value all around 0.69, so the optimal solution for
deleting five edges is 6.

In this example, it is hard for the original greedy algorithm to obtain an approximation solution
due to the fact that it cannot distinguish each edge if the rank remains unchanged. Hence, we consider
combining the greedy algorithm with simulated annealing algorithm to make the approximate solution
closer to the optimal solution.

Table 2. The simple example to compare the closeness value cases with the rank cases.

Delete Edges Closeness Value (Optimal) Closeness Rank (Optimal) Closeness Rank (Greedy)

1 0.89 1 1
2 0.84 1 1
3 0.76 1 1
4 0.69 1 1
5 0.66 6 1

4.2.2. FastTopRank Algorithm

The heuristic algorithm proposed above has to compute the closeness rank of leader after
removing an edge, which needs to solve the all-pairs-shortest-path (APSP) problem. The basic
algorithm solving APSP problem is expensive, nearly O(n(n + m)) by running BFS for each node.
Therefore, we propose a pruning algorithm, inspired by Bergamini’s top-k algorithm [7], to quickly
compute the closeness rank of the given node. Compared to the UpdateCloseness algorithm, in this
algorithm we attempt to reduce the times of BFS to compute the closeness rank.

The principle of our FastTopRank algorithm is to reduce the execution time of BFS when
computing the rank of the top node for the reason that we would remove limited edges in the network
and it is hard to dramatically reduce the top node’s rank. Differing from the Top-k algorithm[7],
we assume that the value of k is equal to the number of nodes in the network, and we stop the
algorithm when getting the accurate rank of the top node.

In Algorithm 6, first, we compute the lower bound of the sum of the shortest paths for all nodes
v ∈ V by the two approaches proposed by Bergamini [7] (Line 3–4). The details of two lower bound
algorithm are shown in Algorithms 7 and 8. Furthermore, in our algorithm, we design a priority
queue Q to store all nodes order by increasing S(v). Please note that we choose the minimum of both
lower bounds by level and neighbor (Line 5–8). To obtain the rank of the top node u, we extract a
node with the minimum sum of the shortest paths S∗ from the head of Q (Line 11). If S∗ is just the
lower bound (i.e., visited[v∗] := f alse), Algorithm 6 will compute the exact value of the sum of shortest
paths and insert it into Q. For the case that S∗ is the exact value of the sum of the shortest paths
(i.e., visited[v∗] := true), we can append this node and its S∗ to the top rank node list (Line 12–14). If
fortunately we find the top node is in the top rank node list, we can sort the list by S and then obtain
the accurate rank of the top node (Line 15–17).

Obviously, the lower bound close to the exact sum of the shortest paths can reduce the iterations
to find the rank of the top node. We choose the minimum of two kinds of lower bounds which are
proposed in Bergamini’s work [7] for this reason. Beyond that, the time complexity of our fast rank
algorithm is O((n + m) · k + klogk + µnm), where k is the number of iterations to find the accurate rank
each of which needs to run BFS and klogk represents the time to sort the top rank note list. Also, µnm is
the approximate time complexity of the two lower bound algorithms, whose exact complexity is based
on the diameter of the network [7]. Despite that our algorithms may not be faster than the original
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algorithm when computing the node with low rank due to the reason that k ≈ n, s.t. the number
of running BFS is nearly n. Our FastTopRank algorithm can significantly reduce the times of BFS,
i.e., k� n when asserting the rank of top nodes (the most cases of our optimization problem).

Algorithm 6: FastTopRank algorithm.
Input: A network, G = (V, E), the target node u;
Output: The closeness rank r(u);

1 Q := ∅;
2 R := ∅;
3 Sl := LevelLowerBound(G);
4 Sn := NeighLowerBound(G);
5 foreach v ∈ V do
6 S[v] = min(Sl [v], Sn[v]);
7 Q := Q ∪ (v, S[v]);
8 visited[v] := f alse;

9 i := 0
10 while i < n do
11 (v∗, S∗) := Q.dequeue();
12 if visited[v∗] then
13 R := R ∪ (v∗, S∗);
14 i := i + 1;
15 if v∗ == u then
16 sort(R) by S;
17 return r(u);

18 else
19 S[v∗] = ∑w∈V\{v} d(v∗, w);

20 Q := Q ∪ (v∗, S[v∗]);
21 visited[v∗] := true;

Algorithm 7: Level-based lower bound for undirected graphs
Input: A network G = (V, E)
Output: Lower bounds S̃L(v) of each node v ∈ V

1 random choose a seed node s ∈ V
2 d← BFS(s);
3 maxH←maxv∈V d(s,v);
4 for i = 1, 2, ..., maxH do
5 h[i] = {w ∈ V : d(s,w)=i};
6 t[i] = the total number of members in h[i];

7 for i = 1, 2, ..., maxH do
8 sum← 0;
9 for j = 1, 2, ..., maxH do

10 if |j - i|≤ 1 then
11 sum← sum + 2·t[j];

12 else
13 sum← sum + |j - i|·t[j];

14 for i = 1, 2, ..., maxH do
15 S̃L(v)← sum - deg(v) - 2;

16 return S̃L
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Algorithm 8: Neighborhood-based lower bound for undirected graphs
Input: A network G = (V, E)
Output: Lower bounds S̃N(v) of each node v ∈ V

1 foreach s ∈ V do
2 t1[s]← deg(s);
3 S̃N [s]← deg(s);
4 Visited[s]←deg(s) + 1;
5 finished[s]← false;

6 k← 2;
7 count← 0;
8 while count < n do
9 foreach s ∈V do

10 if k=2 then
11 t[s]← ∑w∈N(s) t1[w]− deg(s);

12 else
13 t[s]← ∑w∈N(s) t1[w]− t2[s](deg(s)− 1);

14 foreach s ∈ V do
15 if finished[v] then
16 continue;

17 t2[s]← t1[s];
18 t1[s]← t[s];
19 if n−Visited[s] > t1[s] then
20 S̃N(v)← S̃N(v) + k · t1[s];
21 Visited[s]← Visited[s] + t1[s];

22 else
23 S̃N(v)← S̃N(v) + k(n−Visited[s]);
24 Visited[s]← n;
25 count← count + 1;
26 finished[s]← true;

27 k← k + 1;

28 return S̃N

5. Experiment

In this section, we report the results of our experiments which examine the efficiency and accuracy
of the proposed algorithms in Section 4. We implemented all algorithms in Python and ran all codes in
a computer equipped with 16 GB memory and an Intel i5-8500 CPU (3.0 GHz) with 6 cores.

5.1. Dataset

To measure our algorithms, we have chosen some real-life networks and several random networks
generated by different models. There are mainly three kinds of randomly generated networks
as follows:

• Random network, which is generated by the Erdos–Renyi model [23]. The generated network can be
denoted as G(n, p) with n nodes and p connection probability. This kind of network is denoted as ER.

• Small-world network, which is generated by the Watts–Strogatz model [24]. The generated graph
can be denoted as G(n, k, p) with n nodes, k average degree and p rewiring edge probability.
This kind of network is denoted as WS.
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• Scale-free network, which is generated by the Barabási–Albert model [25]. The generated graph
can be denoted as G(n, m) with n nodes and m edges to connect a new node with existing nodes.
This kind of network is denoted as BA.

Normally, we generate corresponding size of random networks which are undirected and
connected as needed and the specific size will be shown in each experiment. Moreover, we have
selected some real-life networks and the detail of these networks is shown in Table 3. Some of the
real-life networks are undirected and connected and the others are the networks transformed from the
directed networks. All these networks are collected from the website of KONECT [26], SNAP [27] and
Network Repository [28]. Due to the page limit, we only choose some typical results (3-4 networks) of
some experiments.

Table 3. Real-life datasets.

Network |V | |E| Network Type

WTC [29] 36 64 Terrorist Network
bali 17 63 Terrorist Network

moreno-rhesus 16 69 Animal Social Network
aves-weaver-social 24 62 Animal Social Network

Dolphins 62 159 Animal Social Network

ContiguousUSA 49 107 Infrastructure Network
david 112 425 Lexical Network
Jazz 198 2742 Collaboration Network

arenas-email 1133 5451 Communication Network
arenas-pgp 10,680 24,316 Interaction Network

as-caida 26,475 106,762 Internet Network

ucidata-gama 16 58 Social Network
moreno-taro 22 39 Social Network

moreno-beach 37 105 Social Network
moreno-oz 217 1839 Social Network
FB-tvshow 3892 17,262 Social Network

FB-politician 5908 41,729 Social Network
FB-government 7057 89,455 Social Network

5.2. Closeness Value Case Results

5.2.1. Evaluate UpdateCloseness Algorithm

In this section, we evaluate the efficiency of our UpdateCloseness algorithm by comparing the
computation time with BFS algorithm. To measure the efficiency of our algorithm, we proposed the
notation of average speed up ratio T as follows:

T =
tBFS

tupdate
(9)

where tBFS and tupdate denote the average time cost by BFS algorithm and UpdateCloseness algorithm,
respectively. We consider that the efficiency of the algorithm depends on the network size and the
network topology and therefore, we conduct two different experiments to estimate the efficiency
as follows:

• First, randomly generate networks in different size and kinds (BA, WS and ER) . Then, randomly
choose the node v ∈ V and a removed edge e ∈ E in the chosen network, then calculate the
closeness value by BFS and UpdateCloseness for each time. We choose the average times by
repeating it for 5000 times.
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• First, choose some real-life complex networks as the datasets. Then, randomly choose the node
v ∈ V and a removed edge e ∈ E in the chosen network, then calculate the closeness value by BFS
and UpdateCloseness for each time. We choose the average times by repeating it for 5000 times.

Please note that in these two experiments, we assume that the closeness value has been computed
before removing an edge and we estimate the efficiency when removing an edge. Also, there are three
kinds of network size (≈ |E||V| ) of our randomly generated network, 5, 10, 15 and the node size varies
from 100 to 5000.

Figure 4 shows the average speed up ratio in different sizes and kinds of randomly generated
networks. Regardless of the size and kind , our UpdateCloseness algorithm is always faster than the
original BFS algorithm and the speed up ratio gradually increases as the network sizes (|V|) increases.
In most cases, the speed up ratio tends to depend on |E||V| and we confirm that our algorithm works
well in complex networks.

Table 4 shows the average speed up ratio in the real-life complex networks. We find that our
algorithm still works well in complex networks and the average speed up ratio T ≈ 30. To summarize,
the results of these experiments prove the efficiency of our UpdateCloseness algorithm in different
networks, i.e., it works better than the original BFS algorithm in each case and it usually can achieve
an speed up rate of more than ten in different kinds and sizes of networks.

(a) ba (b) ws (c) er

Figure 4. The average speed up ratio T in different sizes and kinds of random networks.

Table 4. Complex network datasets used in evaluating the efficiency of our UpdateCloseness algorithm.

Network |V | |E| Speed up Ratio

arenas-email 1133 5451 26.52
FB-tvshow 3892 17,262 28.95

FB-politician 5908 41,729 32.59
FB-government 7057 89,455 36.15

arenas-pgp 10,680 24,316 32.24
as-caida 26,475 106,762 31.46

5.2.2. Compare Greedy Solution with the Optimal Solution

In this section, we estimate the accuracy of the approximation greedy algorithm by comparing its
solution with the optimal solution in small-scale networks. Due to the limited computation resources,
we select several real-life and randomly generated networks with dozens of nodes and edges as
datasets and size of these networks is shown in Table 5.

Moreover, the budget of the removed edges k ranges from 1 to 5 (some to 7) and we proposed the
notation of minimum approximation ratio (denoted by Min Appro Ratio) as the worst case in every
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budget k and it presents the ratio between the greedy solution and the optimal solution
Table 5 shows the Min Appro Ratio of each network and we discover that the worst case of our

approximate greedy algorithm is far more accurate than the theorical lower bound (1− 1
e ≈ 0.63)

which has been proved in Section 4.
Figure 5 shows the differences between the optimal solution and greedy approximate solution in

each budget k ( due to limited space, we only choose four typical results in all networks ). Obviously, our
approximate greedy algorithm can significantly minimize the closeness value of the leader in seconds
compared with nearly 2 days to obtain the optimal solution by brute-force search when the budget k = 7.

Table 5. Datasets used in comparing greedy solutions with the optimal solutions.

Network |V | |E| Min Appro Ratio

WTC 36 64 0.9632
bali 17 63 0.9130

aves-weaver-social 24 62 0.9556
moreno-rhesus 16 69 0.9200
moreno-beach 37 105 1.0000
moreno-taro 22 39 0.8852

dolphins 62 159 0.9600
contiguous-usa 49 107 1.0000
ucidata-gama 16 58 0.9231

Random graph 30 55 0.8511
Scale-free 30 56 0.9437

Small-world 30 60 0.9174

(a) WS (b) aves-weaver-social

(c) bali (d) contiguous-usa

Figure 5. The comparison of the optimal and greedy closeness value results.
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5.2.3. Compare Approximate Greedy Algorithm with Other Baseline Algorithms

In this section, we choose some baseline algorithms as comparison to evaluate the accuracy of our
approximate greedy algorithm in the complex network. Different strategies of removing edges in the
baseline algorithms are shown as follows:

• Random: randomly and uniformly select k edges in the whole network.
• Top-k degree: choose k edges with the highest degree sum.
• Top-k closeness: choose k edges with the highest closeness value sum.
• Top-k neighbor degree: choose k edges in the neighbor of the leader node with the highest degree.

Please note that the first baseline algorithm is easy to understand and can be implement within a
short time. Furthermore, the fourth baseline algorithm is a kind of variety of the ROAM algorithm in
Waniek’s work [3]. Table 6 shows the detail of all real-life and randomly generated complex networks
used in this comparison experiment.

Figure 6 shows the different results in random networks or real-life networks ( due to limited
space, we only choose four typical results in all networks ). We observe that our greedy algorithm
works better than other four comparison algorithms in general and the three top-k algorithms can only
obtain lower approximation results. Random algorithm performs poorly in all networks because there
are limited edges whose deletion can contribute to closeness decrement in complex networks.

Table 6. Datasets used in comparing greedy solution with the other algorithms.

Network |V | |E|
Jazz 198 2742

moreno-oz 217 1839
david 112 425

FB-tvshow 3892 17,262
FB-politician 5908 41,729
arenas-email 1133 5451

BA-5 1100 5475
BA-10 1000 9900
BA-15 1000 14,775
ER-5 1000 5025
ER-10 1000 10,029
ER-15 1000 14,917
WS-5 1000 5000

WS-10 1100 10,000
WS-15 1100 15,000
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(a) jazz (b) ws-1000-5

(c) ws-1000-10 (d) ws-1000-15

Figure 6. The comparison of the greedy algorithm with the baseline algorithms.

5.3. Closeness Rank Case Results

5.3.1. Evaluate FastTopRank Algorithm

In this section, similar to the experiment in the closeness value case, we conduct an experiment
to evaluate the efficiency of the FastTopRank algorithm. First, due to the fact that our algorithm can
compute the exact closeness rank of the node in the top rank rapidly, we choose to speed up rate of the
nodes with top-50 rank as the standard of this experiment. Furthermore, we denote the notation of
speed up rate Trank as follows:

Trank =
Twhole
Tpartial

(10)

where Tpartial and Twhole denote the time cost of FastTopRank and traditional algorithm (computing
the closeness value of all nodes and sorting them).

In this experiment, we compute the rank of the nodes ranking from 1 to 50 in the network by two
algorithms for three times and take the average to compute the speed up rate Trank. Figure 7 shows
the results in different networks. Obviously, our algorithm can significantly reduce the time when
computing the top-5 nodes and it still works when computing the nodes with low rank.
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(a) ba-500-5 (b) ba-500-10

(c) ba-500-15 (d) david

Figure 7. Evaluate the efficiency of the FastTopRank algorithm.

5.3.2. Compare the Solution of GSA Algorithm with the Optimal Solution

In this experiment, we test our GSA algorithm in some small-scale networks and compare its
solution with the optimal solution obtained by brute-force search. The networks of this experiment are
shown in Table 5 and results are shown in Table 7. Due to the limitation of computation resources, the
budget of the removed edges only ranges from 1 to 5 and we just choose three typical results due to
the page limit.

In most cases, the solution of our GSA algorithm is the same or very close to the optimal solution.
However, there are still some situations where the approximate solution is far from the optimal solution
in the network such as BA network whose leader’s degree is particularly high and we find that its
optimal solution , i.e., the closeness rank of leader remains the first until removing as many edges
as possible. Hence, in this situation, the number of optimal solutions is few and it is hard for our
algorithm to obtain an approximate solution.

Table 7. Compare the optimal solution with the approximate solutions.

Aves-Weaver-Social Dolphins Moreno_Rhesus

k Optimal Greedy GSA Optimal Greedy GSA Optimal Greedy GSA

1 1 1 1 3 3 3 1 1 1
2 1 1 1 10 6 10 6 5 6
3 1 1 1 23 17 23 10 8 10
4 1 1 1 36 36 36 10 10 10
5 5 1 5 50 50 50 13 11 13
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5.3.3. Compare GSA Algorithm with Other Baseline Algorithms

In this section, to estimate the accuracy of our GSA algorithm in the complex network, we compare
our algorithm with the following baseline algorithms:

• Greedy Neighbor: the greedy algorithm that chooses the neighbor edges that maximize the
closeness rank each time.

• Top-k degree: choose k edges with the highest degree sum.
• Top-k closeness: choose k edges with the highest closeness value sum.
• Top-k neighbor degree: choose k edges in the neighbor of the leader node with the highest degree.

In the earlier experiment, we have found that the optimal solution consists of neighbor edges
in most cases, and removing limited edges cannot change the closeness rank of leader. Therefore,
differing from the comparison with the optimal solution, in this experiment we set the range of the
budget of removing edges at 10–50% of the degree of the leader to protect the integrity of network as
much as possible and make the effect of improving the closeness rank more obvious. Furthermore,
in general, we assume that the network remains connected after removing the edge set generated by
base line algorithms.

Tables 8–10 show the results of this experiment. We find that the GSA algorithm can improve the
results obtained by the greedy neighbor algorithms and the other three baseline algorithms perform
poorly in all networks. Furthermore, we find that removing limited edges in the WS and ER networks
can significantly increase the rank of the leader.

Table 8. The comparison of the approximate algorithm with the baseline algorithms: moreno-oz.

k Greedy GSA Top-k-Degree Top-k-Closeness Top-k-Neighbor

5 2 2 1 1 1
6 2 2 1 1 1
7 2 2 1 1 1
8 3 4 1 1 1
9 5 6 1 1 1

10 5 6 1 1 2
11 5 6 1 1 2
12 6 8 1 1 2
13 8 9 1 1 2
14 9 9 1 1 2
15 10 10 1 1 2
16 13 20 1 1 3
17 17 19 1 1 5
18 19 23 1 1 5
19 22 25 1 1 5
20 24 32 1 1 5
21 30 35 1 1 5
22 35 39 1 1 5
23 38 39 1 1 8
24 46 52 2 1 10
25 52 54 2 1 10
26 54 62 3 1 11
27 63 65 3 1 19
28 67 73 3 1 20
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Table 9. The comparison of the approximate algorithm with the baseline algorithms: er-150.

k Greedy GSA Top-k-Degree Top-k-Closeness Top-k-Neighbor

3 2 6 1 1 2
4 6 6 2 2 6
5 12 22 6 6 6
6 30 30 11 11 11
7 33 33 20 20 21
8 42 42 30 30 29
9 61 61 33 33 33

10 70 94 42 42 42
11 94 111 42 52 52
12 111 111 42 61 70
13 119 124 52 78 78
14 122 128 61 77 95
15 140 140 78 77 111
16 140 143 77 77 118
17 144 144 77 77 124
18 145 146 77 77 135
19 148 148 77 77 138

Table 10. The comparison of the approximate algorithm with the baseline algorithms: er-200.

k Greedy GSA Top-k-Degree Top-k-Closeness Top-k-Neighbor

4 6 8 1 1 1
5 10 10 1 1 2
6 11 11 1 1 6
7 14 19 1 2 6
8 26 36 1 1 9
9 35 37 1 6 11

10 40 40 1 10 17
11 54 60 4 16 33
12 65 77 10 16 37
13 89 104 11 16 47
14 88 104 11 24 55
15 111 118 10 24 65
16 129 156 26 37 77
17 162 177 33 40 88
18 177 181 33 55 112
19 184 186 33 65 141
20 189 192 37 73 156
21 195 197 47 73 179

6. Conclusions

We present two optimization problems of hiding leader in the IoT networks by minimizing
(maximizing) closeness value (rank). We show finding optimal solutions is NP-hard. Hence, we propose
two heuristic algorithms to solve optimization problems in polynomial time and prove that the greedy
algorithm can obtain a (1− 1

e )-approximation ratio. We also provide two pruning algorithms to reduce
the time cost of BFS algorithm and compute the closeness value of each nodes in the complex networks.
Experimental results show that our pruning algorithms can reduce the time by at least 10 times to
calculate the closeness value (rank) compared with original algorithms and our heuristic algorithms
can be close to the optimal solutions and outperform the solutions by the baseline algorithms.

In the future, we would like to combine our work with existing studies of privacy preservation
in IoT focus on access control model, such as context-aware access control model [30–34], to ensure
the privacy and security of IoT networks. We hope to construct a context-aware access control policy
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framework combining the idea of our dynamic update algorithm and can dynamic update the access
control policy in limited time.
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