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Abstract: The development of new bioelectronic platforms for direct interactions with oral fluid could
open up significant opportunities for healthcare monitoring. A tongue depressor is a widely used
medical tool that is inserted into the mouth, where it comes into close contact with saliva. Glucose is a
typical salivary biomarker. Herein, we report—for the first time—a tongue depressor-based biosensor
for the detection of glucose in both phosphate buffer and real human saliva. Carbon nanotubes
(CNTs) are attractive electronic materials, with excellent electrochemical properties. The sensor is
constructed by printing CNTs and silver/silver chloride (Ag/AgCl) to form three electrodes in an
electrochemical cell: Working, reference, and counter electrodes. The enzyme glucose oxidase (GOD)
is immobilized on the working electrode. The glucose detection performance of the sensor is excellent,
with a detection range of 7.3 µM to 6 mM. The glucose detection time is about 3 min. The discretion
between healthy people’s and simulated diabetic patients’ salivary samples is clear and easy to tell.
We anticipate that the biosensor could open up new opportunities for the monitoring of salivary
biomarkers and advance healthcare applications.
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1. Introduction

The development of new types of biosensors has attracted considerable interest in various
healthcare, environmental monitoring, and defense applications [1–3]. Saliva is easy to obtain using
noninvasive methods, and it contains a variety of biomarkers related to diseases or health statuses [4–7].
Thus, the development of a simple method for the detection of salivary biomarkers is highly desirable.
Glucose is a typical salivary compound, and it can be used as a typical analyte for the construction of
biosensors [8–10].

Many biosensors on conventional substrates, such as ceramics and glass, have been developed [11–13].
Recently, the potential utility of several types of nonconventional substrates for the detection of glucose
have been studied. These include cotton fabric [14], plastic film [15], plastic centrifuge tubes [14], and
contact lenses [16]. A variety of electronic materials have also been studied for the construction of
sensing electrodes. These materials include carbon graphite [14,17,18], carbon nanotubes (CNTs) [19,20],
graphene [21], polymers [22,23], and indium tin oxide (ITO) [24]. Many of these materials have shown
excellent biosensing performances. For example, studies have shown that CNTs, a typical type
of electronic material, have excellent electrochemical properties and that they can be used for the
construction of amperometric biosensors [25,26].

A tongue depressor is a widely used medical tool that is inserted into the mouth, where it comes
into close contact with saliva [27,28]. It is cost-effective, lightweight, and convenient to use for frequent
examinations [29]. A tongue depressor could provide a unique platform for building biosensing
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devices. However, to the best of our knowledge, there are no reports on the construction of any
medical-related devices on a tongue depressor.

In this work, we present—for the first time—a tongue depressor-based amperometric biosensor
for the determination of glucose. Since a tongue depressor is a commonly used oral medical tool, it can
directly contact and detect human saliva. For example, for diabetic patients, the glucose concentration
can be tested by placing the tongue depressor-sensor in the mouth instead of using other invasive
methods. The sensor is constructed based on printing CNTs and Ag/AgCl to form three electrodes
in an electrochemical cell: A CNT working electrode, an Ag/AgCl reference electrode, and a CNT
counter electrode. Glucose oxidase (GOD) is immobilized on the working electrode. The reference
electrode provides a stable potential. The working electrode and the counter electrode form a circuit.
A constant potential is applied between the working electrode versus the reference electrode, and the
current in the circuit is measured. The oxidation of glucose is catalyzed by GOD to produce H2O2.
H2O2 generates a current response, as the detectable signal, via the oxidation reaction at the working
electrode. A calibration curve is plotted between the current reponse and the concentration of glucose.
We also tested real human saliva with and without added glucose to prove our sensor’s capability in
distinguishing between healthy people and those who suffer from diabetes.

2. Materials and Methods

2.1. Apparatus and Chemicals

A potentiostat CHI 660 was purchased from CH Instrumentation, Inc. (Shanghai, China). A UV
ozone cleaner was obtained from Ossila Limited (Sheffield, UK). Ag/AgCl ink with a 50:50 mass ratio
was purchased from Gwent Electronic Materials Ltd. (Pontypool, UK). Carbon nanotubes (optical
density: 10–20 nm, length: 10–30 µm, ash: <1.5 wt%, specific surface area: >200 m2/g, electrical
conductivity: >100 s/cm, purity: >95%) were purchased from Xfnano (Nanjing, China). Toluene was
purchased from Beijing Tongguang Fine Chemical Company (Beijing, China). Glucose oxidase was
obtained from Toyobo Co., Ltd. (Osaka, Japan). Glucose anhydrous was purchased from Tianjin
Zhiyuan Reagent Company, Ltd. (Tianjin, China). Glutaraldehyde and hydrogen peroxide were
purchased from Sigma-Aldrich Inc. (Beijing, China). Heating glue was acquired from Xnyhc, Inc.
(Beijing, China). Artifical saliva was purchased from Yuanye Biotechnology Co. (Shanghai, China).

2.2. Sensing Electrode Preparation

First, three parallel rectangles were drawn on the tongue depressor to mark the positions of three
electrodes, each with a length of 20 mm, a width of 2 mm, and 2 mm apart from each other. The tongue
depressor was then covered with a thin layer of epoxy and dried at room temperature (27 ◦C) for 24 h
to ensure that it was totally waterproof. The working and counter electrodes were prepared manually
with CNT (0.1 mg/mL in toluene; CNT: electrical conductivity >100 s/cm, optical density: 10–20 nm,
length: 10–30 µm, ash: <1.5 wt%, specific surface area: >200 m2/g, purity: >95%). The reference
electrode was prepared with Ag/AgCl ink (50:50, Gwent Electronics Materials Ltd.). Scotch tapes were
used to cover the area between and around the three rectangles, leaving out the space for the electrodes.
The CNT solution was carefully dropped on the locations for the working and counter electrodes with
an autopipette. Then, the Ag/AgCl ink was painted on the location for the reference electrode with a
foam-tipped swab. The printed electrodes were dried in an oven at 80 ◦C for half an hour, and then
cooled at room temperature. A chamber was casted with a glue gun at the front end of the electrodes
where solution would be added. The device was further treated with a UV ozone cleaner for 20 min to
change the hydrophobic surface to be hydrophilic.

2.3. Enzyme Functionalization

A 2% glutaraldehyde and a 10 U µL−1 GOD (from Toyobo Co., Ltd.) were mixed in a volume
ratio of 1:1. Then, 3 µL of the mixture was placed evenly on the surface of the front end of the working
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electrode, with an area of 2 mm in width and 10 mm in length. The sensor was then dried in a
refrigerator at 4 ◦C overnight. On the second day, it was taken out of the refrigerator and incubated
with buffer at room temperature for about 1 h before sensing measurement.

2.4. Sensing Measurements

The measurement of the tongue depressor sensor for H2O2 or glucose was performed using
a potentiostat CHI660e at room temperature. A constant potential of 0.6 V was applied between
the working versus the reference electrode. First, 90 µL of phosphate buffer (50 mM, pH 7.0) was
placed on the sensor, and 10 µL of H2O2 or glucose was injected into the buffer droplet. A series of
different concentrations were injected sequentially. The current-versus-time curves were recorded,
and a calibration curve between the steady-state current response and the concentration of H2O2 or
glucose was plotted. The cyclic voltammetry of the sensor was studied in a buffer solution containing
2 mM of H2O2 or glucose, or without H2O2 or glucose. A small volume of glucose in water with a
high concentration was added into the artificial saliva to mimic the saliva environment of diabetic
patients. It was noticed that the slight dilution of the saliva with water had almost no change on
the current baseline, compared with that of saliva.The rise in current was then recorded. For the
comparision of the sensor with a spectrophotometric method, saliva was added to the solution of
glucose catalytic enzyme, catalase, and 4-aminoantipyrine at room temperature for 15 min. After the
reaction, a colored compound was formed, and the characteristic absorption peaks at 505 nm were
detected by a spectrophotometer.

3. Results and Discussion

Figure 1 shows a schematic illustration and images of the tongue depressor-based sensor. Figure 1a
shows a schematic illustration for the sensor preparation. A tougue depressor was first painted with
epoxy for insulation from water (1). Then, CNTs were printed on the substrate (2), followed by the
printing of Ag/AgCl ink (3). Coppor wires were used to connect the electodes with the potentiostat (4).
The sensor was then treated with UV ozone to change the surface property from being hydrophobic
to be hydrophilic (5). After this, enzymes were immobilized on the working electrode (6). As can be
seen in Figure 1b, all three electrodes were printed onto the tongue depressor in parallel and covered
by a buffer droplet. The analytes were added into the buffer droplet and diffused to the electrode
surfaces to induce the oxidation, reduction, and electron transfer on the electrodes. The camera image
(Figure 1c) shows the working, reference, and counter electrodes successfully painted onto the surface
of the tongue depressor in parallel. The electrodes are thin, straight, and have relatively sharp edges.
The two electrodes in black color are the CNT electrodes that function as the working and counter
electrodes. The grey color is the Ag/AgCl electrode that functions as the reference electrode. The optical
images show the boundary between the wooden substrate and the CNT electrodes (Figure 1d), and the
boundary between the wooden substrate and the Ag/AgCl electrode (Figure 1e). These images show
that all the electrodes had uniform geometric shapes, and were successfully printed on the surface of
the tongue depressor.

The detection mechanism is based on an enzymatic reaction. Glucose is oxidized by O2 to produce
glucolactone H2O2 by GOD.

Glucose + O2
GOD
−→ Glucolactone + H2O2

H2O2 reacts at the working electrode at a positive potential: H2O2 − 2e− = 2H+ + O2↑. From the
amount of generated H2O2, the concentration of glucose can be determined. To explore the detection
performance of H2O2 or glucose at different potentials, cyclic voltammetry was studied for the tongue
depressor-based sensors, as shown in Figure 2. Figure 2a presents the cyclic voltammogram of the
sensor for 2 mM H2O2 in the buffer. Figure 2b shows the cyclic voltammogram without H2O2 in the
buffer. Figure 2c shows the cyclic voltammograms of GOD-immobilized sensor for 2 mM glucose in
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buffer. Figure 2d shows the cyclic voltammogram without glucose in the buffer. GOD catalyzed the
oxidation of glucose to generate H2O2, which was then oxidized/reduced at the working electrode
to generate a current change. From the comparison of Figure 2a,b, and from the comparision of
Figure 2c,d, we can see that in the presence of H2O2 or glucose, the currents are higher than that
without H2O2 or glucose at the same potential. The patterns for curves under 30 mV/s to 100 mV/s
scanning rates were slightly different, as shown in both Figure 2a,c. This may be due to the different
oxidation/reduction processes caused by different scanning rates, and the current is proportional to the
squre root of the scanning rate. Comparing the current responses at a same potential in Figure 2a,c,
it exhibits that glucose generated a smaller response than that of H2O2. This was expected, as H2O2

was oxidized/reduced directly on the electrode, whereas glucose went through the enzymatic reaction
to generate H2O2, and H2O2 was oxidized/reduced on the electrode afterwards. The patterns of the
curves are associated with the properties of the electronic inks, and these curves have similar patterns.
As can be seen from the curves, with the increase of the potential, the current became larger. A potential
of 0.6 V was chosen in this study, as this was sufficient for the oxidation or reduction process of H2O2.                                                                                     3 / 10 
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Figure 1. Images of the tongue depressor based amperometric sensor. (a) A schematic illustration of the
preparion procedure for the sensor. Step (1): Painting epoxy; step (2): Printing carbon nanotubes (CNTs);
step (3): Printing Ag/AgCl; step (4): Connecting to copper wires; step (5): Hydrophilic treatment; and
step (6): Immobilizing enzymes. (b) A schematic illustration of the configuration of the sensor; (c) A
camera image of the sensor; (d) An optical image of the carbon graphite electrode; (e) An optical image
of the Ag/AgCl electrode.
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Figure 2. Cyclic voltammetry of the tongue-depressor amperometric sensors (from the second
cycle). (a) A tongue depressor-based sensor without the immobilization of enzymes for buffer;
(b) A tongue depressor-based sensor without the immobilization of enzymes for H2O2; (c) A glucose
oxidase (GOD)-immobilized tongue depressor-based sensor for buffer; (d) A GOD-immobilized tongue
depressor-based sensor for glucose.

Figure 3a presents the current-versus-time signal response curve of the tongue depressor sensor
for detecting H2O2. When the current baseline with buffer was stable, H2O2 was injected into the
buffer droplet. Then it diffused and reached the surface of the electrode, where it was then oxidized
and generated a current response. When the entire diffusion and oxidation process became stable,
the current arrived at a new steady state. The sensor response for H2O2 was rapid, and the entire
detection took less than 5 min. At lower concentrations, the sensor response was even quicker, owing
to the shorter diffusion process and reaction time. At C1 and C2, it took less than 1 min for the sensor
to reach a stable current. The current response increased as the concentration of H2O2 increased, and it
was proportional to the H2O2 concentration. As shown in Figure 3a, from C5 to C8, the current increases
to the additions of 1 mM H2O2 were similar. Figure 3b illustrates the calibration curve for sensing
H2O2. As can be seen in the figure, a linear relationship was obtained between the current response and
the H2O2 concentration, with a concentration range of 0.1–5 mM, a slope of 3.676 µA mM−1, and an R2

of 0.9926. The detection limit of the tongue depressor biosensor for H2O2 was calculated to be 4.7 µM,
6.12 µM, and 4.08 µM (signal-to-noise ratio of 3), with an average of 4.97 µM and a standard deviation
of 1.04 µM. The error bars were from repetitive experiments made by three different electrodes. It can
be seen that the signal error between different electrodes is less than 15%. The results demonstrate that
a tongue depressor-based sensor showed a rapid and sensitive detection of H2O2. The findings point
to the possibility of constructing various biosensors based on tongue depressors via the immobilization
of bioreceptors, such as enzymes, peptides, and antibodies.

Figure 4 presents the characterization of the GOD-immobilized tongue depressor sensor for the
detection of glucose. The immobilized GOD catalyzes the oxidation of glucose to generate H2O2.
Therefore, through the detection of H2O2, glucose can be detected indirectly. Similarly, a buffer droplet
was first placed on the sensor, and after the current baseline achieved a stable status, a series of
glucose solutions were added sequentially to result in the increases of current. Figure 4a presents
the current-versus-time curve for the detection of glucose. The sensor exhibited a rapid measuring
time. Although it took around 5 min to detect 6 mM glucose, it could detect 0.3 mM glucose within
1 min. As the glucose concentration increased, the current response increased accordingly. As shown
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from C5 to C9 in Figure 4a, the biosensor showed similar current increases when adding several
times of 1 mM glucose. Figure 4b presents the calibration curve of the tongue depressor biosensor for
detecting glucose. A linear relationship was obtained between the current response and the glucose
concentration, with a concentration range of 0.1–6 mM, a slope of 2.281 µA mM−1, and an R2 of 0.9968.
The signal saturated at a concentration of 15 mM, whicg may be because of the saturation of the
enzymatic reaction. The detection limit of the tongue depressor biosensor for glucose was calculated to
be 7.3 µM, 10.96 µM, and 8.76 µM (signal-to-noise ratio of 3), with an average of 9.01 µM and a standard
deviation of 1.84 µM. The results presented herein demonstrate that the tongue depressor-based
biosensor has been successfully constructed and can detect glucose sensitively and rapidly. The sensing
performances were comparable to the detection ranges and detection limits from other reports in the
literature by using different electronic and substrate materials [30,31].                                                                                     5 / 10 

 

 

Figure 3. Characterization of the tongue-depressor amperometric sensors for H2O2 (phosphate 
buffer: 90 μL, droplet of H2O2 of different concentrations: 10 μL). (a) Current-versus-time curve for 
the detection of H2O2; (b) Calibration curve for the detection of H2O2. C1: 0.1 mM, C2: 0.2 mM, C3: 0.2 
mM, C4: 0.5 mM, C5: 1 mM, C6: 1 mM, C7: 1 mM, C8: 1 mM. 

The detection mechanism is based on an enzymatic reaction. Glucose is oxidized by O2 to 
produce glucolactone H2O2 by GOD. 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝑂 ⎯ 𝐺𝑙𝑢𝑐𝑜𝑙𝑎𝑐𝑡𝑜𝑛𝑒 + 𝐻 𝑂   

H2O2 reacts at the working electrode at a positive potential: H2O2 − 2e- = 2H+ + O2↑. From the 
amount of generated H2O2, the concentration of glucose can be determined. To explore the detection 
performance of H2O2 or glucose at different potentials, cyclic voltammetry was studied for the 
tongue depressor-based sensors, as shown in Figure 2. Figure 2a presents the cyclic voltammogram 
of the sensor for 2 mM H2O2 in the buffer. Figure 2b shows the cyclic voltammogram without H2O2 
in the buffer. Figure 2c shows the cyclic voltammograms of GOD-immobilized sensor for 2 mM 
glucose in buffer. Figure 2d shows the cyclic voltammogram without glucose in the buffer. GOD 
catalyzed the oxidation of glucose to generate H2O2, which was then oxidized/reduced at the 
working electrode to generate a current change. From the comparison of Figure 2a,b, and from the 
comparision of Figure 2c,d, we can see that in the presence of H2O2 or glucose, the currents are 
higher than that without H2O2 or glucose at the same potential. The patterns for curves under 30 
mV/s to 100 mV/s scanning rates were slightly different, as shown in both Figure 2a,c. This may be 
due to the different oxidation/reduction processes caused by different scanning rates, and the 
current is proportional to the squre root of the scanning rate. Comparing the current responses at a 
same potential in Figure 2a,c, it exhibits that glucose generated a smaller response than that of H2O2. 
This was expected, as H2O2 was oxidized/reduced directly on the electrode, whereas glucose went 
through the enzymatic reaction to generate H2O2, and H2O2 was oxidized/reduced on the electrode 
afterwards. The patterns of the curves are associated with the properties of the electronic inks, and 
these curves have similar patterns. As can be seen from the curves, with the increase of the potential, 
the current became larger. A potential of 0.6 V was chosen in this study, as this was sufficient for the 
oxidation or reduction process of H2O2. 

Figure 3. Characterization of the tongue-depressor amperometric sensors for H2O2 (phosphate buffer:
90 µL, droplet of H2O2 of different concentrations: 10 µL). (a) Current-versus-time curve for the
detection of H2O2; (b) Calibration curve for the detection of H2O2. C1: 0.1 mM, C2: 0.2 mM, C3: 0.2 mM,
C4: 0.5 mM, C5: 1 mM, C6: 1 mM, C7: 1 mM, C8: 1 mM.

                                                                                     6 / 10 
 

 

Figure 4. Characterization of the tongue-depressor amperometric sensors for glucose (phosphate 
buffer: 90 μL, droplet of glucose of different concentrations: 10 μL). (a) Current-versus-time curve for 
the detection of glucose; (b) Calibration curve for the detection of glucose. C1: 0.1 mM, C2: 0.2 mM, 
C3: 0.2 mM, C4: 0.5 mM, C5: 1 mM, C6: 1 mM, C7: 1 mM, C8: 1 mM, C9: 1mM, C10: 9 mM. 

Figure 3a presents the current-versus-time signal response curve of the tongue depressor sensor 
for detecting H2O2. When the current baseline with buffer was stable, H2O2 was injected into the 
buffer droplet. Then it diffused and reached the surface of the electrode, where it was then oxidized 
and generated a current response. When the entire diffusion and oxidation process became stable, 
the current arrived at a new steady state. The sensor response for H2O2 was rapid, and the entire 
detection took less than 5 min. At lower concentrations, the sensor response was even quicker, 
owing to the shorter diffusion process and reaction time. At C1 and C2, it took less than 1 min for the 
sensor to reach a stable current. The current response increased as the concentration of H2O2 
increased, and it was proportional to the H2O2 concentration. As shown in Figure 3a, from C5 to C8, 
the current increases to the additions of 1 mM H2O2 were similar. Figure 3b illustrates the calibration 
curve for sensing H2O2. As can be seen in the figure, a linear relationship was obtained between the 
current response and the H2O2 concentration, with a concentration range of 0.1–5 mM, a slope of 
3.676 μA mM−1, and an R2 of 0.9926. The detection limit of the tongue depressor biosensor for H2O2 
was calculated to be 4.7 μM, 6.12 μM, and 4.08 μM (signal-to-noise ratio of 3), with an average of 4.97 
μM and a standard deviation of 1.04 μM. The error bars were from repetitive experiments made by 
three different electrodes. It can be seen that the signal error between different electrodes is less than 
15%. The results demonstrate that a tongue depressor-based sensor showed a rapid and sensitive 
detection of H2O2. The findings point to the possibility of constructing various biosensors based on 
tongue depressors via the immobilization of bioreceptors, such as enzymes, peptides, and 
antibodies. 

Figure 4 presents the characterization of the GOD-immobilized tongue depressor sensor for the 
detection of glucose. The immobilized GOD catalyzes the oxidation of glucose to generate H2O2. 
Therefore, through the detection of H2O2, glucose can be detected indirectly. Similarly, a buffer 
droplet was first placed on the sensor, and after the current baseline achieved a stable status, a series 
of glucose solutions were added sequentially to result in the increases of current. Figure 4a presents 
the current-versus-time curve for the detection of glucose. The sensor exhibited a rapid measuring 
time. Although it took around 5 min to detect 6 mM glucose, it could detect 0.3 mM glucose within 1 
min. As the glucose concentration increased, the current response increased accordingly. As shown 
from C5 to C9 in Figure 4a, the biosensor showed similar current increases when adding several 
times of 1 mM glucose. Figure 4b presents the calibration curve of the tongue depressor biosensor 
for detecting glucose. A linear relationship was obtained between the current response and the 
glucose concentration, with a concentration range of 0.1–6 mM, a slope of 2.281 μA mM−1, and an R2 
of 0.9968. The signal saturated at a concentration of 15 mM, whicg may be because of the saturation 
of the enzymatic reaction. The detection limit of the tongue depressor biosensor for glucose was 
calculated to be 7.3 μM, 10.96 μM, and 8.76 μM (signal-to-noise ratio of 3), with an average of 9.01 

Figure 4. Characterization of the tongue-depressor amperometric sensors for glucose (phosphate buffer:
90 µL, droplet of glucose of different concentrations: 10 µL). (a) Current-versus-time curve for the
detection of glucose; (b) Calibration curve for the detection of glucose. C1: 0.1 mM, C2: 0.2 mM, C3:
0.2 mM, C4: 0.5 mM, C5: 1 mM, C6: 1 mM, C7: 1 mM, C8: 1 mM, C9: 1mM, C10: 9 mM.

Figure 5 shows the working stability of a tongue depressor glucose sensor. The sensor was studied
for measuring a same glucose concentration for more than 50 times, where 20 µL of 50 mM glucose
was added to 180 µL buffer and the current response was recorded. The response of the first detection
is regarded as 100%, and the following results are showed in percentages based on the first response.
It can be seen that the sensor maintained an excellent response for about 90% of the initial signal after
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detecting glucose for 50 times. This demonstrates that the sensor has an excellent working stability for
the detection of glucose continuously.
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Figure 7 presents the current signal after the the addition of saliva containing glucose on the
sensing electrode. According to previous research, the average glucose concentration of healthy people
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is 78.7 ± 9.2 µM for males and 80.4 ± 7.9 µM for females; while for diabetic patients, it is 201.9 ± 34.9 µM
for males and 175 ± 22.3 µM for females [32]. We can see that the difference of glucose concentration
between the healthy and diabetic groups is around 100 µM. We believe that this test to see current
change against a concentration of about 50 µM of glucose in saliva should be able to prove our sensor’s
capability in distinguishing between healthy and diabetic individuals. Saliva (195 µL) was placed
onto the sensor to serve as the buffer solution; after the baseline had stabilized, 5 µL of H2O2 or
10 mM glucose was added to simulate the increase in glucose concentration for a diabetic patient,
compared with that of a healthy individual. As shown in Figure 7a, we can see a clear rise of the
current signal to glucose, and the signal of H2O2 is slightly larger than that of glucose, which may due
to the catalytic conversion rate of glucose by the enzyme and the diffusion issue by the enzyme matrix.
Figure 7b shows the the detection of different concentrations of glucose, and it can be seen that a higher
concentration of glucose shows a much clear larger signal. The results proves that our sensor can
distinguish different concentrations of glucose in saliva, and can distinguish between healthy people
and diabetic patients easily.
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Figure 7. Characterization of the tongue depressor amperometric sensors for saliva. (a) The signal of
the sensor with enzyme to H2O2 (red) and glucose (black). A total of 5 µL of 10 mM glucose solution
was added to 195 µL of artificial saliva; (b) The signal responses to two different concentrations of
glucose in saliva, C1: 0.048 mM and C2: 0.714 mM.

4. Conclusions

In this work, we have shown the development of a tongue depressor-based biosensor for the
first time, and its sensitive, rapid, and reliable determination of glucose in both phosphate buffer
and real human saliva. The sensor construction method is simple, with CNTs dissolved in toluene,
CNT and Ag/AgCl inks printed onto the surface of a tongue depressor, and GOD immobilized on the
sensor. The detection process was easy-to-operate, cost-effective, and quick. The sensor showed a
bro ad detection range and a rapid measuring time for glucose. The sensor performance was reliable.
The low cost and portability of the substrate lend itself to be used in disposable devices, and make the
proposed sensor extremely suitable for at-home tests or on-site medical examination. The noninvasive
and disposable nature of the biosensor template improve the user experience, eliminate the chance of
cross-infection, and also mean that it would be suited for use in examinations where there are concerns
about the risk of infectious disease. Its practicability has also been proved in real human saliva test.
This work may open up new avenues for developing various other tongue depressor-based biosensors
dedicated to healthcare applications.
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