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Abstract: This study presents a detailed analysis of an air monitoring development system using
quadcopters. The data collecting method is based on gas dispersion investigation to pinpoint the
gas source location and determine the gas concentration level. Due to its flexibility and low cost, a
quadcopter was integrated with air monitoring sensors to collect the required data. The analysis
started with the sensor placement on the quadcopter and their correlation with the generated vortex.
The reliability and response time of the sensor used determine the duration of the data collection
process. The dynamic nature of the environment makes the technique of air monitoring of topmost
concern. The pattern method has been adapted to the data collection process in which area scanning
was marked using a point of interest or grid point. The experiments were done by manipulating
a carbon monoxide (CO) source, with data readings being made in two ways: point source with
eight sampling points arranged in a square pattern, and non-point source with 24 sampling points
in a grid pattern. The quadcopter collected data while in a hover state with 10 s sampling times at
each point. The analysis of variance method (ANOVA) was also used as the statistical algorithm to
analyze the vector of gas dispersion. In order to tackle the uncertainty of wind, a bivariate Gaussian
kernel analysis was used to get an estimation of the gas source area. The result showed that the grid
pattern measurement was useful in obtaining more accurate data of the gas source location and the
gas concentration. The vortex field generated by the propeller was used to speed up the accumulation
of the gas particles to the sensor. The dynamic nature of the wind caused the gas flow vector to
change constantly. Thus, more sampling points were preferred, to improve the accuracy of the gas
source location prediction.

Keywords: quadcopter; drone; pollutant; carbon; air monitoring; kernel

1. Introduction

Several types of air, water, and soil pollutants are impossible to avoid, being encountered in
almost all countries. Some of them represent real threats, rising risks to human health and environment
degradation, such as (for the case of big cities) air pollution generated by stationary sources (e.g.,
factories, power plants), by mobile sources (e.g., cars, buses), and also natural sources (e.g., windblown
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dust, wildfires). Pollutants can be classified into two types: pollutants having known sources, and
pollutants having unknown sources. Each of them have specific approaches related to measurement
methods and source identification. Most developed countries have developed law regulations to
organize regular air quality supervision for primary urban pollutants [1–3]. The regulations could
be put into practice only by monitoring regularly and accurately the concentration of the pollutant.
Usually, stationary monitoring stations with network systems located in critical areas for data collection
and processing are used [4–6]. This type of monitoring is limited by the sampling location and data
accessibility [7]. With the advance in technology, this old paradigm gets surpassed by the utilization of
sensor technology which is superior in respect to the low-cost material, simplicity and affordability,
and also the portability of the air pollution monitoring systems [8,9]. The technology above can be
integrated into an air scanning system by using an unmanned aerial vehicle (UAV) characterized by
good maneuverability, controllable altitude, and location. [10,11]. Although the recent developments
in UAV technology are promising, there are studies that show that in particular areas of applications
(for example environmental restoration monitoring) there are still many issues to be addressed [12].
A comprehensive review of using autonomous vehicles in environmental monitoring for pollution
source localization is presented in [13]. A design and manufacturing protocol for the low cost and low
weight quadcopter platform prototype for the purpose of environmental monitoring and research in
order to assess ecological devastation of the natural environment is presented in [14].

Different recently published studies show the interest of researchers in the applications of
quadcopters used in different fields of environmental monitoring like sampling of different substances,
monitoring soil contamination, and response to natural disasters. Lally, H.T. et. al. [15] addresses the
development of water sampling by using drones specially equipped with water-sampling devices. The
issues of biological and physico-chemical sampling are described as well as some solutions for these
issues. The authors show that it is envisaged that drone-assisted water sampling will act as a pivotal
supporting tool if the cost benefit analysis of the application gives positive results. In [16] the author’s
goal was to introduce and test a method able to predict copper accumulation points, using aerial photos
taken by drones and micro-rill network modeling. In this case the drone collected photogrammetric
data, which was compared with the results obtained by computer modeling. According to the results
of the study, the authors were able to predict zones of copper accumulation at a plot scale. Other
important applications of drones are presented in [17] where is stated that UAV’s can have a crucial
role in the case of natural disaster response and humanitarian relief aid. The key areas of intervention
in this case are: aerial monitoring of post-natural disaster damage, natural disaster logistics and cargo
delivery, and post-natural disaster aerial assessment. An application which is close to our paper’s
subject is presented in [18] where gas concentrations resulting from an underground coal fire (carbon
dioxide emissions) were measured using aerial monitoring with drones. The authors state that it is
estimated that these fires generate as much as 3% of the world’s annual carbon dioxide emissions
and that drone collected gas concentration data provides a safe alternative for evaluating the rank of
burning coal deposits.

A portable air scanning system was developed using a quadcopter equipped with an air scanning
sensor to perform air quality measurement, thus called a ‘sniffer’ quadcopter. The development
began with analysis of the correlation between propeller’s air trajectories and the sensors placement,
determination of an appropriate flying pattern to optimize the air measurement, and investigation of
ways to minimize wind effects in the measurement process. A computational method was used to
ascertain the sensor’s placement on the quadcopter, and the result was proven in the field test. The
low-cost and portable gas sensors MQ-2 and MQ-135 were used to measure carbon concentration in
the air. To develop this system, the sensor placement in the quadcopter is critical. Using computational
fluid dynamic (CFD) simulation, the vortex field generated by the propeller was analyzed to determine
the best place for sensor mounting. With an appropriate mounting place, the response time and the
accuracy of data collected by the sensor can be increased [19]. Even with low-cost instruments, the
data accuracy and detection range can be as good as conventional monitoring [20]. Two types of
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flight patterns for air measurement were used to detect the direction of gas dispersion and discover
the gas source location and gas concentration level. The present system was designed to perform
flight pattern measurement methods which consist of point source measurement and non-point source
measurement. A path planning with eight sampling points around the gas source was used to obtain
the gas concentration at a known point source, for example, an industrial emission or chimney [21].
The sample points formed a square with the gas source in the middle. Thus, more accurate data can be
obtained despite the dynamic environmental change. On the other hand, for a non-point or unknown
sources such as forest fires or pipe gas leaks, a grid pattern with 24 sampling points was used to
detect the gas source location based on the gas dispersion measurement and analysis. To optimize the
measurement results, wind effect was considered. Gas source location and gas concentration level
can only be estimated with statistical methods. In the case of fires, an extensive study had been made
to detect sources with UAVs equipped with thermal detection capabilities [22]. Gas concentration
detection (for example CO concentration) can give additional information besides the thermal data.
The method described in this paper is much more cost effective and can be used by smaller communities
(at the level of small cities and towns) to check for fire sources that can be a threat for the population
or economy. The results from both methods were evaluated using analysis of variance (ANOVA) to
obtain the gas concentration at the source, and using a Gaussian dispersion model to analyze the gas
dispersion. In the Gaussian dispersion model, parameters such as wind speed and direction, source
term, etc., were obtained by monitoring data to acquire positioned trajectories with bivariate input
environmental data [23,24]. In a small scale of gas measurement (<100 m), a sparse Gaussian kernel
method was used as a statistical evaluation on a two-dimensional spatial model of a grid pattern to
deal with the specific properties of gas dispersion, including the turbulent features of the wind [25,26].
Spatial integration is made by convolving sensor readings and modeling the information data of the
point measurements with a Gaussian kernel method. The grid pattern size and data retrieval time
depend on the sensors’ sensitivity. This research is limited with the usage of low-cost sensors and a
narrow pattern, but these don’t affect our goal which is to prove that the Gaussian kernel method is
suitable to analyze gas dispersion vectors and detect gas source locations.

The sniffer quadcopter was designed to work automatically according to the command input in
the pre-flight setting, one of which is a GPS coordinate. In automatic mode, the quadcopter will fly to
the target point to perform the measurement with the pre-programmed flight pattern. In this research,
the measurement target is carbon monoxide (CO) because it was easily found and/or made and was
measured with low-cost and portable gas sensors MQ-2 and MQ-135. The tests were performed
on an aerial zone with a maximum of 24 sampling points, each measuring 1 m2. On each point,
the sampling time was 10 s and the data was collected whilst maintaining the quadcopter in hover
mode. The aerial zone was intentionally small so the research could be focused on the algorithm
for gas source determination and gas concentration level, besides optimizing the sensor placement
on quadcopter. The main purpose of our paper is to study the possibility of using low-cost aerial
monitoring system and pollution source detection, which can be available to smaller communities
(towns, NGOs, environmental protection associations) in order to detect and prevent threats to
the environment.

2. Sniffer Quadcopter Design and Analysis

Prior to a quadcopter design, it is imperative to know the application of the drone itself, thus
one can estimate the required lifting force in accordance to the total weight of the quadcopter. The
physical factors of quadcopter design related to lifting force are propeller diameter, propeller’s angle of
attack, quadcopter size, and rotor angular velocity. Greater lifting force and high-speed flight are not
synonymous with larger propellers or high-speed rotors because they can cancel out the advantages of
using a quadcopter. For example, an oversized propeller produces substantial air flows which can
cause turbulence and flight instability.
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To optimize the sniffer quadcopter design, a detailed analysis of the vortex field generated by the
propeller’s angular velocity and its effect on sensor placement on the quadcopter was performed. This
research used 13-inch propellers, a 380 rpm/v rotor, and 18.5-volt lithium polymer (LiPo) batteries.
With this specification, it can be deduced that the maximum no-load rotor speed is 7030 rpm. To get a
more accurate calculation of the lifting force, the computational fluid dynamic (CFD) module of the
SolidWorks software was used. Table 1 shows detailed specifications of the quadcopter. The frame size
was 460 mm, the quadcopter weight was 1800 g, and the sensor weight was 100 g. Quadcopter flight
time depends on the capacity of the LiPo batteries used and the maximum carriable load depends on
the total lifting force. The magnitude of the force analyzed with the CFD method and the correlation
between thrust, frame size, and level of stability will be explained in detail in the propeller vortex
field section.

Table 1. Detail specifications of sniffer quadcopter.

Sniffer Quadcopter Specifications

Frame material Carbon fiber
Frame size 460 mm × 460 mm × 140 mm

(width × length × height)
Propeller size 13 inches

Motor (rpm/V) Flight time 380 ± 40 min
Max. carry load 2460 gr

(including quadcopter weight)

Due to short flight duration (<40 min), several settings must be initialized to permit the quadcopter
to perform optimally, such as the target point, in the form of GPS coordinate, and quadcopter flight
behavior, in the form of altitude, speed, and measurement pattern. The settings can also be made on
the ground station system through the designed mission planner system which can communicate with
the sniffer quadcopter using 433 MHz telemetry [27,28]. The architecture of the aerial platform system
is presented in Figure 1. The ground station using an open source web application platform was also
used to monitor all measurement processes. With the autonomous flight pattern, the quadcopter will
run the sequential process according to the pre-flight command list. For intentional interruption of the
process, an emergency system was designed so the user’s command can be delivered via the ground
station control which will force the quadcopter either to make a landing or to fly back to the home
coordinates. On board the sniffer quadcopter system one can find two controllers: the flight controller
and sniffer microcontroller. The flight controller serves to maintain the stability of the maneuvers,
together with an orientation sensor and a tracking pattern based on the input coordinate [29]. The
sniffer system serves to perform air scanning and save the data on a memory card. Both controllers are
always communicating with each other to determine when to carry out the data retrieval process.

2.1. Vortex Field Analysis

Data retrieval was performed while keeping the quadcopter in the hover state at each analyzed
point. It was noticed that data were profoundly affected by the air trajectories of the propeller’s vortex
field and also by the wind. The vortex method was applied [30,31] to analyze the aerodynamic behavior
of the aircraft. The authors’ previous studies [32,33] explain the quadcopter’s propeller design and
flight stability analysis. As mentioned previously, the maximum no-load rotor speed was 7030 rpm.
When connected with a 13-inch propeller, the maximum rotor speed was 4080 rpm. To obtain the total
thrust, a CFD analysis was performed using the SolidWorks software. The computationally analyzed
parameter was the propeller rotation with a set up rotation area, with 0.1% turbulence intensity with
0.002 m turbulence length, at a thermodynamic pressure of 101,325 Pa and a temperature of 293.2 K.
Each propeller had a rotation region, in which a diagonal pair of propellers rotated clockwise (CW) and
the other diagonal pair rotated counterclockwise (CCW) with a velocity of 0–4080 rpm. The simulation
generated the values of the vertical force and the total air velocity in all propeller rotation areas. With a
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velocity of 4080 rpm, each rotor can produce a total thrust of 24 N. Besides that, the vortex field was
also modeled using the same software with the same parameters. Figure 2 below shows the design of
the sniffer quadcopter.Pharmaceuticals 2018, 11, x FOR PEER REVIEW 2 of 6 
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Figure 2. The sniffer quadcopter design.

In this study, the generated vortex field and its correlation with sensor position and the effect of
the environmental change have been analyzed. The vortex field was modeled using computational
fluid dynamics (CFD). The results showed that the air trajectories generated by each propeller rotation
with maximum velocity didn’t affect each other because the air velocities produced were the same.
Figure 3 presents the analysis of the vortex field using CFD. The propellers having a maximum angular
velocity (Ωmax) of 4080 rpm generate an air velocity of 6 ms−1 (υair) oriented downwards (along
the z-axis); the air velocity measured between propellers (−30 ≤ x ≤ 30) mm and (−30 ≤ y ≤ 30) mm
was 0.5 ms−1. For this study, we used a sniffer quadcopter with a total load of 1900 g keeping it in
hover state at 80% of the maximum speed, which corresponds to 3264 rpm. Consequently, the angular
velocity generated an air velocity of 4.8 ms−1 on the propeller, but the vortex fields generated by the
propellers did not affect each other.
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Figure 3. Air velocity dispersion.

This means that the vortices generated during the hover state with no wind effects didn’t lead to
turbulence on the quadcopter frame, which proved that the selected propeller diameter, quadcopter
size, and rotor speed were appropriate. In the presence of wind effects, the quadcopter control system
will work to maintain stability.

2.2. Correlation Between Vortex Field and Sensor Position

The transport of the monitored gas towards the gas sensor is a critical process to obtain accurate data
which can be easily affected by the disturbances generated by the propeller’s vortex. Sensor position,
gas distribution, and wind resistance are factors which influence the measurement results [34,35]. The
downside of using a low-cost gas sensor is the low response time. To determine the sensors’ placement,
one must consider the sensors’ response time whilst still maintaining the quadcopter stability. The use
of an extended pole to place the sensors outside of propeller vortex field is not advisable because it
can affect quadcopter stability. Even though it might not matter much with a small-scale sensor, an
extended pole attached with a heavier sensor will surely be effect by the wind. Thus, the design and
computational analysis for the gas scanning sensors’ placement on the quadcopter’s frame were only
tested for two points, i.e., point A and point B.

Point A corresponds to the placement of the sensors at the bottom of the main frame; thus, the
gas flow is not influenced by the propeller’s vortex. Point B corresponds to the situation in which the
sensors are mounted on the front side of the frame so that the propeller’s vortex blows the gas directly
on the sensors. Both positions were analyzed using CFD prior to the field tests. The results of the
simulation process for the case of the propeller’s maximum angular velocity (4080 rpm) are presented
in Figure 4. It can be noticed that the maximum air velocity occurs in each propeller rotation area
while the minimum corresponds to the center of the frame. The placement of the air scanning sensor
relies heavily on its type and response time. The following coordinates describe the point A’s position:
(−50 ≤ y ≤ 50) mm; (−130 ≤ x ≤ 130) mm, and (z > −50) mm, where air speed is

(
υair ≈ 0 ms−1

)
as

seen in Figure 4c.
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Figure 4. Air velocity on quadcopter in various perspectives: (a) Point A—top view; (b) Point B—front
view; (c) Point A—bottom view.

It is evident that at point A, each sensor is surrounded by the propeller’s vortices, with air
trajectories going downward to produce thrust. For the analyzed gas to reach the sensor while the
quadcopter is in the hover state, it is essential that the gas velocity be higher than the air velocity
generated by the propeller. The vector of gas velocity towards the sensor, and the magnitude of total
resultant velocity are very crucial to determine whether the gas can reach the sensor or not. Another
way is to place the sensor on the top of the frame (z > 70) mm or higher than the propeller as seen
in Figure 4a. Point B corresponds to the placement of the sensor on the front of the frame (x > 100)
mm and takes advantage of the air trajectories generated by the propeller, as shown in Figure 4b.
In this position, the gas around propeller is suctioned out by the propeller and passed through the
sensor before going downward. This placement facilitates the gas to reach the sensor and is suitable
for sensors with low response time.

Figure 5 shows the comparison between three sensor placements in a field test with durations
of 160 s and a stable gas source position. The aim of this test was not to compare the reading of gas
concentration, but rather to see the sensors’ response time in different mounting positions. Analysis
of point A showed that the gas concentration decreases as the speed of the propeller increases, and
the gas concentration increases as the speed of the propeller decreases. This result was linear with
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the CFD analysis results. This means the sensors were obstructed by the propeller’s air trajectories
and thus unable to properly measure the gas concentration. On the other hand, analysis of point B
showed that the sensors’ reading was a bit affected by propeller speed change, but the sensor could
work well when the propeller speed was stable. This was due to the propeller’s air flow ‘directing’ the
gas towards the sensor. Lastly, the analysis was conducted on sensors only. The result showed the
most stable measurement because it didn’t get affected by the propeller’s air trajectory. In conclusion,
taking advantage of the propeller’s air trajectory to ‘direct’ the gas toward the sensors resulted in valid
data reading, on the condition that the measurement was done while the quadcopter was in a hover
state to ensure stable propeller speed in every measurement.
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3. Grid Pattern Analysis

The grid pattern and wind algorithm were integrated into the gas measurement process which
was dynamically distributed [36]. Measurements can be performed for the case of either point source
or non-point source. The point-source measurement is used for gas emissions with known locations,
for example, chimney exhaust gases in industrial districts. However, as the gas dispersion depends on
the wind direction an eight-point (P1–P8) square pattern is used to cover all wind blowing directions,
as illustrated in Figure 6a. On the other hand, non-point source measurement is used to locate the
gas source based on the particle density and wind direction. Data acquisition for this method allows
the user to observe the gas dispersion gradient toward the closest point to the source (which has the
highest particle concentration), exemplified in Figure 6b. In the field test, the grid pattern with 24
sample points (S1–S24) placed in a 4 × 6 matrix was able to be extrapolated using the Gaussian kernel
method. The size of the cell depends on the sensitivity of the gas sensor.
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The quadcopter’s flying sequence and sample points took place according to the grid numbers

shown in Figure 6. The methodology consisted of collecting sample data of gas concentration
(
G(i)

s

)
on

each cell k, at the location x(i) where the symbol i represents the number of the measurement sample.
As we mentioned above, sometimes position error occurred while collecting data. Thus, position

adjustments (∆G) were needed to ascertain that the measurements were made in the center of each grid
cell (Gc). The post-processing data errors relative to positioning errors on each cell can be minimized
by data recovering process using Equation (1). The symbol k represents the number of the grid cell.

∆G(k)
i =

∣∣∣∣G(k)
c −G(i)

s

∣∣∣∣, (1)

where, for the k cell, in which a number of m(k) measurements were made, G(k)
c value can be

estimated with

G(k)
c =

∑m(k)

i=0 G(k)(i)
s

m(k)
(2)

The differentiation of gas concentration between the center of the grid cell and the value acquired
by the sensor was used to locate the gas source. If the relationship

(
∆G(k) > ∆G(k−1)

)
is true, it means

that the flight pattern moves toward the gas source, and conversely
(
∆G(k) < ∆G(k−1)

)
means that the

flight pattern moves away from the gas source. This post-processing of gas concentration variation in
each cell helps in understanding the correlation between flight position and gas dispersion. In order to
analyze the gas dispersion behavior, both for point source and non-point source models, an adaptive
threshold with binary sample was used, as seen in Equation (3) [37].

P
(k)

= S
(k)

=

{
1
0

→ (∆G(k)
t > ∆G(k−1)

t )

→

(
∆G(k)

t ≤ ∆G(k−1)
t

) (3)

For both methods, sample acquisition was done with the same iteration (t) The first value of

gas concentration acquired has been used as the reference for measurements. The
(
P
(k)

= S
(k)

= 1
)

indicates an increase in gas concentration, whereas
(
P
(k)

= S
(k)

= 0
)

indicates a decrease.

3.1. Gas Dispersion

In order to analyze the gas dispersion measured by the quadcopter, a statistic method has been
used to generate a two-dimensional gas distribution map, using the DM + V kernel algorithm presented
in [38,39]. This algorithm treats the gas distribution model as a density estimation problem which can
be solved using convolution with a two-dimensional Gaussian kernel. The kernel’s shape regulates
the amount of extrapolation. When the wind is not blowing, the kernel’s shape is a circle, thereby:
σx = σy = σ0.

The vector of gas dispersion with spatial extrapolation was analyzed using the Gaussian weighting
function (N) which represented the importance of the gas reading value obtained for each cell. The
first step of the algorithm is the weight calculus fi(k)(σ0), which, intuitively represents the information
content of a single measurement, i, of the sensor inside a net’s cell. The weight is calculated by the
mean of a Gaussian kernel (N) evaluation applied to the distance between measurement location x(i)

and the center point x(k) of the k cell.

wi
(k)(σ0) = N

(∣∣∣x(k) − x(i)
∣∣∣, σ0

)
(4)
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Starting from equation (4), the following values are integrated and placed in a temporary grid map:
weights W(k)(σ0), weighted sensor readings G(k)(σ0), and weighted variance contributions V(k)(σ0),
as follows:

W(k)(σ0) =
n∑

i=1

wi
(k)(σ0) (5)

G(k)(σ0) =
n∑

i=1

wi
(k)(σ0)G

(i)
s (6)

V(k)(σ0) =
n∑

i=1

wi
(k)(σ0)τ

(i) (7)

where τ(i) =
(
∆G(k)

i

)2
is the variance contribution of reading i.

From integrated weight map W(k)(σ0) a confidence map x(k)(σ0) can be obtained showing the
degree of trust with which for one cell the readings is considered to be in the vicinity of the respective
grid cell’s center and is expressed as shown in the Equation (8).

wi
(k)(σ0) = N

(∣∣∣x(k) − x(i)
∣∣∣, σ0

)
(8)

In normal dispersion, the confidence value is within the interval (0–1) which can be affected by
the trajectory of the quadcopter, the size of the grid cell, the width of the kernel (σ0), and the scaling
parameter (σr).

Normalizing the integrated weighted sensor readings G(k)(σ0) with the integrated weights
W(k)(σ0), then applying the confidence value and adding with the best guess for the cells with a
low confidence (i.e., for cells for which we do not have sufficient information from nearby readings,
indicated by a low value of x(k)) results in the map estimation of the mean distribution g(k)(σ0):

g(k)(σ0) = x(k)
G(k)(σ0)

W(k)(σ0)
+

{
1− x(k)

}
G0 (9)

As the best guess of the mean concentration G0 we use the average over all sensor readings.
In the same way, the corresponding variance map v(k)(σ0) results from normalizing the weighted

variance contributions V(k)(σ0) with the integrated weights W(k)(σ0) then multiplying with the
confidence value and adding with a best estimate for the cells with a low confidence:

v(k)(σ0) = x(k)
V(k)(σ0)

W(k)(σ0)
+

{
1− x(k)

}
vtot (10)

The estimate vtot of the distribution variance in regions far from measurement points is computed
as the average over all variance contributions.

The mean value of gas concentration from each cell was used to make a predictive model in
ANOVA. The spatial structure of the dispersion variance provided information on the gas dispersion
vector and on the highest gas concentration which surely is located near the source.

3.2. Correlation Between Wind and Gas Dispersion

The gas dispersion is in linear correlation with the wind dynamic movement vector. Knowledge
about the wind vector is helpful in locating the gas source. The extrapolation of gas measurement
using bivariate Gaussian kernel provides information about the wind vector [10,40]. Two possible
models were considered, i.e., an idle state in which wind velocity is zero, and a windy state, correlated
with wind direction. An example of a detailed model is presented in Figure 7.
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Figure 7. Wind direction model: (a) Idle state and (b) model considering wind velocity and direction.

The idle state with zero wind velocity is obtained from a normal dispersion having symmetrical
kernel width (σ0) along the x-, y-, and z-axis on grid cell; a diagonal matrix with variance data (Σ)
represents this state as seen in Equation (11).

Σidle =

[
σ2

0 0
0 σ2

0

]
(11)

Wind velocity creates gas dispersion in the form of an ellipse with linear dependency. The wind
vector changes the ellipse position according to the amount of change in the rotation matrix R(α).
Rotation matrix is an orthogonal matrix in which R(α)−1 = R(α)T rotate bivariate Gaussian kernels
around the x- and y-axis. Angle alteration (α) in the horizontal position (x- and y-axis) determines
a two-dimensional wind vector which can be calculated using Equation (12). Data was enough to
determine the pollutant source using the grid cell.

∑
R

=

[
σ2

x ασxσy

ασxσy σ2
y

]
= R(α)ΣwR(α)T (12)

R(α) =
[

cosα (− sinα)
sinα cosα

]
(13)

∑
w

=

[
a2 0
0 b2

]
=


(
σ0 + γ

∣∣∣∣→ν ∣∣∣∣)2
0

0 σ0√
1+

γ
∣∣∣∣→ν ∣∣∣∣
σ0

2

 (14)

The gas dispersion along with the wind velocity and vector γ
(
→
ν
)

were obtained from the wind
sensor’s measurements located on the gas dispersion contour; x-axis values were proportional to the
wind velocity, while y-axis values decreased with the wind velocity. The variable γ is the stretching
parameter which depends on many environmental variables. The bivariate Gaussian kernel was
rotated according to the wind vector.

4. Environmental Monitoring

The experiment for measuring carbon concentration on each sample point was done in an open
field for both the point source and the non-point source case. The pollutant source consisted of burning
coals placed in a burner with a height of 0.5 m. The 24 grid cells covered an area of 6 m (width) × 4 m
(length). Each cell was 1 m2 in size, and the distance between measurement points was also 1 m. This
distance depends on the sensor sensitivity; the more sensitive the sensor is, the larger the grid cell size
may be, and a wider aerial zone requires a bigger gas source. Gas concentration measurement was
done with the quadcopter in the hover state at the center of each cell during the 10 s sampling time.
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Each measurement consisted of 50 readings, used to calculate the mean value for that measurement.
The setup of the experiment is shown in Figure 8.
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Figure 8. Sniffer quadcopter field test.

Data analysis of the gas dispersion and the point source was done manually by moving the
quadcopter in a pattern using a remote control (RC), at a fixed altitude of 1 m from the ground. When
the quadcopter reached the center of the cell, it remained in hover mode, and an interrupt control
system was sent through the RC to collect data. Continuous flight patterns were completed in the
order of the data acquisition sequence shown in Figure 6. This driving method has been used for the
aim of manual correction during the field test and also to minimize errors; thus, a more accurate gas
dispersion post-processing algorithm has been achieved.

The test for sensor positioning was done based on the CFD result, as presented in Figure 4. With
the gas sensor mounted on the middle-bottom frame, unstable data reading and sometimes even
zero value readings resulted. On the other hand, by having the gas sensor placed on the front of the
quadcopter, the airflow generated by the propeller always passed the gas beyond the sensor. In hover
mode, the quadcopter always adjusts its position to a stable state and produces equal air velocity on
each of the rotors. Each quadcopter’s propeller rotation generates a vortex that draws the air from
above and directs it downwards, to the CO sensors. When sensors were placed in the front of the
quadcopter, the gas sensor responded well. The recorded data was analyzed for two flight patterns,
as follows:

4.1. Point Source

In the first stage of the experiment, the sniffer quadcopter was used to determine the level of CO
concentration in the surrounding atmosphere. The quadcopter flew in a square or circle pattern to read
the CO concentration in the center of each of the eight sample points. As much as 8 sample points
were measured during the test, and the total flight time of quadcopter was 130 s without landing and
take-off time. Every time a position error occurred, an adjustment was made using Equations (4) and
(8) under the condition that the point sample for one grid cell must be greater than one sample; thus,
the variant and average value near each cell’s center can be obtained. Figure 9 shows the value of CO
concentration measured for each cell. All data were distributed normally and the hypothesis from
Equation (4) was applied to determine the vector of gas dispersion.
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Figure 9. Point source experiment results: (a) CO concentrations; (b) CO vectors; (c) Gas dispersion. 

ANOVA analysis was used to compare cells two by two in all possible combinations, to get the 

estimation of CO concentration in the source. The analysis yielded the mean value (ΔG = 6.89) , the 

standard deviation (σ0 = 0.36) . After that, based on the gas dispersion vector, the irrelevant values 

were eliminated. To calculate the gas source concentration, the values from the first column (X = 1) 

and the first row (Y = 1)  were eliminated. The sample points (P6, P7, P8) were used in the 

calculation since they were in accordance with the vector. The gas concentrations in each cell were 

summed up with the standard deviation value, and the results were averaged to get the CO source 

value, found to be 200.29 ppm. In comparison with real measurements of the gas source with sensors 

only, as much as 8.85% error was detected for CO concentration. 

4.2. Non-Point Source 

The non-point source experiment was done by collecting 24 sample points of CO concentration 

during 360 s of flight time. Data acquisition was done in the same manner used for the point source 

method. Two types of MOX sensors were used, i.e., MQ-135 and MQ-2 which were placed together 

on the quadcopter’s front frame. Both sensors were used simultaneously to ascertain the validity of 

the data and to get better analysis over the gas dispersion. In the field test, some burning coals were 

used as the CO source, placed on the position (X, Y) = (5, 2.5). Data of CO concentration were saved 

in the matrix form as presented in Equations (16) and (17). The CO concentration of the source was 

predicted, and the location of the source was analyzed through gas dispersion using the variant data 

of each cell. 

𝑆𝑀𝑄135 = [

19 19 19 35 82 40
24 44 44 67 110 28
49 18 16 18 33 28
16 17 25 19 20 23

] (16) 

𝑆𝑀𝑄2 = [

37 30 27 39 65 45
34 67 71 70 98 34
54 33 29 42 38 18
29 25 28 13 24 34

] (17) 

All 24 sample points in the matrix were computed, yielding a 2D gas concentration contour for 

each of the sensors, presented in Figure 10. 

Figure 9. Point source experiment results: (a) CO concentrations; (b) CO vectors; (c) Gas dispersion.

The analysis result for the gas dispersion vector with respect to the gas source position
{
(X, Y) = 2

}
showed that the vector was

{
(X, Y) > 2

}
. The carbon reading was modeled using a 2D contour in order

to see the vector more clearly. The CO reading correlated with location was formulated in a matrix
form shown in Equation (15).

Gk
i =


19 6 27
5 (> 160) 160
80 106 145

 (15)

The gas dispersion contour along the x and y axes showed that the dispersion started from the
highest to the lowest concentration, more precisely from the cell’s center to the P1 point. In the point
source method, the wind model of gas dispersion could not be seen clearly.

ANOVA analysis was used to compare cells two by two in all possible combinations, to get the
estimation of CO concentration in the source. The analysis yielded the mean value (∆G = 6.89) , the
standard deviation (σ0 = 0.36) . After that, based on the gas dispersion vector, the irrelevant values
were eliminated. To calculate the gas source concentration, the values from the first column (X = 1)
and the first row (Y = 1) were eliminated. The sample points (P6, P7, P8) were used in the calculation
since they were in accordance with the vector. The gas concentrations in each cell were summed up
with the standard deviation value, and the results were averaged to get the CO source value, found to
be 200.29 ppm. In comparison with real measurements of the gas source with sensors only, as much as
8.85% error was detected for CO concentration.

4.2. Non-Point Source

The non-point source experiment was done by collecting 24 sample points of CO concentration
during 360 s of flight time. Data acquisition was done in the same manner used for the point source
method. Two types of MOX sensors were used, i.e., MQ-135 and MQ-2 which were placed together on
the quadcopter’s front frame. Both sensors were used simultaneously to ascertain the validity of the
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data and to get better analysis over the gas dispersion. In the field test, some burning coals were used
as the CO source, placed on the position (X, Y) = (5, 2.5). Data of CO concentration were saved in the
matrix form as presented in Equations (16) and (17). The CO concentration of the source was predicted,
and the location of the source was analyzed through gas dispersion using the variant data of each cell.

SMQ135 =


19 19 19 35 82 40
24 44 44 67 110 28
49 18 16 18 33 28
16 17 25 19 20 23

 (16)

SMQ2 =


37 30 27 39 65 45
34 67 71 70 98 34
54 33 29 42 38 18
29 25 28 13 24 34

 (17)

All 24 sample points in the matrix were computed, yielding a 2D gas concentration contour for
each of the sensors, presented in Figure 10.Sensors 2019, 19, x FOR PEER REVIEW 14 of 17 
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MQ2 sensor.

Based on the highest value of CO, the gas tended to drift toward the S13 cell or (X < 5) in the
horizontal direction and toward the S20 cell or (Y > 3) in the vertical direction. Tentatively, it can be
concluded that the gas source was around the red zone on the 2D contour. Further analysis using
Equation (10) was done to discover the connection between gas dispersion and wind effect. A gentle
breeze of 5 m s−1 blew around the field test area. Variant data of each sample was distributed normally
to obtain standard deviation in form of kernel width for wind speed. Uncertainty of wind was
conditioned as non-constant wind flow and represented by the (γ) parameter. Its value was estimated
at 0.4 m based on the highest concentration stretch point and affected the stretch kernel shape. The
calculation resulted in σo(MQ135) = 0.247 and σo(MQ2) = 0.236 with rotation vector R1(α) = 0 and
R2(α) =

π
2 , thus a wind vector with range value a = 2.24–2.25 m and b = 0.08 m was obtained. From

the analysis of wind direction and gas dispersion, two possible positions for CO source resulted,
which were at the coordinates (5 ≤ x ≤ 6.12), (2.92 ≤ y ≤ 3.08) and (4.92 ≤ x ≤ 5.0), (1.88 ≤ y ≤ 3) .
Compared with the real position of the gas sensor (X, Y) = (5, 2.5) , it can be concluded that only one
out of the two possibilities is the source of pollutant area; bivariate Gaussian kernel analysis was used
to assess the source location and minimize the error of CO reading.
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5. Conclusions and Future Work

Air monitoring using a sniffer quadcopter with a flight pattern was designed to measure CO
concentration in each cell. The post-processing analysis was used to determine the source location
and its CO concentration. The results from CFD and the field test showed that the sensor placed in
front of the frame (x > 100) mm of the quadcopter was able to utilize the air trajectories generated
by the propeller to direct the gas straight to the sensor. The best result was achieved when the data
acquisition was made in hover mode to ensure constant airflow. Data acquisition was made using two
methods, i.e., point source and non-point source. The point source method with a known location of
the gas source was done using eight sample points forming a square pattern, having the source in the
middle, which also is useful in facing the unpredictable wind effect.

The concentration of CO in the source was quantified using post-analysis by the means of the
ANOVA method which was ran on eight samples during 130 s of flight time. Compared to the real
data, the analysis showed as much as 8.85% error.

The other method was the non-point source, used to pinpoint the location of the gas source and
also its concentration. This method adapts a grid pattern with 24 cells to collect data of CO with two
types of gas sensors used simultaneously to ascertain data validity. The gas dispersion analysis results
showed that the gas dispersion vector had changed twice, thus indicating two possible positions for
gas source location. The gas dispersion vector has been analyzed using both the measurement position
and CO concentration matrices. The readings of both sensors showed the same gas dispersion pattern,
indicating the highest value of CO was in the S17 cell. The differences in the accuracy of data reading
were affected only by the sensitivity of the MOX sensors. The correlation between gas dispersion
and wind behavior must be known to overcome the possibility of result misinterpretation due to
wind influence. Logically, the gas source must be in the vicinity of the cell having the highest CO
concentration. A bivariate Gaussian kernel has been used to locate this cell’s position. The gas source
was calculated with the same method used in the case of the point source; thus, the weight cell in
the form of standard deviation was obtained with the value of CO between 118.06–133.24 ppm while
the actual value was 125 ppm. Overall, the field tests were done by manipulating the gas source; the
quadcopter’s altitude maintained at 1 m from the ground to collect data which then were calculated
accordingly to acquire the gas source location. For the case of a small amount of burning coal, the
experiment was possible only at low altitude with manual control of the quadcopter flight. The
sensitivity of the sensors must pass the reliability test before being placed on the quadcopter because it
affects the size of the cells. Finally, the analyses using normal dispersion and ANOVA were essential to
obtain the gas concentration and gas source position.

This study using sniffer quadcopter has been limited to carbon monoxide measurements. The
measurement method and gas source location detection method still have room for improvement. In
the future, other pollutant compounds will be investigated and different gas sensors such as optical
sensors will be used in comparison with the tested sensors. There are various application of mapping
and measurement using a sniffer quadcopter, such as gas pipe leakage measurement, early warning
systems for volcanic-prone areas, water pollution mapping with the pattern method, etc. From the
perspective of flight pattern, with improvements in sensitivity and accuracy of reading, a larger scale
grid pattern can be designed to save time on the data collection process. Quadcopter capability to
withstand wind effects or heatwaves from the gas source can also be more developed. The higher goals
are to utilize sniffer quadcopter as unmanned aerial security patrols to cope with environmental issues
and monitor dangerous zones. In future experiments, we intend to test the data collection from the
sensor at larger scales in quasi-real situations and also to use multiple drones which can communicate
with each other and better map the field of interest.
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