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Abstract: A robust laser measurement system (LMS), consisting of a sensor head and a detecting part,
for simultaneously measuring five-degree-of-freedom (five-DOF) error motions of linear stages, is
proposed and characterized. For the purpose of long-travel measurement, all possible error sources
that would affect the measurement accuracy are considered. This LMS not only integrates the merits
of error compensations for the laser beam drift, beam spot variation, detector sensitivity variation,
and non-parallelism of dual-beam that have been resolved by the author’s group before, but also
eliminates the crosstalk errors among five-DOF error motions in this study. The feasibility and
effectiveness of the designed LMS and modified measurement model are experimentally verified
using a laboratory-built prototype. The experimental results show that the designed LSM has the
capability of simultaneously measuring the five-DOF error motions of a linear stage up to one-meter
travel with a linear error accuracy in sub-micrometer and an angular error accuracy in sub-arcsecond
after compensation.
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1. Introduction

Linear stages, which are expected to travel along a straight line and precisely stop at some prescribed
positions, play a crucial role in the manufacturing field and measurement field [1–4]. However, due to the
manufacturing imperfections and the assembling errors, the linear stage inherits six-degree-of-freedom
(six-DOF) error motions, including three linear errors (positioning error, horizontal and vertical
straightness errors) and three angular errors (pitch, yaw and roll errors). These geometric errors of
the linear stage will seriously affect the accuracy of the manufactured parts process or measured
results. Compensation of these error motions is an effective approach to achieve a high accuracy [1,3].
To implement the error compensation, the six-DOF error motions should be accurately detected.

A laser interferometer, with high measurement accuracy and a long measurement range, is the
most popular measurement instrument to identify these error motions [5,6]. However, the laser
interferometer can only measure a single error with a specified optical accessory each time, which is
extraordinary time-consuming to complete all errors. A laser tracker, which can simultaneously measure
multi-DOF error motions, is another instrument usually applied to measure the error motions [7,8].
However, its measurement accuracy is low. In addition, the high cost is another drawback of the laser
interferometers and the laser trackers.

A variety of systems, which are capable of simultaneously measuring the multi-DOF error motions,
have been developed [1,2,9–20]. Measurement systems based on interferometry, such as the grating
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diffraction interferometry [9,10] and the laser synesthetic wavelength interferometry [2,11], have
achieved a linear displacement resolution better than sub-nanometer and an angular displacement
resolution of approximately sub-arcsecond. However, the measurement systems always have a complex
configuration and time-consuming alignment process. The measurement accuracy of those systems
is dependent on the characteristics of the laser source. In comparison, the non-interferometry-based
measurement systems have been verified to be superior to the interferometry-based measurement
systems in many aspects, such as simple construction and large measurement range [1,12–20]. Therefore,
they are widely used for measuring the error motions of precision machines, such as numerically
controlled machine tool and coordinate measuring machine.

The laser source of the above-mentioned systems could be the He-Ne laser [2,10–12], fiber
laser [14,15,19,20], laser diode [9,17], or commercial laser interferometer [13,16,18]. However, no matter
what kind of laser is adopted, there always exists the physical phenomenon of angular drift of the laser
beam, which will influence the system’s measurement accuracy and repeatability. The common-path
method is a feasible approach for compensating the errors induced by the laser beam drift in laser
measurement system [14,21]. However, the common-path method makes the system complex and
time-consuming for laser beam alignment. Different turning mirror mechanisms have also been
proposed to actively compensate for this angular drift [17,22]. In our previous research on a four-DOF
measurement system [17], an active compensation method was developed to reduce the effect of
the beam angular drift of the laser diode on the measurement accuracy. However, the four-DOF
measurement system cannot measure the roll error of the linear stage and the measurement errors of
the system, which significantly influence the system measurement accuracy, were not analyzed.

Additionally, photodetectors are widely selected as the error detectors in the above-mentioned
laser measurement systems [12–20]. The photodetector sensitivity is influenced by the laser diameter
and intensity, which have relationships with the measurement distance along the laser propagation
direction [23]. Therefore, it is essential to compensate for the errors caused by the sensitivity variation
of a photodetector, especially in the long-distance measurement. However, the compensation of
photodetector sensitivity was not considered in the above-mentioned measurement system [9–20]. In
our previous research, a mathematical model was proposed for compensating the sensitivity variation
of photodetectors, which were used as straightness error detectors [24]. However, it has not been
verified whether this model can also compensate for the sensitivity variation of angular errors detectors.

Furthermore, since the stage is already equipped with a position sensor, either a linear scale or a
rotary encoder, the stage’s positioning error can be easily obtained by the calibration with a commercial
laser interferometer. Hence, from our point of view, a five-DOF error measuring system is adequate for
each linear stage. Therefore, in this paper, a compact and low-cost laser measurement system (LMS)
based on the principle of the laser collimation is proposed to simultaneously measure two straightness
errors and three angular errors of linear stages, whose travel distance is larger than one meter. As
mentioned above, there are some errors that would influence the accuracy of the LMS, including the
laser beam drift, the photodetector sensitivity variation, dual-beam non-parallelism, and crosstalk
errors. In addition to the integration of error compensation schemes that have been considered in our
previous four-DOF [17] and roll measurement systems [24], the elimination of overall crosstalk errors
is further considered and analyzed in detail in this report. This five-DOF LMS is designed in modular
type, including the sensor head and the detecting part. Differ from the above-mentioned multi-DOF
measurement systems that the sensor head and the detecting part are mounted on the base of the stage
at the same side [14,19–21], the detecting part of this LMS is directly mounted on the moving stage so
as to reduce the laser path distance induced errors. Additionally, a wireless transmission kit is applied
in the electronic unit of the system, making the LMS is suitable for on-machine measurement. Based
on the analyzed results, the compensation methods are proposed, and the measurement model is
modified, which makes the LMS robust and precise.
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2. Measurement Principle

2.1. Configuration of the LMS

A laser measurement system (LMS) was designed to simultaneously measure the two straightness
errors (δx and δy) and three angular errors (θx, θy and θz) of linear stages. Figure 1 shows the schematic
of the optical configuration for the LMS, which is composed of a sensor head and a detecting part.
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Figure 1. A schematic of the optical configuration for the five-degree-of-freedom (five-DOF) laser 
measurement system. 
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Figure 1. A schematic of the optical configuration for the five-degree-of-freedom (five-DOF) laser
measurement system.

A laser beam is divided into two beams by a polarizing beam splitter (PBS). The reflected beam
(beam 1) enters into an autocollimator set (AC2) to detect the drifted angular errors (αx and αy) of the
laser beam. The transmitted beam is further split into two beams by a beam splitter (BS1), namely,
beam 2 and beam 3. Beam 2 is projected onto two quadrant-photodetectors (QPD1 and QPD2) of the
detecting part to measure δx, δy, θx, and θy. Beam 3 is projected onto QPD3 after bent by a mirror (M2)
to measure θz. It should be noted that the reflected beams from optical components are prevented from
go back to the laser diode by using a polarization module, which consists of a PBS and two-quarter
waveplates (QWP1 and QWP2) in the sensor head. The sensor head is fixed on the base of the linear
stage and kept stationary during the measurement process. The detecting part, including a BS2, a
focus lense (FL2) and three QPDs, is mounted on the moving table of the linear stage to detect the
position variations of beam spots on each QPD induced by the error motions of the stage. Prior to
measuring the error motions of the linear stage, particular effort is put into aligning beam 2 with the
moving axis of the linear stage. In this alignment, QPD1 is employed to detect the lateral motions of the
moving stage with respect to beam 1 in the X- and Y-directions. A rotary stage under the sensor head
is adopted to adjust the direction of beam 2 to make its spot always close to the center of the QPD1
during the motion of the moving stage. Beam 3 is, then, adjusted to be parallel with beam 2 assisted by
a commercial electronic level. The electronic level is mounted on the top of the detecting part. AMM2
is applied to adjust the direction of beam 3 so that the roll error measured by the LMS is the same as by
the electronic level. The principle of roll error measurement will be detailed in Section 2.4.

2.2. Measurement Principle of the Straightness Errors

Laser beam 2, which is projected onto QPD1, can be treated as a reference straight line with respect
to the linear stage after careful adjustment. Beam 2 will be located at the center of QPD1 when the
linear stage has no straightness errors. Otherwise, the center of QPD1 will be shifted with respect to
the laser beam, as shown in Figure 2a. The X- and Y-directional shifted distances of the QPD1 are
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recorded as ∆x1 and ∆y1, respectively, as shown in Figure 2b. Therefore, the straightness errors (δx and
δy) can be obtained from the following equations:

δx = ∆x1 = kx1 · ∆Ix1 and δy = ∆y1 = ky1 · ∆Iy1 (1)

where, kx1 and ky1 are the sensitivity of QPD1 in the X- and Y-directions, respectively. ∆Ix1 and ∆Iy1

indicate the output photocurrents corresponding to ∆x1 and ∆y1, respectively.
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According to Equation (1), the sensitivity of QPD1 significantly influences the measurement
accuracy of the straightness errors. It has been verified that the detector sensitivity varied with the
measurement distance [21,24], since the diameter and intensity of the laser beam change along its
propagation direction [23]. Therefore, the X- and Y-directional sensitivities kx1 and ky1 of QPDs should
be corrected along the laser propagation direction. The X- and Y-directional sensitivities of QPD1 at
the first measurement position p0 are set to be kx1-0 and ky1-0, respectively. kx1-f and ky1-f represent the
X- and Y-directional sensitivities of QPD1 at the final measurement position pf, respectively. ki1-0 and
ki1-f (i = x, y) can be calibrated by the comparison between the photocurrent of QPD and the output of a
commercial displacement sensor. Thus, the following relationship can be obtained from a series of
calibrated results by linear interpolation,

ki1−d = ki1−0 + (p0 + pd) ·
ki1− f + ki1−0

p f − p0
i = x, y (2)

where, ki1-d represents the sensitivity of QPD1 at the random measurement position pd, which is between
p0 and pf. The sensitivity of QPD2 and QPD3 at pd also can be corrected by Equation (2). Without
special description, the detector sensitivities used in the following descriptions and experiments are all
corrected by Equation (2).

2.3. Measurement Principle of the Pitch and Yaw Errors

The pitch and yaw errors (θx and θy) can be measured based on the 2D autocollimation principle.
Figure 3a shows a designed autocollimator set (AC1), which is composed of FL2 and QPD2. The
distance between FL2 and QPD2 is f, which is the focal length of FL2. When the linear stage is rotated
with an angle of θx or θy, the position of the laser-focused spot on QPD2 is moved along X-direction or
Y-direction with ∆x2 or ∆y2, as shown in Figure 3b. Therefore, θx and θy can be calculated by

θx =
∆x2

f
=

kx2 · ∆Ix2

f
and θy =

∆y2

f
=

ky2 · ∆Iy2

f
. (3)
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Figure 3. Measurement principle of the pitch and yaw angular errors: (a) Optical layout of pitch and
yaw angular errors measurement kit, (b) variations of laser beam positions on QPDs, (c) procedure of
compensating the drifted angular errors.

It is known that within the laser beam exist drifted angular errors, which are induced by the
thermal deformations of the laser diode cavity, the variation of the air refractive index and the
fluctuation of the gas-films [22]. The laser beam drift would induce measurement errors of all QPDs.
Therefore, a beam drift compensation unit (BDCU), consisting of an autocollimator (AC2) and an
automatic angle adjustment kit (AK), is developed to compensate the drifted angle of the laser beam
based on the proposed compensation principle in our previous research [17], as shown in Figure 3a.
The AK is composed of an angle mirror mount (AMM1), two PZTs and a mirror (M1). The AC2 consists
of FL2 and QPD2 is used to detect the drifted angular errors (αx and αy). The detections of αx and αy

are based on the 2D autocollimation principle. αx and αy can be obtained from,

αx =
∆x4

f
=

kx4 · ∆Ix4

f
and αy =

∆y4

f
=

ky4 · ∆Iy4

f
(4)

The procedure of compensating the drifted angular errors is shown in Figure 3c. A model, which
represents the relationships between the beam drifted angular errors (αx, αy) and the driver voltage
(Vpzt-a, Vpzt-b) of PZTs, is established. Vpzt-a and Vpzt-b, thus, can be evaluated based on the detected αx

and αy. The angle of M1 is rotated to the opposite direction of αx and αy by two driven PZTs, from
which the laser beam spot can remain in the center of the QPD4. The drifted angular errors, thus, can
be automatically compensated. It should be noted that the BCDU is working during the experiments.

2.4. Measurement Principle of the Roll Error

Figure 4a shows the measurement principle of the roll error (θz), which is carried out by detecting
the relative position shift of two parallel laser beams (beam 2 and beam 3) in the Y-direction. Firstly, the
laser beams are carefully aligned to the center of the QPD1 and QPD3. When the linear stage has a roll
error, the Y-directional position of laser beams on QPDs will be varied, as shown in Figure 4b. According
to the varied positions (∆y1 and ∆y3), the roll error can be obtained from the following equation,

θz =
∆y1 − ∆y3

L
=

1
L
(ky1 · ∆Iy1 − ky3 · ∆Iy3) (5)

where, L is the distance between beam 2 and beam 3 in the Y-direction.
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As seen from Figure 4a, the non-parallelism of beam 2 and beam 3 significantly influences the
position of two laser beams on QPDs. Therefore, the compensation of the non-parallelism induced by
the misalignment and the laser beam drifted angular errors is essential for roll error measurement
to achieve a high-precision measurement accuracy. If two laser beams are always parallel, θz can be
calculated by Equation (5). However, when two beams are non-parallel, an angle error θnp will exist in
the output of LMS. According to geometric optics, θz will be changed to be

θ′z =
∆y′1 − ∆y′3

L
=

∆y1 − ∆y3 + pd tanθnp

L
= θz +

pdθnp

L
(6)

where,
pdθnp

L represents the error component induced by the non-parallelism of beam 2 and beam 3. θnp

is a constant and can be obtained by comparing measurement results using the designed LMS and a
commercial electronic level. The outputs of the LMS (θz-L) and electronic level (θz-e) are reset to be zero
at p0. Ideally, it is desired that the output of the two instruments should be the same at pf. However,
due to the existence of θnp, the following equation can be obtained,

θz−L +
p fθnp

L
= θz−e (7)

From Equation (7), θnp can be calculated. Substituting Equation (5) and Equation (7) into Equation
(6), the error component induced by the non-parallel of two laser beams can be compensated.

3. Testing of the Designed LMS

A laboratory-built prototype of the LMS was constructed to measure the five-DOF error motions
of a linear stage based on the described measurement principles and compensation principles.

A collimated laser beam emitted from a low-cost laser diode (DA635, Huanic, China) has a
diameter of 5 mm and a divergence angle less than 0.2 mrad. The distance L between beam 2 and
beam 3 was set to be 120 mm. Two high precision QPDs (QPD1 and QPD3, QP50-6-TO8, First Sensor,
Germany) with an active area of 11.78 mm per element and a measurement resolution of 0.1 µm were
chosen as the detectors of the straightness errors (δx and δy) and roll error (θz). Therefore, the theoretical
resolution for δx, δy, and θz were evaluated to be 0.1 µm, 0.1 µm, and 0.17 arcsec, respectively. Two
high precision QPDs (QPD2 and QPD4, QP5.8-6-TO5, First Sensor, Germany) with 4 × 1.44 mm2 active
area and a measurement resolution of 0.05 µm were applied as the detectors of pitch and yaw errors
(θx and θy) and the beam drifted angular errors (αx and αy). The focal length of FL used in ACs (AC1
and AC2) is 20 mm, the theoretical resolution for θx, θy and αx, αy are, thus, evaluated to be 0.25 arcsec.
Two PZTs (AL1.65 × 1.65 × 5D-4F, NEC TOKIN Electronic, Sendai Janpan), an angle mirror mount
(AMM1, GCM080205M, DHT Co., Beijing, China) and a right-angle mirror (M1, Foctek, Fujian, China)
were used to construct the AK shown in Figure 3a.

Figure 5 shows the photo of the prototype LMS supported by adjustment stages which are
mounted on a linear stage more than 1.2 m long. The LMS consists of a sensor head and a detecting
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part. Different from most of other five-DOF or six-DOF measurement systems that reflect the light
from the moving part to the sensor head, this developed LMS directly mounts the detecting sensors for
five-DOF error motions on the moving stage. The main reason is to reduce the laser path distance so
as to reduce the errors caused by the laser beam. In this LMS, a wireless transmission kit is used in
the electronic unit to avoid errors caused by the push and pull of the cable. Such a prototype LMS
possesses innovative features of compact, portable, easy installation, wireless, and low-cost. It is
suitable for on-machine measurement.
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3.1. Stability of the LMS

The stability of the LMS significantly influences the measurement accuracy of the error motions.
The distance between the sensor head and the detecting part was first set to be 1.0 m for testing the
stability. The sampling time and sampling frequency were set to be 30 min and 100 Hz, respectively.
A moving average filter and a Butterworth filter were applied to reduce the noise levels of the
measurement signals. Figure 6 shows the stability of the measurement signals for five-DOF error
motions when the BDCU was worked. The beam drifted angular errors can be controlled within ±0.01
arcsec using the BDCU although the figures are omitted for the sake of clarity. The stability of the
measurement signals for δx, δy, θx, θy, and θz was evaluated to be 0.7 µm, 0.8 µm, 0.8 arcsec, 0.5 arcsec,
and 0.8 arcsec, respectively, in a non-environmental controlled open laboratory. It was verified that the
stability of the LMS was satisfied for measuring the error motions of the linear stage.
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3.2. Calibration Tests of the LMS

The measurement accuracy of the designed LMS was calibrated by a commercial measurement
instrument in advance. The first (p0) and final (pf) measurement positions were set to be 0 mm and
1.08 mm, respectively.

Firstly, using an XY manual linear stage, on which the detecting part was mounted, the motions
were simultaneously detected by a commercial digital indicator (P12D HR, Sylvac, Switzerland), which
has a resolution of 0.01 µm and a measurement accuracy of 0.22 µm. Since the commercial digital
indicator could only detect one-directional displacement, the position of the digital indicator should be
changed for the calibration along a different direction. The X- and Y-directional calibration results at
p0 and pf are shown in Figure 7a,b, respectively. As seen in Figure 7a, the maximum residual of δx

were evaluated to ±0.7 µm and ±0.9 µm in the calibration range of ±100 µm at p0 and pf, respectively.
Similar calibration results of δy were also obtained, as shown in Figure 7b.
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Figure 8. Calibration results of: (a) θx; (b) θy. 
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Then, a commercial autocollimator (5000U3050, AutoMat, China), with a measurement accuracy
of 0.2 arcsec and repeatability of 0.05 arcsec, was used to calibrate the angular errors measurement
performance of the LMS. The detecting part and the reflector of the autocollimator were mounted on a
manual rotary stage and a manual goniometer stage. The angular displacements of the stages could be
simultaneously measured by the LMS and autocollimator. Figure 8a shows the maximum residuals of
θx, which were found to be between ±0.6 arcsec and ±0.7 arcsec in the calibration range of ±100 arcsec
at p0 and pf, respectively. The maximum residuals of θy, which were estimated to be ±0.7 arcsec at p0

and ±0.8 arcsec at pf within the calibration range of ±100 arcsec, respectively, are shown in Figure 8b.
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maximum residuals of θx, which were found to be between ±0.6 arcsec and ±0.7 arcsec in the 
calibration range of ±100 arcsec at p0 and pf, respectively. The maximum residuals of θy, which were 
estimated to be ±0.7 arcsec at p0 and ±0.8 arcsec at pf within the calibration range of ±100 arcsec, 
respectively, are shown in Figure 8b. 
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Figure 8. Calibration results of: (a) θx; (b) θy. Figure 8. Calibration results of: (a) θx; (b) θy.

Finally, a high precision commercial electronic level (WL/AL11, Qianshao, China), which has a
measurement accuracy of 0.2 arcsec, was employed to calibrate the roll error measurement performance
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of the designed LMS. The detecting part and the electronic level were installed on a manual goniometer
stage, which can be rotated about Z-axis. The maximum residual of each calibration, shown in Figure 9,
was within ±0.7 arcsec and ±1.1 arcsec at p0 and pf in the calibration range of ± 100 arcsec.
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Therefore, it was verified from the calibration results that the designed LMS can be acceptable 
for sub-micrometer precision straightness error measurement within ±100 μm and sub-arcsecond 
precision angular error measurement within ±100 arcsec. 
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Figure 10. Crosstalk errors of the LMS when the sensor head was: (a) Moved along X-direction in the 
range of ±10 μm, (b) rotated about X-direction in the range of ±10 arcsec. 
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Therefore, it was verified from the calibration results that the designed LMS can be acceptable
for sub-micrometer precision straightness error measurement within ±100 µm and sub-arcsecond
precision angular error measurement within ±100 arcsec.

3.3. Crosstalk Error Analysis of the LMS

The last test was carried out to investigate the crosstalk errors between the outputs of the LMS
when the detecting part was moved along the X- and Y-directions, and rotated about the X-, Y- and
Z-directions, respectively. In order to avoid the influence of the crosstalk errors of the manual stages, a
short movement range of about ±10 µm was applied to linear error and ±10 arcsec was applied to
rotational error. Figure 10a shows the outputs of the LMS when the detecting part was moved along
the X-direction. Variations of δy, θx, θy, and θz, which were approximately 0.8 µm, 2.2 arcsec, 0.5 arcsec
and 1.8 arcsec, respectively, indicated the crosstalk errors of the LMS with respect to the X-directional
motion of 20.0 µm. Similarly, variations were detected in the output of δx, δy, θy, and θz when an
angular displacement θx of 20.0 arcsec was applied to the detecting part with respect to the sensor
head, as shown in Figure 10b. For the sake of clarity, the crosstalk errors of the LMS are summarized in
Table 1. The crosstalk errors were quite large compared with the theoretical measurement resolutions
of the LMS.
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Table 1. Crosstalk errors of the LMS without compensation.

δx [µm] δy [µm] θx [arcsec] θy [arcsec] θz [arcsec]

Moved→ X-direction 20.0 0.8 2.2 0.5 1.8
Moved→ Y-direction 2.1 20.0 2.6 3.0 0.5

Rotated→ X-axis 2.1 0.5 20.0 2.6 2.7
Rotated→ Y-axis 0.3 1.1 1.8 20.0 0.8
Rotated→ Z-axis 1.4 5.2 0.7 2.8 20.0

Confirmation of the reasons for generating the crosstalk errors was firstly carried out by analyzing
the optical design of the LMS using the ray-tracing method, as shown in Figure 11. The laser beam I1

travels in the direction of the Z-axis with a direction vector of I1 =
[

0 0 1
]T

. The direction vector
of reflection planes of BS1, BS2, and M2 can be expressed by:

N1 = N2 =
[

N1x N1y N1z
]
=
[
−

√
2

2 0 −

√
2

2

]T
N3 =

[
N3x N3y N3z

]
=
[ √

2
2 0

√
2

2

]T (8)

The transformation matrix of the reflection planes of the BS1, BS2, and M2 can be obtained as
follows:

B1 = B2 = B3 =


1− 2N2

ix −2NixNiy −2NixNiz
−2NixNiy 1− 2N2

iy −2NiyNiz

−2NixNiz −2NiyNiz 1− 2N2
iz

 =


0 0 −1
0 1 0
−1 0 0

. (9)

Thus, the direction vectors I2, I3, and I4 can be expressed as

I2 = I1 =
[

0 0 1
]T

, (10)

I3 = B2 · I1 =
[
−1 0 0

]T
, (11)

I4 = B1 · B3 · I1 =
[

0 0 1
]T

. (12)

When the detecting part of the LMS was applied to a linear displacement of ∆x, shown in
Figure 11a, the direction vectors I2, I3, and I4 did not vary. Therefore, it was verified that the output of
linear errors will not affect that of the angular errors in the designed LMS.
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Figure 11. Optical path of the laser beam when the detecting part was applied to: (a) A linear
displacement of ∆x, (b) an angular displacement of Θx.
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An angular displacement of Θx was, then, applied to the detecting part, as shown in Figure 11b.
The direction vector N3 of the BS2’s reflection plane was influenced by the angular displacement. N3

will be varied to be

N′3 =
[

N′3x N′3y N′3z

]
=
[ √

2
2 (1−Θx) 0 −

√
2

2 (1 + Θx)
]T

. (13)

Thus, the effect of Θx on I3 can be evaluated to be

IR
3 = BR

2 · I1 =


1− 2N′23x −2N′3xN′3y −2N′3xN′3z

−2N′3xN′3y 1− 2N′23y −2N′3yN′3z

−2N′3xN′3z −2N′3yN′3z 1− 2N′23z

 ·


0
0
1

 =

−1
0

Θx

. (14)

Θx can be detected by AC1 based on Equation (3). However, the direction vectors I2 and I4 were
not changed by the angular displacement, which meant that the outputs of angular errors would also
not affect those of the linear errors in the designed LMS.

The main error sources that caused the crosstalk errors were deemed the systematic errors,
including the manufacture errors and installation errors of the optical components. In order to
eliminate the influence of the systematic errors on the crosstalk errors, a compensation model, referred
to as the modified measurement model, was proposed as follows,

δx−L

δy−L

θx−L

θy−L

θz−L


=


A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C1 C2 C3 C4 C5

D1 D2 D3 D4 D5

E1 E2 E3 E4 E5


·


δ′x
δ′y
θ′x
θ′y
θ′z


= F ·


δ′x
δ′y
θ′x
θ′y
θ′z


(15)

where, Mn (M = A, B, C, D and E, n = 1, 2, 3, 4, and 5) are the coefficients of the crosstalk errors. δx-L,
δy-L, θx-L, θy-L and θz-L represent the actual five-DOF error motions of the linear stage, respectively. δ′x,
δ′y, θ′x, θ′y and θ′z are the outputs of the LMS with the compensations of the detector sensitivity and
dual-beam non-parallelism based on Equations (2) and (6). According to experimental results shown
in Figure 10, the error coefficients of the designed LMS can be estimated to be

F =


1 0.018 −0.108 0.021 0.016

−0.078 1 0.127 −0.142 −0.007
0.126 −0.010 1 −0.149 −0.105
−0.008 0.048 −0.081 1 0.036
0.084 0.277 −0.038 −0.122 1


. (16)

Table 2 shows the crosstalk errors of the LMS after compensation based on Equations (15) and
(16). It can be seen that the crosstalk errors were significantly removed from the outputs of the LMS.
The residual errors shown in Table 2 were dominated by the influence of the stability of the designed
measurement system and the electronic noise of the photoelectric processing circuit.

Table 2. Crosstalk errors of the LMS with compensation.

δx [µm] δy [µm] θx [arcsec] θy [arcsec] θz [arcsec]

Moved→ X-direction 20.0 0.5 0.3 0.3 0.8
Moved→ Y-direction 0.8 20.0 0.5 0.3 0.5

Rotated→ X-axis 0.3 0.2 20.0 0.6 0.8
Rotated→ Y-axis 0.3 0.2 0.2 20.0 0.1
Rotated→ Z-axis 0.6 6.1 0.3 0.9 20.0
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4. Measurement of Error Motions of a Linear Stage

The performance investigations of the designed LMS for measuring the error motions of a linear
stage were carried out. The travel distance of the linear stage is 1.2 m. The moving stage of the
linear stage was manually moved approximately 120 mm in steps to 1.08 m. It should be noted that
the crosstalk errors in the following experimental results were compensated by using the modified
measurement model.

The measurement experiments of the straightness errors, pitch and yaw errors and roll error
were conducted by the comparison between the constructed LMS and high-precision commercial
measurement instruments, including a laser interferometer (Agilent 5530, Keysight Technologies, Santa
Clara, CA, USA) for measuring the straightness errors, the autocollimator for measuring the pitch
and yaw errors, and the electrical level for measuring the roll error. The measured results are shown
in Figure 12. It can be seen that the measured results by using the designed LMS were in a good
agreement with the detected results of the commercial instruments. It has also been confirmed that the
error motions measurements have good repeatability by five measurements although the figures are
omitted for the sake of brevity. The maximum residuals for five measurements were calculated to be
within ±1.5 µm, ±1.5 µm, ±1.8 arcsec, ±1.7 arcsec and ±1.5 arcsec corresponding to δx, δy, θy, θy, and
θz, respectively.
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The experimental results show good measurement accuracy and repeatability of the designed
LMS. It was confirmed that the designed LMS and modified measurement model have the potential to
simultaneously measure the five-DOF error motions of a linear stage in a non-environmental controlled
open laboratory.

5. Conclusions

This paper presented a newly designed laser measurement system (LMS), consisting of a sensor
head and a detecting part, for simultaneously measuring five-DOF error motions (horizontal and
vertical straightness errors, pitch error, yaw error and roll error) of linear stages. The measurement
principles were described. The measurement errors of the LMS, which were induced by the variation
of detector sensitivity, the laser beam drifted angular errors, the two-laser beam non-parallelism and
the crosstalk errors, have been analyzed in detail, from which the measurement model was modified.
A prototype of the LMS was constructed, in which a low-cost laser diode was used as the laser source.
The effectiveness of the designed LMS and the modified measurement model were verified by a series
of calibration and comparison experiments. Based on the comparison experiments of measuring
the error motion of a linear stage, the residuals of the straightness errors, pitch error, yaw error and
roll error were less than ±1.5 µm, ±1.8 arcsec, ±1.7 arcsec and ±1.5 arcsec compared with the laser
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interferometer, autocollimator and electrical level. The improvement of measurement accuracy and
the uncertainty analysis will be carried out in the future research.
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