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Abstract: Use of fiber Bragg gratings (FBGs) to monitor high temperature (HT) applications is of
great interest to the research community. Standard commercial FBGs can operate up to 600 ◦C.
For applications beyond that value, specific processing of the FBGs must be adopted to allow the
grating not to deteriorate. The most common technique used to process FBGs for HT applications
is the regeneration procedure (RP), which typically extends their use up to 1000 ◦C. RP involves
a long-term annealing of the FBGs, to be done at a temperature ranging from 550 to 950 ◦C. As at that
temperature, the original coating of the FBGs would burn out, they shall stay uncoated, and their
brittleness is a serious concern to deal with. Depositing a metal coating on the FBGs prior to process
them for RP offers an effective solution to provide them with the necessary mechanical strengthening.
In this paper, a procedure to provide the FBG with a bimetallic coating made by copper and nickel
electrodeposition (ED) is proposed, discussing issues related to the coating morphology, adherence
to the fiber, and effects on the grating spectral response. To define the processing parameters of the
proposed procedure, production tests were performed on dummy samples which were used for
destructive SEM–EDS analysis. As a critical step, the proposed procedure was shown to necessitate
a heat treatment after the nickel ED, to remove the absorbed hydrogen. The spectral response of
the FBG samples was monitored along the various steps of the proposed procedure and, as a final
proof test for adherence stability of the bimetallic coating, along a heating/cooling cycle from room
temperature to 1010 ◦C. The results suggest that, given the emergence of Kirkendall voids at the
copper–nickel interface, occurring at the highest temperatures (700–1010 ◦C), the bimetallic layer
could be employed as FBG coating up to 700 ◦C.

Keywords: high temperature FBG sensors; electrodeposition; metal coating; harsh environment
Sensors

1. Introduction

Fiber Bragg gratings (FBGs) are fiber optic sensors whose operating principle is based on the
Bragg diffraction effect [1]. Along a short segment (typical 10 mm) of the optical fiber, a diffraction
grating is written to produce a periodic modulation of the refraction index of the core of the fiber itself.
If broadband light propagates along the fiber, some narrow-band light is diffracted at the grating;
the diffracted light counter-propagates along the fiber, as a wavelength-selective back-reflection.
Production of FBGs is done by various techniques, the most common for commercial production being
the irradiation of the fiber segment by ultraviolet (UV) light with a periodically modulated intensity
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pattern. The UV light modifies the refraction index of the core of the fiber, somehow accordingly to its
modulated intensity pattern, thus producing the diffraction grating. The diffraction grating is stable
at room temperature (RT) but suffers instability at high temperature (HT). Typically, critical issues
affect FBG features and integrity at temperatures higher than 600 ◦C, such as the migration of the
doping elements within the silica matrix of the optical fiber, which affects the refraction index of the
fiber core and cladding, or the silica re-crystallization, which leads to modification of the optical fiber
structure and optical properties, and finally, the alteration of the refraction index modulation by which
the FBG itself is produced. As a result, FBGs are subjected to thermal instability with a fast decay of
their features. Such decay is triggered with no recovery even by a temporary reaching of HT, although
this could also occur with a long exposure at lower (than 600 ◦C) temperature. It was observed that
starting from 600 to 700 ◦C, the features of FBG decay until complete erasure of the FBG [2–6].

To write FBGs for HT (600–1000 ◦C) applications, special techniques shall be adopted, and optical
fibers less sensitive to thermal effect shall be considered. The most common technique used to produce
FBGs for HT application is the regeneration procedure (RP). After the FBG has been written into the
fiber to produce a grating with proper features, it is later exposed to HT for long time. This causes
a rearrangement of the previously written FBG, which leads to its erasure and the generation of a higher
temperature-resistant FBG; therefore, these types of FBGs are named regenerated [7,8]. This long-lasting
thermal process (named annealing) is part of the RP and is critical to the production of the regenerated
FBG. An annealing temperature of about 950 ◦C is necessary for most germanium-doped fibers,
whereas an annealing temperature of about 550 ◦C is necessary for most co-doped fibers (germanium
and boron doping). According to this, the optical features of the regenerated FBG are affected by
the RP parameters. When the FBG undergoes an RP, its Bragg wavelength usually shifts toward
lower values; the amount of the shift is related to the annealing temperature, and the higher the
temperature the larger the shift. In co-doped fibers, the wavelength shift is proportional to the
annealing temperature [9]; in germanium-doped fibers, the wavelength shift is proportional to the
square of the annealing temperature. The highest temperature at which regenerated FBGs can operate
depends on various factors (as, for instance, the fiber-dopant type) but never exceeds the temperature
of the RP, which cannot be higher than 1000 ◦C to avoid unsafe glass softening. Deposition of metal
coating is a procedure of effective advantage in the production of regenerated FBGs [10]. In fact,
the original coating of the FBG (typical: acrylate, polyimide, ormocer) would burn during the RP and
shall thus be stripped; as a consequence, the brittleness of the uncoated FBG becomes a serious concern
to deal with.

Depositing a metal coating on the FBGs prior to processing them for annealing offers an effective
solution to provide them with the necessary mechanical strengthening. Moreover, the metal coating
is also effective in increasing the temperature sensitivity of the regenerated FBG, which is useful if
its use is intended for HT sensing [11–15]. Following these considerations, we tried to identify the
most suitable metal for FBG coating starting from the most common and easily electrodeposited
metals with a high melting temperature, such as copper (Cu) and nickel (Ni). The main purpose
of this investigation was to search for the best metallic coating that would allow using the FBG for
HT. The double layer of Cu and Ni was selected trying to achieve cupronickel alloys by means of
interdiffusion between the two layers. The cupronickel coating would allow greater resistance in
particularly harsh conditions. Starting from a Cu–Ni double metal layer, the investigation must state
how the metal coating mechanically and thermally responds to temperature variations and how the
coated fiber has been protected, enhancing or decreasing gratings’ performances.

2. Materials and Methods

The test campaign was carried out with samples produced using FBGs written on
germanium-doped single-mode optical fiber (9 microns core, 125 microns cladding, 250 microns
acrylate coating). The length of the FBG is about 10 mm. To produce the samples, the fiber was stripped
(acrylate coating removal) for about 50 mm centered on the FBG. The stripped segment was first gilded
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by sputtering, and then a Cu layer was electrodeposited. Some sample was further processed, and a Ni
layer was electrodeposited. Thus, two sets of samples were produced: one set of FBG samples with
a single metallic (Cu) protective layer and one set of FBG samples with a bimetallic (Cu–Ni) protective
layer. The samples with a single metallic layer were used as a reference to interpret the behavior
of the samples with the bimetallic layer, thus identifying the specific issues due to the deposition
of the second layer. During the test campaign, FBGs were continuously monitored using an FBG
interrogation system with spectra acquisition capability (HBM-Fibersensing, Moreira, Portugal, model
FS22 SI, providing a resolution of <0.5 pm, as stated in the manufacturer data-sheet). In addition
to the FBG samples, dummy samples (optical fiber with no FBG) were also produced for both sets.
The dummy samples were used for the optimization of the electrodeposition (ED) process parameters
and for the metallographic (destructive) analysis that allowed the characterization of the metallic
deposit, before and after the thermal cycles.

2.1. Metal Coating Process

In recent years, low-melting-point processes such as electroplating, vacuum brazing, sputtering,
evaporation (CVD and PVD), ultrasonic consolidation, and electroless plating have been used for
FBGs recoating [16–20]. In the present work, coating was made by ED. The esults of preliminary ED
tests carried out on dummy samples and the relative morphological analysis led to considering as
adequate an ED time of 240 min for Cu and Ni. Thus, the ED time is 240 min for the Cu FBG samples
and 240 + 240 for the Cu–Ni FBG samples (altogether 480 min).

The fibers were first gilded on a stripped segment of about 50 mm in length, by means of
sputtering (using an EDWARDS sputter coating, model S150B) to make the cylindrical surface
electrically conductive. The gilded segment (cathode) was then subjected to ED using a custom
cylindrical lead (Pb) anode submerged in the electrolyte within a cylindrical glass cell. The fiber stayed
positioned along the vertical axis of the cell, slightly stretched. The controlled geometric arrangement
allowed obtaining ED with uniform thickness on the cylindrical surface of the fiber. This configuration
was adopted to obtain the most homogeneous radial deposition, trying in this way to avoid any
anisotropy in the coating (as shown in Figure 1) and consequent non-isotropic radial stress, which can
affect the grating spectrum, inducing disturbance in its behavior. Figure 1 highlights, as a consequence
of a non-axial position of the cathode not perfectly aligned to the longitudinal axis of the cylindrical Pb
anode (that is shown as a yellow dash-dotted line), an optical fiber with non-homogeneous thickness.
The sulfate solution used as an electrolyte for the Cu ED in both coatings (bimetallic Cu–Ni layer and
single metallic Cu layer) contained 25 g/L of Cu as CuSO4 and 20 g/L of H2SO4, while the electrolyte
for Ni ED contained 40 g/L of Ni as NiSO4.6H2O and 10 g/L of H3BO3 (boric acid). The metal ED
was performed for both metals at a current density of 250 A/m2 at RT using an Amel galvanostat,
model 2053. Many samples produced during the ED trials also showed surface irregularities, as shown
in Figure 2, probably due to the presence of hydrogen bubbles during Ni ED, given that Ni catalyzes
the discharge of hydrogen. These hydrogen bubbles insulate the surface of the sample, preventing the
deposition of more metal and generating these concave formations. Considering that the thickness is
very thin, these hydrogen bubbles, although located on the surface, affect a significant volume of the
coating and make it irregular, thus exacerbating the nonhomogeneous transfer of even the slightest
external stress and consequently giving rise to unstable FBG spectral response.
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Figure 1. Non-uniform deposition due to a non-in-axis positioning of the cathode. The yellow
dash-dotted line shows the actual position of the cylindrical Pb anode axis.

Figure 2. Concave formations on the coating surface as a result of hydrogen bubble presence during
Ni electrodeposition (ED).

2.2. Thermal Cycling

As mentioned before, the reason for coating execution is the mechanical protection of the fiber
during the RP, but in turn, during such a critical thermal cycle, the metal coating is also subjected
to severe thermal conditions. While during a traditional RP, the samples are exposed to HT in very
long periods, and with very soft heating ramps, in this test campaign, the samples were stressed by
much more critical conditions, with steeper heating rates, i.e., with the highest temperatures reached
faster. To analyze the effect that the HT could have on metal coatings and that consequently could
critically affect the grating spectral response, both sets and respective dummies underwent HT cycling
in a tubular laboratory furnace, with temperatures ranging from RT to 800–1010 ◦C for the bimetallic
coating samples. Cycling from RT to 700 ◦C was used for Cu-coated fibers, because of the lower
melting temperature of copper. Table 1 describes which thermal cycles have been performed and on
what set of samples. Dummy samples were analyzed using a scanning electron microscope (HITACHI,
Tokyo, Japan, model S2500) equipped with EDS analysis.
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Table 1. Thermal cycles’ (TC) resume.

Thermal Coating T (◦C) Duration Purpose Effect
Test Type on FBG

Recovery CuNi RT-400 8 h Eliminate internal stresses. No issues arisen
Samples Hydrogen desorption

I TC CuNi Evaluation of HT Kirkendall voids.
Heating Samples 37–800 3 h effect on coating Spectrum power
Cooling 800–32 12 h decay at 800 ◦C

II TC CuNi Evaluation of HT Further spectrum
Heating Samples 32–1010 3 h effect on coating power decay
Cooling 1010–123 12 h Sample break

I to IV TCs Cu Comparison with
Heating Samples 20–700 3 h CuNi samples
Cooling 700–20 12 h

2.2.1. Recovery

While the formation of bubbles on the cathode surface was reduced by controlling and maintaining
the solution pH constant, the hydrogen absorbed by Ni during ED presents two internal issues:
The hydrogen absorbed during electrolysis enters the interstitial position in the Ni lattice as an atom,
generating internal stress if at a high concentration (this is a first problem). Two atoms recombine to
generate the molecule, and more molecules group at HT, generating porosity (internal defects) that
constitutes stress intensifier positions. Thus, there is a need for a gentle heating (recovery, identified as
first TC in Table 1) allowing hydrogen to diffuse outwards, eliminating internal stress and porosity.
That recovery phase is not necessary for the Cu-coated samples, since Cu is not a hydrogen catalyst
as Ni. Electrocoated FBGs underwent hydrogen recovery—carried out at 400 ◦C under vacuum for
8 h—before testing the stability of the bimetallic coating during HT cycling. The recovery was therefore
strictly necessary in order to reduce the large hydrogen content resulting from Ni ED. The need was
highlighted by the comparison between Cu–Ni samples that underwent recovery prior to the HT cycle
and samples that directly underwent the HT cycle.

Figure 3 shows the cross-section of Cu–Ni samples with different Cu layer thickness, after thermal
cycling at 800 ◦C, but without a previous recovery. Various tests were performed on the Cu–Ni samples,
varying the deposition time of the Cu, until identifying the most suitable time for the subsequent
deposition of Ni in 240 min. In particular, in Figure 3a, the Cu layer was obtained with 90 min of ED,
while the Cu layer of Figure 3b was obtained with 120 min of ED. It is clearly shown in Figure 3a
(with minor Cu thickness) that the external Ni portion is seriously compromised, while the sample of
Figure 3b where the Cu thickness is greater maintains a better aspect.

Instead, Figure 4 shows a Cu–Ni sample which underwent a gentle heating, increasing the T
(in 8 h) from RT to 400 ◦C to slowly relieve the residuals of the above-mentioned internal stresses
developed during the ED. In the case of comparable thicknesses (240 min ED time) of the two metals
and after the thermal recovery treatment, the fractures have quite disappeared.

After the recovery treatment, the samples were heated up to 800 ◦C. After this first heating/cooling
cycle (between RT and 800 ◦C), cross-sections of dummy samples were observed at SEM, getting results
as shown in Figure 5. It can be seen that the difference in thickness between the two metals affects
the deposit integrity after thermal cycling treatment, although hydrogen desorption was performed.
In particular, if the Cu layer is thinner than that of the Ni (Figure 5a), the slight difference in CTE of the
two metals (1.65 10 −5/K for Cu and 1.33 10 −5/K for Ni [21]) may lead to a detachment of the outer
material (Figure 5a). Nevertheless, it shall be noted that the opposite behavior can be observed if the
two layers have comparable thicknesses, as shown in Figure 5b.
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Figure 3. Cross-section of Cu–Ni samples with different Cu layer thickness after thermal cycling at
800 ◦C. (a) Cu layer obtained with 90 min of ED; (b) Cu layer obtained with 120 min of ED.

Figure 4. SEM micrograph of a bimetallic coating obtained by ED of Cu and Ni after thermal recovery
treatment.

2.2.2. Kirkendall Voids

Another observation worthy of attention in both microstructures consists in the Cu and Ni
HT interdiffusion that leaves a significant presence of Kirkendall voids (KVs). The interdiffusion
mechanism occurs via lattice vacancies; the formation of KVs is due to the vacancies movement in the
opposite direction of the atoms. In the binary system Cu–Ni, the diffusive flux of Cu is higher than that
of Ni; thus, voids form at the Cu side. The voids are due to the coalescence of the vacancies that, being
in oversaturation at HT, accumulate. Even these can act as stress intensifiers and crack accelerators.
Furthermore, a compressive stress is created in the Cu layer (with a greater loss of mass), while a tensile
stress appears in the Ni layer, both due to the Cu/Ni interdiffusion coefficient. This irregular stress
state in the coating thickness produces an adverse effect on the FBG.
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Figure 5. SEM micrograph of a bimetallic coating after the first heating/cooling cycle between room
temperature (RT) and 800 ◦C: (a) Cu coating thinner than the Ni one; (b) double layer with comparable
thicknesses. Cu–Ni boundaries are highlighted by a yellow thin dotted line; it represents the region
where the Cu–Ni alloy was formed.

The line analysis (Figure 6), carried out on a Cu–Ni dummy sample cross-section,
shows qualitatively the Cu (yellow line) and Ni (blue line) distribution along the coating thickness
and validates what was reported above. The line analysis clearly shows how, starting from the SiO2

fiber and moving horizontally from left to right, one can find only Cu, for about the first 30 microns,
until the appearance of what has been identified as the KV area (about 5–10 microns wide); then
there is a Cu–Ni alloy interdiffusion zone (about 35 microns wide) with a high concentration of Cu,
excluding a few microns near the only-Ni zone, that is, at the right side of the image. Figure 6 also
shows that KVs are located in the Cu layer, as already demonstrated in [22,23].

Figure 6. Line analysis of the Cu–Ni ED sample: Cu concentration is plotted in yellow; Ni concentration
is plotted in blue.
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Furthermore, given the system’s cylindrical geometry, the Cu–Ni interface is convex at the Cu side
and concave at the Ni side. This implies that the atoms in the concave area have a greater interatomic
distance than those in the convex one; therefore, the thermal fluctuations will foster the passage of
atoms from the Cu convex area (compressed zone) to the Ni concave one. Thus, it has also been shown
from both the micrograph and line analysis of Figure 6 that there is a greater diffusion of the Cu in the
Ni with consequent formation of voids in the Cu layer. In addition, the line analysis clearly highlights
the formation of a Cu–Ni alloy of variable composition between the two metal layers. According to
Kirkendall’s theory, it was clear that the intrinsic diffusion rates of metals could not be described
by their self-diffusion coefficient. In particular in a binary system, the intrinsic diffusion coefficient,
representing the main kinetic parameter of the interdiffusion phenomenon, can be calculated by
Boltzmann–Matano (B-M) analysis [24], which in turn allows the calculation of the interdiffusion
coefficient.

3. Results

3.1. Coating Quality Observation

Destructive morphological analysis made on dummy samples showed that to improve the overall
quality of the bimetallic coating, it was necessary to increase the thickness of both the Cu and Ni
layer. That result came from cross-section analysis focused on evaluating the interlayer diffusion,
which gets a key role in the stability of the bimetallic coating. In fact, two merely concentric layers can
easily undergo exfoliation and pealing, and even more so when they are subject to thermal stress. In
addition to concentricity, other quality parameters considered in evaluating the bimetallic coating were
porosity and Kirkendal l voids. The production of samples with different layer thickness was done
adopting a longer/shorter time for the ED of Cu and Ni, with equal time for both metals. The result
of a better overall bimetallic coating quality with larger thickness can find explanation in the wider
interface area, which can lower the effect of localized defects. As presented in the following section,
the morphological analysis of the dummy samples showed that adopting an ED time of 240 min for
both Cu and Ni, a potentially adequate bimetallic coating was produced. No further increase of the
thickness was attempted, although in principle, it should not introduce drawbacks as it should only
lead to a better compaction of the metal on the fiber, allowing a final increase of the coated sensor as
for thermal sensitivity (larger thermally induced stress) [25]. That led to the production of the FBG
samples from which a representative result of the spectral variation is shown in the next section.

Bimetallic Coating, Cu–Ni

The optimized ED procedure worked out with the dummy samples was adopted for the
production of the FBG samples. As mentioned above, during the ED and the HT cycling, FBGs’
spectral response was continuously monitored. The grating spectral response was evaluated by
comparing the spectrum fundamental parameters [26], obtained along the various steps of the ED
and thermal cycles, with the spectrum parameters of the initial grating spectrum. Figure 7 shows
the spectral variation along the production steps of one sample with a bimetallic (Cu–Ni) protective
layer. The spectrum of the FBG after acrylate removal (first production step) is labelled Bare, and it is
shown in black. The spectrum after gilding (second production step) is labelled Au, and it is shown
in red. The spectrum after Cu deposition (third production step) and the spectrum after the following
Ni deposition (fourth production step) are shown in green and blue, respectively. All spectra were
recorded 24 h after undergoing the processing step, in order to let the sample recover from transitory
stress and thermalize at the constant RT. Thus, the spectral variation shown in Figure 7 is only due to
the strain applied by the step-by-step deposited coating. Figure 7 is fully representative of the spectral
variation of all samples with FBG (up to the third step for a single metallic layer), which were all
produced with the same setup and processing procedure as defined after the results of the preliminary
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production tests (dummy samples). The ED of Cu and the ED of Ni were both carried on for 240 min,
as previously defined.

Figure 7. Spectral variation after the four steps of the sample production process. All plots were
recorded at the same room temperature, 24 h after each production process step to allow thermal and
transitory strain recovery.

After gilding (in red in Figure 7), the spectrum shows a slightly larger Bragg peak value and
side lobe suppression (SLS, i.e., difference between the Bragg peak and side lobe peaks). Further,
a shift toward larger wavelengths can be seen, indicating that gilding produced some elongation
(axial tension). Similarly, the spectral response of the FBG shows that both the peak value (power)
and the noise floor increased; the impact on the signal–noise ratio SNR is ambiguous, but it was not
investigated, though it may be worth future study. After Cu ED (in green in Figure 7), the spectrum
suffers insignificant variations. The Bragg peak has a minor shift toward larger wavelengths, indicating
that an elongation occurs. In contrast to this, after Ni ED (in blue in Figure 7), the spectrum
experiences a broad shift toward lower wavelengths, maintaining the same power, whereas a large
SLS suppression—present at lower wavelengths—occurs. Thus, it seems that the thickness growth
affects the signal sensitivity, giving minor spectrum variation due to the background noise, improving
the shape of the Bragg peak, increasing its power, and improving the sensor mechanical strength.
On the whole, a large wavelength shift occurred after Ni coating (from about 1541.7 nm to 1540.1 nm),
indicating that a large axial compression took place, although the spectrum shape and power of the
peak remained constant. The spectral variation is dependent on the quality of the deposit, because
an irregular deposit produces non-uniform radial and longitudinal stress and consequent strain.
Spectra in Figure 7 show that the coating does not introduce nonhomogeneous radial or longitudinal
strain on the grating (coating has good concentricity). In fact, neither birefringence (doubling of the
Bragg peak) nor diffraction dispersion (broadening of the Bragg peak) occurs. The main effect is an
appreciable wavelength shift with quasi-unchanged spectral shape, which can be fully explained by
a homogeneous axial contraction or elongation of the Bragg grating after each step of the coating
production. One more effect to be noted is a reduction of the relative amplitude of the secondary lobes
at lower wavelengths, which causes a slight reduction of the full width at half maximum (FWHM) of
the main peak.

3.2. Effect of Thermal Treatment on Spectral Variation

After ED, FBG samples underwent preliminary recovery treatment followed by thermal cycling as
a final proof test (Table 1), monitoring the spectral variation. Thermal cycling was done with a heating
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ramp (from 37 to 800 ◦C) followed by a cooling ramp (from 800 to 32 ◦C). Figure 8 shows the result
from one of the samples: dotted red line, spectra from the heating ramp; dotted blue line, spectra
from the cooling ramp; solid black, spectrum at 37 ◦C, at the beginning of the heating ramp (after the
hydrogen recovery); solid red line, spectrum ad 800 ◦C; solid blue line, spectrum at 32 ◦C at the end of
the cooling ramp. In Figure 8, labels on top of some selected spectra specify the temperature at which
the spectra were recorded. As shown in Figure 8, as the temperature increases, the reference spectrum
begins to shift to the right.

Figure 8. First heating/cooling cycle. In black is shown the spectrum at (RT) at the beginning of the
cycle. The dotted red line represents the heating ramp from 37 ◦C to 800 ◦C, which is represented
with a solid red line; the dotted blue line is the cooling ramp from 800 ◦C to 32 ◦C, shown using a
solid blue line.

During the heating, the spectra decreased in power, losing the side lobes, reducing in FWHM
and becoming sharper. These effects became more visible between 700 and 800 ◦C. This is even more
evident in Figure 9, which shows only the heating ramp, and in Figure 10, which shows the cooling
ramp, where the effect of temperature on the shape of the spectrum is highlighted. Thus, Figures 8–10
can help to explain what happens between 700 and 800 ◦C. In this temperature range, the spectrum
changes because of a nonlinear stress state, probably due to the formation of the KVs. The presence of
voids is undesirable in most load bearing and thermal stressed applications and would significantly
undermine the integrity of coatings, as demonstrated in [22]. Figure 5, showing a micrograph of
a cross-section view of the sample after the 400 ◦C recovery, confirms that the diffusion phenomena are
not present or at least irrelevant before this temperature, becoming significant above 700 ◦C, as shown
in the graphs in Figures 8–10.

During the cooling phase, while the samples return to RT, the defects shown by the
spectrum during heating do not recur, i.e., the spectrum shape—obtained when the maximum
temperature is reached—is maintained unchanged along the cooling ramp. During cooling,
the metal structure remains unchanged, and the KVs are not eliminated, since the interdiffusion
phenomenon, which activates the atoms migration and ends when the temperature falls below 700 ◦C,
is a nonreversible process.

Furthermore, upon the sensor returning to lower temperatures, it has undergone changes such as
to prevent any other spectrum variation during the new heating cycle up to 700 ◦C.
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Figure 9. Heating ramp of the thermal cycle from 37 ◦C, reference spectrum represented with
a continuous black line, to 800 ◦C, represented with a continuous red line.

Figure 10. Cooling ramp of the thermal cycle from 800 ◦C, represented with a continuous red line,
to 32 ◦C, represented with a continuous blue line.

This trend is better observed in Figure 8, which illustrates the complete cycle (heating and cooling),
where the variation of the signal is evident in terms of power lower than at the beginning, but higher
in terms of the refracted wavelength. Moreover, the difference between the initial shape at 37 ◦C and
the final shape at 32 ◦C is remarkable. This result could justify the interdiffusion hypothesis with
consequent formation of KVs and nonhomogeneous stress state along the thickness of the coating.
Furthermore, the difference in wavelength between the temperature recorded at the beginning of the
test (37 ◦C) and the final one (32 ◦C) leads to further considerations on the final conditions of the
grating, which can be interpreted as the usual behavior of the grating as a result of the RP, as explained
at the end of the section.
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A second heating/cooling thermal cycle was performed on the double-coated sample up to
1010 ◦C and then cooled. The spectrum maintained almost the same power up to 700 ◦C as in
the first cycles. A further heating up to 1010 ◦C reduces the power by about 70 %, as shown in
Figure 11. During the cooling ramp, the test was suddenly interrupted at 123 ◦C, due to the optical fiber
rupture. The non-uniform tension/compression stresses, the continuous thermal shocks, and the glass
embrittlement lead to optical fiber breaking at the boundary between bare fiber and metallic-coating
section, where the geometry promotes a strong concentration of stress.

Figure 11. Second Heating/cooling cycle. A dotted red line represents the heating ramp, from 38 to 1010 ◦C;
the dotted blue line represents the cooling ramp, from 1010 to 123 ◦C. A continuous line represents the
reference temperature, in black the RT, that is, the initial point of the cycle, in red 1010 ◦C, and in blue
the last recorded spectrum, at 123 ◦C.

Single Metal Coating, Cu

A further hypothesis was made to explain the grating spectral response, related to the effective
strength of the inner Au layer. This first micrometric layer, obtained by sputtering, is extremely delicate
and is easily removable by mechanical exfoliation. This led us to suppose that, during the following
metallic layer depositions and during the heat treatments, a detachment of the first layer could occur,
inducing an inconsistent behavior of the grating. This question has been dispelled by considering
that a possible detachment of the first layer would have led to an almost total separation between the
surface of the optical fiber and the metallic coating, generating a separation interface (an interspace)
between them, leading to a further inconsistent behavior of the spectrum. Thus, a test was carried out
with an optical fiber sample coated with Au and Cu, both deposited as described above. The sample
underwent four heating/cooling thermal cycles, from RT (20 ◦C) to 700 ◦C. The heating ramp lasted
about three hours, while the cooling was performed by turning off the heat source and letting the
system cool down during the night (about 12 h). The RT spectrum was recorded before starting each
thermal cycle. Figure 12 shows the spectrum of the same grating at the wavelength corresponding to
the RT measured at the beginning of each cycle.



Sensors 2019, 19, 3824 13 of 17

Figure 12. Grating spectrum at the wavelength corresponding to the RT measured at the beginning of
each cycle. In black is shown the first cycle, in red the second, in green the third, and in blue the fourth.

The black plot represents the grating spectrum as it was 24 h after the Cu coating, and it is defined
as the first heating cycle. For each spectrum, the sample is recorded while at RT, just before starting the
heating which brings it up to 700 ◦C. In red is shown the RT spectrum at the beginning of the second
cycle, in green the spectrum at the beginning of the third cycle, and finally, in blue the spectrum shown
at the beginning of the fourth cycle. During tests, the RT value was around 21 ± 1 ◦C for each cycle.
The four frames of Figure 13 show four spectra of the same grating grouped by temperature value.
In each frame, the grating is kept at a constant temperature. In (a) is shown the grating spectrum
at 100 ◦C, in (b) at 300 ◦C, in (c) at 500 ◦C, and in (d) at 700 ◦C, during four succeeding thermal
cycles. In each frame, each cycle is represented as it is in Figure 12. The latter suggests that a very fast
annealing (first thermal cycle) destabilizes the grating, inducing a sort of regeneration which involves
the shifting of the central wavelength value towards the left. In the following cycles, the grating
reaches, unless showing small differences, a well-defined wavelength for each of the temperatures set
in the four frames of Figure 13.

The four graphs of Figure 13 show how, following the first thermal cycle (always shown in
black in Figures 12 and 13), the grating maintains a more coherent behavior in the three following
cycles. At 100 ◦C (Figure 13a) , 300 ◦C (Figure 13b), and 500 ◦C (Figure 13c), the spectrum moves
proportionally to the right (increasing wavelength) as a result of the heating. At 700 ◦C (Figure 13d),
the sensor spectra tend to group themselves around the same wavelength (around 1543.00 nm).
This effect could be ascribed to the strongly nonlinear behavior of the photoelastic coefficient at HT.
This test demonstrates that in the same range of temperatures, and in the absence of the second metal,
the anomalies detected in the presence of the second metal (as in the case of the Ni–Cu bimetallic
coating) are not registered and that there are no detachments at the interface between optical fiber
and metal coating. This would also confirm the behavior shown in Figures 8 and 10, where the last
recorded WL (at 32 ◦C) was moved much further to the left than the RT value preceding the thermal
cycle (at 37 ◦C).
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Figure 13. Grating spectra grouped by temperature value. (a) The grating spectrum at 100 ◦C; (b) at
300 ◦C; (c) at 500 ◦C; and (d) at 700 ◦C. After the first cycle, all following cycles begin around the new
wavelength value at RT. In black is shown the first cycle, in red the second, in green the third, and in
blue the fourth.

4. Conclusions

This work presents some results of a wider research on metallic coatings for FBGs that our team has
been conducting for several years, on applications of FBG in a harsh environment, especially at extreme
temperatures (from cryogenics to HT). These gratings need to undergo critical thermal treatments;
therefore, there is a need for a better-performing mechanical protection. For that reason, a double-layer
Cu–Ni coating, on gratings specifically written for RP purposes, was investigated. Cu allows a better
adhesion to the first very thin Au substrate and permits easily obtaining a continuous deposit, while Ni
protects the system from higher temperatures. Moreover, the two metals, at HT, interdiffuse, generating
cupronickel alloys. These present both mechanical strength and resistance to aggressive environments
greater than those of the two elements separately. The coating, following a preliminary recovery cycle,
performed at 400 ◦C to release the hydrogen absorbed by the Ni layer, undergoes a very critical (fast)
RP. Up to 700 ◦C, KV development does not occur, and the grating maintains a consistent behavior.
After 700 ◦C, KVs appear and increase with the increasing temperature, leading to a clearly visible
grating instability in the range of 700–800 ◦C. Thermal cycling at HT (800–1010 ◦C) emphasized
two critical issues: First, the formation of KVs in the Cu zone of the Cu–Ni deposit, in addition to
being a factor of stress concentration, can produce a sensor malfunction as a consequence of the
creation of an irregular stress state. Second, the spectrum peak power is reduced though the sensor
maintains a correct operation up to 800 ◦C. Over 800 ◦C and particularly when the cycle reaches
1010 ◦C, the power drops to 30%, and that value is maintained during cooling.

Regardless of the thermo-optical coefficient effects (the FBG’s thermal sensitivity depends on it),
the paper focused on the interface between Cu and Ni where, over 700 ◦C, the reciprocal displacement
of the two layers and the consequent opposite tensions generate a stress-concentration belt. The test
carried out with the Cu-coated samples showed that, in the case of a single metal, this state of internal
tension does not occur, since the KVs cannot be generated. Moreover, it confirmed that the spectrum
instability shown is not due to a coating detachment, as it continues operating for several (four)
successive thermal cycles. Although the bimetallic coating would allow the use of the FBG up to
400 ◦C, and for short periods up to 700 ◦C, the regeneration following such a rapid process cannot be
considered complete. The critical issues attributable to the deposition of the double layer could be
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overcome by optimizing the metals deposition time, considering that, the greater the interface surface,
the better the adhesion between the two layers. Moreover, a larger exchange surface encourages the
interdiffusion between the layers and a larger radius (as the radius increases, i.e., the deposit thickness,
the surface curvature decreases) reduces the stress concentration. A further contribution to eliminate
the problems encountered during the tests could be to perform a less steep heating ramp (i.e., a more
gradual increase in temperatures, over longer times), as this could ease the interdiffusion, allowing it
to take place in a uniform manner without generating discontinuities in the internal structure of the
coating. However, with increasing thermal cycle time, the Kirkendall effect may play a more important
role in the formation of voids. The longer the HT exposition interval is, the bigger the number of
voids and the larger the diameter of voids will be [27]. We must therefore seek a compromise, that is,
a long enough interval to allow grating stabilization but not so long as to allow the formation and
growth of KVs. In addition to the above, this works highlights the importance of performing a recovery
treatment for the hydrogen desorption from Ni that constitutes an additional embrittlement factor of
the bimetallic deposit.
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Abbreviations

The following abbreviations are used in this manuscript:

CTE Coefficients of thermal expansion
CVD Chemical vapor deposition
ED Electrodeposition
FBG Fiber Bragg grating
FWHM Full width at half maximum
HT High temperatures
KV Kirkendall void
PVD Physical vapor deposition
RP Regeneration procedure
RT Room temperature
SEM Scanning electron microscope
SLS Side lobe suppression
SNR Signal–noise ratio
TC Thermal cycle
UV Ultraviolet
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