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Abstract: Monitoring of tool wear in machining process has found its importance to predict
tool life, reduce equipment downtime, and tool costs. Traditional visual methods require expert
experience and human resources to obtain accurate tool wear information. With the development
of charge-coupled device (CCD) image sensor and the deep learning algorithms, it has become
possible to use the convolutional neural network (CNN) model to automatically identify the wear
types of high-temperature alloy tools in the face milling process. In this paper, the CNN model
is developed based on our image dataset. The convolutional automatic encoder (CAE) is used to
pre-train the network model, and the model parameters are fine-tuned by back propagation (BP)
algorithm combined with stochastic gradient descent (SGD) algorithm. The established ToolWearnet
network model has the function of identifying the tool wear types. The experimental results show
that the average recognition precision rate of the model can reach 96.20%. At the same time, the
automatic detection algorithm of tool wear value is improved by combining the identified tool wear
types. In order to verify the feasibility of the method, an experimental system is built on the machine
tool. By matching the frame rate of the industrial camera and the machine tool spindle speed, the
wear image information of all the inserts can be obtained in the machining gap. The automatic
detection method of tool wear value is compared with the result of manual detection by high precision
digital optical microscope, the mean absolute percentage error is 4.76%, which effectively verifies the
effectiveness and practicality of the method.
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1. Introduction of Tool Condition Monitoring (TCM)

In milling operations, the quality of machined workpiece is highly dependent on the state of the
cutting insert. Factors such as wear, corrosion, or fatigue can affect tool wear. Therefore, monitoring
of tool wear in machining process has found its importance to predict tool life, reduce equipment
downtime, and optimize machining parameters [1]. The detection method of tool wear can be
categorized into two groups: direct and indirect method [2]. Indirect measurement is the use of sensors
to measure a signal related to tool wear and obtained by analyzing the signal. Applicable signals
that are widely used for tool wear measurement include acoustic emission, force, vibration, current,
and power signals, etc. For example, Yao et al. [3] used the acoustic emission signal, the spindle
motor current signal, and the feed motor current signal to monitor the tool wear state. Li et al. [4]
used acoustic emission (AE) signals to realize the TCM and tool life prediction. Jauregui et al. [5]
used cutting force and vibration signals to monitor tool wear state in the high-speed micro-milling
process. Prasad et al. [6] analyzed the sound and light-emitting signals during milling and obtained
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the relationship between tool wear and surface roughness. However, all of these signals are heavily
contaminated by the inherent noise in the industrial environment, reducing their performance [7].

Recent advances in digital image processing have suggested the machine vision should be used for
TCM. In this case, the direct method of measuring tool wear has higher accuracy and reliability than the
indirect method [7]. An unsupervised classification was used to segment the tool wear area through an
artificial neural network (ANN) and then used to predict tool wear life [8]. Garcia-Ordas et al. [9] used
computer vision technology to extract the shape descriptor of the tool wear area, combined with the
machine learning model to achieve TCM. D’Addona et al. [10] used ANN and DNA-based computing,
the tool wear degree was predicted based on image information extracted from the pre-processing.
Alegre-Gutierrez et al. [7] proposed a method based on image texture analysis for TCM in the edge
contour milling. The extracted descriptor of the tool wear area and the cutting parameters as the input
parameters of wavelet neural network (WNN) model, which can predict the tool wear degree [11].
Mikolajczyk et al. [12] developed a system that can automatically measure the wear degree of the
cutting edge by analyzing its image. Therefore, applying machine vision method in TCM has become
more and more mature.

Since deep learning is a network structure with multiple layers of nonlinear series processing
units, it is possible to omit data preprocessing and use the original data for model training and
testing directly [13]. With deep learning method, enormous breakthroughs have been made in image
recognition and classification [14–16], fault diagnosis [17,18], and medical health [19,20], etc., and CNN
has become one of the research focuses in artificial intelligence algorithm directions. In the mechanical
manufacturing industry, CNN can be used for monitoring the operating conditions of gearboxes,
bearings, etc., to identify the faults intelligently and classify the diagnosis [21–23]. In the aspect of
TCM, Fatemeh et al. [24] used extracted features to train and test the Bayesian network, support vector
machine, K nearest neighbor regression model, and established CNN model. The experimental results
show that the CNN model has a higher recognition rate precision for TCM. Zhang et al. [25] converted
the original vibration signal into an energy spectrum map by wavelet packet transform, which trained
and tested the energy spectrum map based on the CNN to classify the tool wear.

The above methods are used to realize real-time monitoring of the tool wear, but the research
is mainly concerned with whether it is worn is qualitative monitoring, and there are relatively few
studies of quantitative determination, especially for each cutting edge of the milling tool. The precision
of conventional measurement methods, such as using laser measuring instruments, optical projectors,
etc. are high, and so is the evaluation criterion for tool wear, but the measurement process needs to
be separated from the production process with the characteristics of low efficiency, significant labor
intensity, and shut-down measurements. It is challenging to meet the modern production requirements
of high efficiency and automated processing [26].

The purpose of this paper is to develop a detection system that automatically recognizes tool
wear types and obtains the wear value. It can obtain the wear image information of all the inserts of
face milling cutter in the machining gap, and no downtime measurement, just reducing the spindle
speed. In the future, the entire system can be integrated into the machine tool computer numerical
control (CNC) system to achieve high automation of the machining process and measurement process.
We present an on-machine measurement method to measure the tool wear. A tool wear image acquiring
device installed on the working platform of the CNC machine tool is used, and the images of each
cutting edge are obtained through the frame rate matching of the rotating speed. This paper draws on
the VGGNet-16 network model [27] with a strong classification ability and high recognition precision,
combined with the characteristics of tool wear images and the actual processing environment, to
construct a CNN model to identify wear types in the machining of superalloy tools. Based on the
model, the image processing method is developed according to the type of wear to improve the wear
value extraction algorithm. The Roberts operator is used to locate the wear boundary and refine the
edge image coarsely, thus improving the precision of automatic tool wear value detection (named
ATWVD). A sample set of the tool wear image is obtained by the milling process experiments, and the
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tool wear value can be measured by the method. Precision and efficiency are estimated to meet the
requirement of automation and precision in the milling process.

2. Materials and Methods

The tool wear collection device consists of the Daheng image industrial digital camera (model:
MER-125-30UC, Daheng company, Beijing, China) which has a resolution of 1292 (H) × 964 (V) and a
frame rate of 30 fps. Telecentric lens with a distortion rate of less than 0.08% (model: BT-2336, BTOS
company, Xian, China), ring light source (model: TY63HW, Bitejia Optoelectronics company, Suzhou,
China) and regulator, multi-function adjustment bracket, and a laptop computer. Three-axis vertical
machining center CNC milling machine (model: VDL-1000E, Dalian machine tool company, Dalian,
China), 490 R series of CVD coated carbide tools, and PVD coated carbide inserts produced by Sandvik
are used in the milling of Inconel 718. The dimensions of the workpiece are 160 mm × 100 mm × 80 mm.
The chemical composition of Inconel 718 material is shown in Table 1. There is no coolant during
processing. The parameters of the cutting tool are shown in Table 2.

Table 1. Chemical composition of Inconel 718 material.

Elements C Mn Si S P Ni Cr Ta

Chemical composition (%) 0.042 0.16 0.28 0.002 0.009 51.4 18.12 0.005
Mo Al Ti B Nb Fe Co Cu Pb + Bi
3.0 0.55 0.96 0.004 5.2 balance 0.2 0.11 0.001

Table 2. Parameters of the cutting tool.

Geometric Parameter Material Properties

Rake
Angle, γ0

deg

Clearance
Angle, α0

deg

Inclination
Angle, λs

deg

Corner
Radius, r

mm

Major Cutting
Edge Angle, kr

deg

Coating
Materials

Basis
Material

Hardness,
HRC

30 6 5 0.8 75 TiAlN C-W-Co 60

Since the CNC milling machine spindle usually does not have the function of angle control, the
tool wear area cannot be accurately stopped at the captured position of the CCD, so we have to collect
all the wear images of all the inserts while the spindle is rotating. Image acquisition is performed every
two minutes in the milling process. It is necessary to reduce the spindle speed of the machine tool and
move the face milling cutter to the coordinate measurement position. Wear images are automatically
acquired by the tool wear collection device installed on the CNC machine, and then the generated
image files are saved on the computer hard disk. After the automatic acquisition is completed, the
inserts are removed in the process of downtime. Then the actual tool flank wear value is measured by
using a precision digital optical microscope (model: Keyence VHX-1000).

The cutting parameters used for the face milling operation are shown in Table 3. There are a total
of 18 possible combinations of experimental conditions (ADG, AEG, AFG, ADH, AEH, AFH, BDG,
BEG, BFG, BDH, BEH, BFH, CDG, CEG, CFG, CDH, CEH, CFH) based on the given cutting parameters.
Each image is labeled with a combination of cutting conditions and processing time. For example,
the image “3ADG08” represents the third insert of face milling cutter, at a cutting speed of 60 m/min,
a feed rate of 0.03 mm/z, a depth of cut of 0.3 mm, and a tool wear image is obtained after 8 min of
machining. The above-acquired images are used as datasets.

Table 3. Cutting parameters for face milling operation.

Cutting Speed vc (m/min) Feed Per Tooth fz (mm/z) Depth of Cutting ap (mm)

A 60 D 0.03 G 0.3
B 109 E 0.05 H 0.5
C 148 F 0.07
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Each set of tests uses the same cutting parameters until the maximum flank wear of the cutting
tool reaches 0.4 mm. Face milling cutters have six inserts. At the end of each set of milling tests,
wear images of six inserts are acquired, and six sets of complete tool wear life cycle data are obtained.
Both coated tools are used in this way. Experimental environment for milling and tool wear detection
is shown in Figure 1. In the process of collecting the tool wear images, the trigger mode is a soft trigger,
the exposure time is 10 ms, and the exposure mode is timed. If the spindle speed is 2 r/min, the time
interval for saving the pictures is 250 ms, and the number of saved pictures is 120; if the spindle speed
is 4 r/min, the time interval for saving the pictures is 150 ms, the number of saved pictures is 100, which
guarantees a complete acquisition of the wear image of each cutting edge. The process of matching
the camera frame rate with the machine spindle speed is shown in Figure 2. The matching between
the rotational speed and the acquisition frame rate is studied, and the maximum speed of 4 r/min is
obtained according to 30 fps of the industrial camera. If the spindle speed is increased, the acquired
tool wear image will have different degrees of distortion. Improving the frame rate of the camera can
increase the spindle speed to improve detection efficiency.
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3. Tool Wear Types Identification Based on CNN

3.1. The Overall Process for Tool Wear Types Identification

The images of tool wear are the datasets after the image size normalization. Wear characteristics
of tool wear images are extracted adaptively, some are used as the training data, and the other part
is used as the test data. After the network model is pre-trained using a convolutional automated
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encoder (CAE), the output is set as the initial value of the CNN parameters. CNN is used to continue
the training to obtain the optimal solution of the entire network parameters. Finally, the softmax
classifier is used to identify and classify the wear types of milling tools. The whole network structure
continuously iterates and feeds back the actual error results of the calculation. At the same time,
the weight of the network is updated to make the whole network develop in the optimal direction,
and the optimal wear type identification model is obtained finally. The overall process for tool wear
identification is shown in Figure 3.
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3.2. Network Structure for Tool Wear Types Identification

The CNN structure is mainly composed of a convolutional layer, a pooled layer (also referred to
as a down sampling layer), and a fully connected layer. The paper constructs a recognition model of
tool wear types (named ToolWearnet) based on CNN concerning a VGGNet-16 model applied to image
classification and developed by the visual geometry group of Oxford University. The parameters of the
network are set according to the characteristics of the tool wear identification model. The ToolWearnet
model consists of 12 layers, including 11 convolutional layers and one fully connected layer, and each
convolution kernel is 3 × 3 in size.

Relative to the convolutional layer, the full connection layer has more connections, and more
parameters will be generated. In order to reduce the network parameters, only one fully connected
layer is set in the model, and the last pooling layer in front of the fully connected layer is set to the mean
pooling layer. The kernel size of the mean pooling layer is 4 × 4. This configuration can effectively
reduce network parameters while maintaining network feature extraction capabilities as much as
possible. The acquired image size of the tool wear image is 256 × 256 × 3 and randomly cut into a
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uniform 224 × 224 resolution as the input data of the network model. The tool wear images are divided
into four categories according to the wear types, and the fully connected layer is set as four types of
output. The framework of tool wear identification method and network structure based on CNN are
shown in Figure 4.Sensors 2019,19, x 6 of 17 
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3.2.1. Convolution Layer

The convolution operation is to use the convolution kernel to “slide” on the image at a set step
size, thereby extracting features in the image to obtain feature maps. Batch normalization (BN) layer is
add in the layers of Conv1, Conv3, Conv5, Conv7, Conv9, Conv10, and Conv11 to prevent over-fitting
and speed up model convergence. Large-sized pictures xl (rl × cl) are operated through the convolution
with the size of xs (rs × cs), the number of learned features is kc, multiple features maps Cli (i = 1, 2, 3... kc)
can be obtained [24] as in the following Equation (1).

Cli = ReLu
(
W(1)xs + b(1)

)
(1)

where W(1) and b(1) are the weight and offset of the display unit to the hidden layer unit, respectively.
ReLu (x) is the Nonlinear mapping activation function. Then the actual size of the feature map Cli is:

S(Cli) = [((rl + 2× pading− rs)/stride) + 1] × [((cl + 2× pading− cs)/stride) + 1] × kc (2)

where kc represents the number of convolution kernels; padding is the edge extension parameter; stride
represents the step size. For example, in the CNN model of the tool wear identification, as shown in
Figure 4, a tool wear image of 224 × 224 × 3 is input, a convolution kernel of 3 × 3 × 64 is used in
the convolution layer Conv1 to perform convolution operation on the tool wear image. Set the step
size as 1 and the edge expansion parameter as 1, and the actual size of the output feature map after
convolution is 224 × 224 × 64.
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3.2.2. Pooling Layer

The pooling methods include maximum pooling, average pooling, and random value pooling.
The dropout technology is added after the AvgPool layer and the MaxPool4 layer to reduce the
complexity of interaction between neurons, so that neuron learning can obtain more robust features,
improve the generalization, and avoid over-fitting of the network. Maximum pooling method and
the average pooling method are used for pooling operation. Pooling kernel size is set as pp (rp × cp),
and Cl (r × c) is the feature map obtained after the convolution operation. Multiple feature maps
pi (i = 1,2,3 . . . kp) obtained [25] after the pooling operation are as shown in Equations (3) and (4).

pi = max
rp×cp

(Cl) (3)

or pi = average
rp×cp

(Cl) (4)

Then the actual size of the feature map pi is: Type equation here.

S(pi) =
[((

r + 2× pading− rp
)
/stride

)
+ 1

]
×

[((
c + 2× pading− cp

)
/stride

)
+ 1

]
× kp (5)

where kp represents the number of pooling kernels. For example, input a feature map of 224 × 224 × 64
in the pooling layer MaxPool1 as shown in Figure 4, pooling kernel of 2 × 2 × 128 is used for pooling
operation of the tool wear images. Set the step size as 2 and the edge expansion parameter as 0, and
the actual size of the output feature map after pooling operation is 112 × 112 × 128.

3.2.3. Fully Connected Layer

Each neuron in the fully connected layer is fully connected to all neurons in the upper layer.
After the training of the tool wear image and the corresponding label, the classification results of
tool wear types are output with the recognition precision rate and loss function value of the CNN.
The ToolWearnet model is constructed using the network structure described above. The size of
the input tool wear image is 224 × 224. The specific parameters of each layer are shown in Table 4.
The ToolWearnet model, which includes a 12-layer network structure and does not include an input
layer, has 11 convolutional layers, five pooling layers, and one fully connected layer. Conv1 to Conv11
are convolutional layers, MaxPool1 to MaxPool4 are the largest pooling layer, AvgPool is the average
pooling layer, and FC layer is a fully connected layer.

Table 4. Structural parameters of the ToolWearnet model.

Number Layer Name Size of Input
Feature Maps

Size of
Filters Padding Stride Size of Output

Feature Maps

0 Input 224 × 224 × 3 - - - 224 × 224 × 3
1 Conv1 224 × 224 × 3 3 × 3 × 64 1 1 224 × 224 × 64
2 Conv2 224 × 224 × 64 3 × 3 × 64 1 1 224 × 224 × 64
3 MaxPool1 224 × 224 × 64 2 × 2 × 128 2 0 112 × 112 × 128
4 Conv3 112 × 112 × 128 3 × 3 × 128 1 1 112 × 112 × 128
5 Conv4 112 × 112 × 128 3 × 3 × 128 1 1 112 × 112 × 128
6 MaxPool2 112 × 112 × 128 2 × 2 × 256 2 0 56 × 56 × 256
7 Conv5 56 × 56 × 256 3 × 3 × 256 1 1 56 × 56 × 256
8 Conv6 56 × 56 × 256 3 × 3 × 256 1 1 56 × 56 × 256
9 MaxPool3 56 × 56 × 256 2 × 2 × 256 2 0 28 × 28 × 256

10 Conv7 28 × 28 × 256 3 × 3 × 256 1 1 28 × 28 × 256
11 Conv8 28 × 28 × 256 3 × 3 × 256 1 1 28 × 28 × 256
12 MaxPool4 28 × 28 × 256 2 × 2 × 512 2 0 14 × 14 × 512
13 Conv9 14 × 14 × 512 3 × 3 × 512 1 1 14 × 14 × 512
14 Conv10 14 × 14 × 512 3 × 3 × 512 1 1 14 × 14 × 512
15 Conv11 14 × 14 × 512 3 × 3 × 512 1 1 14 × 14 × 512
16 AvgPool 14 × 14 × 512 4 × 4 × 512 2 0 6 × 6 × 512
17 FC 6 × 6 × 512 - - - 4
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3.2.4. Parameter Training and Fine Tuning

The training process of CNN is mainly composed of two stages: forward propagation and back
propagation [28]. The network model is pre-trained by the convolutional automated encoder (CAE)
and then is optimized and fine-tuned by the back propagation (BP) algorithm combined with the
stochastic gradient descent (SGD) method. In the actual calculation, the batch optimization method
decreases the value and gradient of the loss function in the entire training datasets. However, it is
difficult to run on a PC for large data sets. The network may converge more quickly, and the above
problem may be solved after applying the SGD optimization method in CNN.

The standard gradient descent algorithm updates the parameter θ of the objective function J(θ)
using the following formula [24]:

θ = θ− η∇θE[J(θ)] (6)

where expectation E[J(θ)] is the estimated value of loss function value and the gradient for all training
datasets, and η is the learning rate.

The SGD method cancels the expected term when updating and calculating the gradient of the
parameters. The formula is as follows:

θ = θ− η∇θ J
(
θ; m(i), n(i)

)
(7)

where (m(i), n(i)) is the training set data pair.
When updating the model parameters, the objective function of the deep network structure has a

locally optimal form, and local convergence of the network may be led by the SGD method. Increasing
the momentum parameter is an improved method that can speed up the global convergence of the
network. The momentum parameter updated formula is as follows [18]:

vt = αvt−1 + η∇θ J
(
θ; m(i), n(i)

)
(8)

θ = θ− vt (9)

where vt represents the current velocity vector, and vt-1 represents the velocity vector of the previous
moment, both having the same dimensions as the parameter θ; α is momentum factor, and α ε (0,1),
where α is equal to 0.5.

3.3. Method of ATWVD Based on Tool Wear Types Identification

The minimum bounding rectangles (MBR) method [29] is used to study the tool wear and tool
breakage in milling of superalloy mentioned above. For the tool wear in the case of abrasive wear
or chipping, the value of tool wear can be detected accurately, but in the case of adhesive wear and
sheet peeling, the value obtained by using the MBR method directly has a significant error. This is
because when the tool wear is in adhesive wear or sheet peeling, the image obtained from the camera
is affected by the chips adhered on the cutting edge, as shown in Figure 5a,d, resulting in a larger
rectangle surrounding the wear zone than the actual one.



Sensors 2019, 19, 3817 9 of 17

Sensors 2019,19, x 8 of 17 

The standard gradient descent algorithm updates the parameter θ of the objective function J(θ) 
using the following formula [24]: 𝜃 = 𝜃 − 𝜂∇ 𝐸 𝐽 𝜃  (6) 

where expectation E[J(θ)] is the estimated value of loss function value and the gradient for all training 
datasets, and η is the learning rate. 

The SGD method cancels the expected term when updating and calculating the gradient of the 
parameters. The formula is as follows: 𝜃 = 𝜃 − 𝜂∇ 𝐽 𝜃; 𝑚 , 𝑛  (7) 

where (m(i), n(i)) is the training set data pair. 
When updating the model parameters, the objective function of the deep network structure has 

a locally optimal form, and local convergence of the network may be led by the SGD method. 
Increasing the momentum parameter is an improved method that can speed up the global 
convergence of the network. The momentum parameter updated formula is as follows [18]: 𝑣 = 𝛼𝑣 + 𝜂∇ 𝐽 𝜃; 𝑚 , 𝑛  (8) 𝜃 = 𝜃 − 𝑣  (9) 

where vt represents the current velocity vector, and vt-1 represents the velocity vector of the previous 
moment, both having the same dimensions as the parameter θ; α is momentum factor, and α ϵ (0,1), 
where α is equal to 0.5. 

3.3. Method of ATWVD Based on Tool Wear Types Identification 

The minimum bounding rectangles (MBR) method [29] is used to study the tool wear and tool 
breakage in milling of superalloy mentioned above. For the tool wear in the case of abrasive wear or 
chipping, the value of tool wear can be detected accurately, but in the case of adhesive wear and sheet 
peeling, the value obtained by using the MBR method directly has a significant error. This is because 
when the tool wear is in adhesive wear or sheet peeling, the image obtained from the camera is 
affected by the chips adhered on the cutting edge, as shown in Figure 5a,d, resulting in a larger 
rectangle surrounding the wear zone than the actual one. 

 
Figure 5. Comparison of detection methods for the value of tool wear. (a,d) Roughly processed images 
of adhesive wear and sheet peeling; (b,e) cropped images; (c,f) edge refined images. 

In order to improve the deficiencies of the above detection methods, an ATWVD method based 
on tool wear types identification is proposed, the specific algorithm is as follows: 

Figure 5. Comparison of detection methods for the value of tool wear. (a,d) Roughly processed images
of adhesive wear and sheet peeling; (b,e) cropped images; (c,f) edge refined images.

In order to improve the deficiencies of the above detection methods, an ATWVD method based
on tool wear types identification is proposed, the specific algorithm is as follows:

Step1: The collected tool wear images are randomly cut into a uniform size of 224 × 224 and image
size normalization was performed to achieve data normalization.

Step 2: ToolWearnet model based on CNN is used to test the tool wear images for intelligently
identifying and classifying.

Step 3: After the tool wear images are normalized, the process of graying, median filter denoising,
contrast stretch, segmentation boundary image using a watershed algorithm, coarse positioning
using Roberts operator boundary and refining the edge image, extracting the contour of the
tool wear area are conducted according to the tool wear types. If the tool wear type is adhesive
wear (or the chip is sheet peeling, and the chip is bonded to the tool), the wear image is
matched with the original image using image registration technology. Cropping algorithm
is used to cut off the excess image to remove the contour of the chip bonded to the tool, as
shown in Figure 5b,e. Finally, the area contour of effective wear is obtained, and the minimum
circumscribed rectangle obtained after the edge refinement is shown in Figure 5c,f. Besides,
other tool wear types are measured by directly extracting the contour of the wear area.

Step 4: According to the transformation between the image pixel value and the actual value, combined
with the width of the minimum circumscribed rectangle, the actual value of tool wear value
is obtained.

4. Results and Discussion

4.1. Dataset Description

The tool wear and tool failure in the milling of high superalloys are analyzed as an example.
The tool wear is severe due to high hardness, excellent fatigue performance, and fracture toughness
of superalloys. At a lower cutting speed, flank wear and rake face wear are the main forms of wear,
as shown in Figure 6a,d; at a high-speed cutting, the heat generated causes significant chemical and
adhesive wear on the tool, as shown in Figure 6c. In actual cutting, the wear form is often complicated,
and multiple wears coexist. For example, flank wear and crater wear (rake face wear) can be observed
simultaneously, and two wears that interact with each other will accelerate the wear of the tool and
finally lead to breakage, as shown in Figure 6b. The adhesive wear at the edge will cause chips to
adhere to the rake face, and finally, the sheet peeling will occur at the edge.
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After the tool wear images were acquired in the milling process using the above methods, the
datasets were divided into three parts: 70% as the training set; 15% as the validation set; 15% as the test
set. We randomly selected two different cutting parameters and obtained twelve sets of wear images
with complete tool wear life as the test set. Then, twelve sets of wear images were selected in the same
way as the verification set. The remaining tool wear images were all used as the training set. The test
set and training set are mutually exclusive (the test samples do not appear in the training set and are
not used in the training process). The training set was used for model training, the validation set was
used to select model hyper parameters, and the test set was used to evaluate model performance.

The CNN model is prone to overfitting due to its powerful fitting ability, especially when the
number of datasets is small [30]. Since the number of tool wear images collected in this paper is
limited, and the ToolWearnet model has more layers, more tool wear images are needed for training.
Methods of rotation, flipping transformation, scaling transformation, translation transformation,
color transformation, and noise disturbance are used to extend the datasets by five times. There are
8400 images in the datasets. The tool wear images mentioned above are classified according to the
adhesive wear, tool breakage, rake face wear, and flank wear. After randomly cutting into a uniform,
the datasets of the images were obtained. The specific number of images for each wear type is shown
in Table 5.

Table 5. Statistics of the tool wear image data.

Tool Wear Types Training Set Validation Set Test Set Total

Adhesive wear 1425 285 280 1990
Tool breakage 1455 315 305 2075

Rake face wear 1490 330 325 2145
Flank wear 1510 340 340 2190

The tool wear type identification is a multi-classification task. Since the tool wear types are
identified in the milling machine during machining, it is likely to be affected by pollutants and fragment
chips in the processing environment. Irregular chips adhere to the tool when it is adhesive wear. If the
chip is small and not easily observed, it is likely that the classifier will recognize it as a rake face wear,
as shown in Figure 7a. In order to reduce the probability of such errors, we collected images that
are prone to recognition errors and used them as a sample set to re-train the CNN model. Similarly,
if contaminants are attached to the main cutting edge of the rake face, it is likely to be recognized
by the classifier as adhesive wear, as shown in Figure 7b. In order to avoid such errors, we will
configure a high-pressure blowing device on one side of the machine spindle, using high pressure gas
to blow away contaminants and fragment chips before performing tool wear type detection. In actual
cutting, the wear form is often complicated, and multiple wears coexist. As shown in Figure 7c, it has
the characteristics of adhesive wear and tool breakage, which will also cause the classifier to have
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recognition error. Due to the current small sample set, this mixed form of wear type has a lower
occurrence probability. With the expansion of the sample set, the number of its occurrences will
increase. In the future, we will further study a specialized algorithm to reduce the above error cases.

Sensors 2019,19, x 10 of 17 

The CNN model is prone to overfitting due to its powerful fitting ability, especially when the 
number of datasets is small [30]. Since the number of tool wear images collected in this paper is 
limited, and the ToolWearnet model has more layers, more tool wear images are needed for training. 
Methods of rotation, flipping transformation, scaling transformation, translation transformation, 
color transformation, and noise disturbance are used to extend the datasets by five times. There are 
8400 images in the datasets. The tool wear images mentioned above are classified according to the 
adhesive wear, tool breakage, rake face wear, and flank wear. After randomly cutting into a uniform, 
the datasets of the images were obtained. The specific number of images for each wear type is shown 
in Table 5. 

Table 5. Statistics of the tool wear image data. 

Tool Wear Types Training Set Validation Set Test Set Total 
Adhesive wear 1425 285 280 1990 
Tool breakage 1455 315 305 2075 
Rake face wear 1490 330 325 2145 

Flank wear 1510 340 340 2190 

The tool wear type identification is a multi-classification task. Since the tool wear types are 
identified in the milling machine during machining, it is likely to be affected by pollutants and 
fragment chips in the processing environment. Irregular chips adhere to the tool when it is adhesive 
wear. If the chip is small and not easily observed, it is likely that the classifier will recognize it as a 
rake face wear, as shown in Figure 7a. In order to reduce the probability of such errors, we collected 
images that are prone to recognition errors and used them as a sample set to re-train the CNN model. 
Similarly, if contaminants are attached to the main cutting edge of the rake face, it is likely to be 
recognized by the classifier as adhesive wear, as shown in Figure 7b. In order to avoid such errors, 
we will configure a high-pressure blowing device on one side of the machine spindle, using high 
pressure gas to blow away contaminants and fragment chips before performing tool wear type 
detection. In actual cutting, the wear form is often complicated, and multiple wears coexist. As shown 
in Figure 7c, it has the characteristics of adhesive wear and tool breakage, which will also cause the 
classifier to have recognition error. Due to the current small sample set, this mixed form of wear type 
has a lower occurrence probability. With the expansion of the sample set, the number of its 
occurrences will increase. In the future, we will further study a specialized algorithm to reduce the 
above error cases.  

 
(a) (b) (c) 

Figure 7. Images of the detection error cases. (a) adhesive wear, (b) flank wear, (c) multiple  
wear coexist. 

The CNN used in the deep learning experiment is built using the deep learning development kit 
provided by MATLAB2017b combined with the Caffe deep learning framework. Keyence VHX-1000 
(KEYENCE company, Osaka, Japan) high precision digital optical microscope was used to test the 
actual tool wear value and verify the feasibility of the ATWVD method. Images manually collected 
by high precision digital optical microscopes are also part of the datasets. The partial images of the 
datasets and the process of depth search are shown in Figure 8.  

Figure 7. Images of the detection error cases. (a) adhesive wear, (b) flank wear, (c) multiple wear coexist.

The CNN used in the deep learning experiment is built using the deep learning development kit
provided by MATLAB2017b combined with the Caffe deep learning framework. Keyence VHX-1000
(KEYENCE company, Osaka, Japan) high precision digital optical microscope was used to test the
actual tool wear value and verify the feasibility of the ATWVD method. Images manually collected
by high precision digital optical microscopes are also part of the datasets. The partial images of the
datasets and the process of depth search are shown in Figure 8.Sensors 2019,19, x 11 of 17 
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4.2. Evaluation Indications

After training the ToolWearnet network model, the test set was used to evaluate the precision of
the ToolWearnet network model in identifying the tool wear image. We used the “precision and average
recognition precision” metrics to perform the evaluation process [31], as shown in Equations (10) and
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(11). The ToolWearnet network model constructed in this paper has an average recognition precision
(AP) of about 96% for tool wear types.

precision =
TP

TP + FP
× 100% (10)

AP =
[(1

n
TP

TP + FP

)]
× 100% (11)

where TP is the number of true positive samples in the test samples, FP is the number of false positive
samples in the test samples, n is the number of categories in the test sample, n = 4.

In order to test the performance of the automatic tool wear value detection (named ATWVD)
method based on the tool wear types in detecting the tool wear degree, the parameter error rate (ek) and
mean absolute percentage error (MAPE) were used to evaluate, as shown in Equations (12) and (13).
In this paper, the mean absolute percentage error (MAPE) of the ATWVD method is about 5%.

ek =
|Fk −Ak|

Ak
× 100% (12)

MAPE =


1

k

k∑
k=1

ek


× 100% (13)

where Fk represents the tool wear degree detected by the ATWVD method, Ak represents the wear
value measured by the precision optical microscope, and k represents the number of measured tool
wear images.

4.3. Analysis and Results

The initial learning rate of the training sets in the experimental phase is set to 10−3, the maximum
number of training iterations is 103, the dropout rate is 0.2, the weight attenuation is 5 × 10−4, and
the number of batch images is 128. The algorithm of the neural network parameter optimization
is stochastic gradient descent (SGD). When training this network model, the batch normalization
(BN) method is used to accelerate the training of the network. Because the BN method uses the
normalized method to concentrate the data at the center, it can effectively avoid the problem of the
gradient disappearing. When testing this network model, the training sets are tested once every six
training sessions.

4.3.1. Comparison of Two CNN Models for Tool Wear Recognition

In order to reflect the reliability of the ToolWearnet network model built in this paper in tool
wear types identification, and to make a reasonable evaluation of its recognition precision rate and
efficiency, the VGGNet-16 network model was applied for the comparative experiment. VGGNet-16 is
a CNN model developed by the VGG (visual geometry group) group of Oxford University for image
classification. The VGGNet-16 network model has a 16-layer network structure with 5 maximum
pooling layers, 13 convolutional layers, and 3 fully connected layers. The convolution kernels are all
3 × 3, and the pooling kernels are all 2 × 2. The first and second fully connected layers use dropout
technology, and all hidden layers are equipped with ReLU layers. The model has strong image
feature extraction ability. The detailed training parameters for the two models are shown in Table 6.
After training and testing, different recognition precision rate and loss function values are obtained,
as shown in Figure 9. The comparison of the precision rate of the recognition, training time, and
recognition time of the different tool wear by the two models are shown in Table 7.
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Table 6. The detailed training parameters for the two models.

Network
Model

Training Parameter

Learning
Rate

Maximum
Iteration Times Dropout Weight

Attenuation Batch Size Optimization
Algorithm

Test
Interval

ToolWearnet 10−3 103 0.2 5 × 10−4 128 SGD 6
VGGNet-16 10−3 103 0.2 5 × 10−4 128 SGD 6
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Table 7. The comparison of the recognition precision rate, training time, and recognition time of the
two models.

Network
Model

Recognition Precision Rate of Different Wear Types (%)
Training
Time (h)

Recognition
Time (s)Adhesive

Wear
Tool

Breakage
Rake Face

Wear Flank Wear

VGGNet-16 97.85 97.10 96.56 95.81 32.6 174
ToolWearnet 97.27 96.35 95.78 95.41 1.8 11

The results show that the ToolWearnet network model achieves a high precision rate at the
beginning of the test quickly. In the first 24 iteration periods, the recognition precision rate of the
two models are continuously increasing, and the loss function is continuously decreasing; but when
the iteration period exceeds 24 times, the recognition precision rate of ToolWearnet model tends
to be stable, while the recognition precision rate of the VGGNet model is continuously increasing,
and its loss function is continuously decreasing. It will be stable until the iteration period exceeds
76 times. Therefore, the convergence speed of this model is faster than the VGGNet-16 network model.
The VGGNet-16 model has more network layers, complex network structure, and network parameters,
resulting in an astronomical calculation amount and slow convergence speed. The trend of recognition
precision rate of the two models increases with the number of iterations, and the trend of the loss
function decreases with the number of iterations. When the recognition precision rate and loss function
of both models tend to be stable, the recognition precision rate curve of the VGGNet model is above
the ToolWearnet model. Therefore, the recognition precision rate of this model is slightly lower than
the VGGNet model. Compared with the ToolWearnet model, it has the deeper network depth and
more feature surfaces, the feature space that the network can represent is more extensive, which will
make the learning ability of the network stronger and the deeper feature information can be mined,
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but it will also make the network structure more complicated. The storage memory and the training
time will increase.

The ToolWearnet network model has an average recognition precision rate of 96.20% for tool
wear types, the highest recognition precision rate for adhesion wear, with a value of 97.27%, and the
lowest recognition precision rate for flank wear, which is 95.41%. Because irregular chips adhere to the
cutting edge during adhesion wear, the contour features of the wear area are most apparent, while the
contour features of the flank wear are not evident due to the difference of the shape of the wear area
being small. Although the recognition precision rate of the ToolWearnet network model is slightly
lower than the VGGNet-16 network model, the training time and recognition time are shorter, and the
hardware has low computational power requirements, which can meet the needs of slightly fast and
accurate cutting in the industry.

4.3.2. Tool Wear Value Detection Comparison Experiment

In the experiment, the spindle speed was matched with the frame rate of the camera, and the wear
image of each insert on the face milling cutter was collected. Each acquisition took the corresponding
insert directly below the label on the cutter as the starting point and sequentially numbers the six
inserts in the direction while the tool rotates. The images with good quality and complete tool wear
areas were acquired by filtering by the fuzzy and the insert position detection. Then, the flank wear
value of each insert was obtained by the ATWVD method combined with the CNN model. After the
automatic acquisition of the tool wear image, the inserts are detected by a high precision digital optical
microscope to obtain the exact value of tool wear after stopping the CNC machine. The comparison of
the pictures collected in two ways is shown in Figure 10. We randomly selected one set of tool wear
images with complete tool wear life cycle in the test set for comparison, taking “2CEG” as an example.
The maximum wear value VB of the ATWVD method detection and high precision digital microscope
manual detection and the error rate of the ATWVD method were obtained, as shown in Figure 11.Sensors 2019,19, x 14 of 17 
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Figure 10. Comparison of two acquisition methods. (a) image is manually collected by high
precision digital microscope (model: Keyence VHX-1000); (b) image is collected by the automatic
acquisition device.

The results show that the wear value detected by the ATWVD method is close to the wear value
of high precision digital optical microscope manual detection, and the error rate of the wear value
is in the range of 1.48~7.39% and the mean absolute percentage error (MAPE) is 4.76%. Therefore,
the method of tool wear types automatic identification based on CNN is verified. Practicality, the
process is suitable for intermittent detection of the tool, such as collecting tool information while the
tool is in the tool magazine or the tool change gap. It can automatically and effectively obtain the tool
wear types and wear value, which can be used to provide data for the future tool life prediction, tool
selection, and tool design.
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Figure 11. Comparison of the maximum wear value measured by the two methods and the error rate
of the ATWVD method.

5. Conclusions

In this paper, an automatic recognition model of tool wear types based on CNN is proposed by
using Caffe deep learning framework. The model considers the characteristics of the actual processing
environment and tool wear images in milling of superalloy. The tool wear images obtained through
the milling experiments of Nickel-based superalloy Inconel 718 are used as the datasets to train and
test the ToolWearnet network model. The results show that the model has a robust feature extraction
ability. The recognition precision rate of different wear types of high-temperature alloy tools is in the
range of 95.41~97.27%, and the average recognition precision rate is 96.20%. It has the advantages of
high recognition precision rate and robustness.

Furthermore, an ATWVD method is improved based on ToolWearnet network model, the value
of tool wear obtained by this method is compared with the wear value detected by a high precision
digital optical microscope. The error rate of this method is in the range of 1.48~7.39%, and the mean
absolute percentage error is 4.76%, which proves the reliability of the method. Although the recognition
precision rate of the network model is slightly lower than that of the VGGNet-16 network model, the
training time and recognition time are shorter, and the network parameters are less. It can be applied
to the application scenario that identifies tool wear types accurately and slightly faster with lower
hardware consumption.

Practicality, the process is suitable for intermittent detection of the tool, such as collecting tool
information while the tool is in the tool magazine or the tool change gap. It can automatically and
effectively obtain the tool wear types and wear value, which can be used to provide data for the future
tool life prediction, tool selection, and tool design. The proposed tool wear identification method
can also be extended to other machining processes, such as drilling and turning. Meanwhile, future
work will consider more extensive experimental data with different cutting tools, as well as extend the
applications to predict tool life, optimizing the machining parameters with the method.
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Nomenclature

ap Depth of cutting (mm)
fz Feed per tooth (mm/z)
vc Cutting speed (m/min)
padding Edge extension parameter
stride Step size
kc Number of convolution kernels
kp Number of pooling kernels
θ Parameter of the objective function
η Learning rate
(m(i), n(i)) Training set data pair
vt Current velocity vector
vt−1 Velocity vector of the previous moment
α Momentum factor
n Number of wear types
TP Number of true positive samples
FP Number of false positive samples
Fk Wear degree detected by the ATWVD method
Ak Wear value measured by the optical microscope
k Number of measured tool wear images
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